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Abstract. The main goal of the paper is to show that wavelet transforms and 
packets have the multiparametric representation in the form of a product of the 
rotation Jacobi matrices. These representations we call the third and the fourth 
canonical multiparametric form. Each multiparametric wavelet transform 
(MPWT) depends on several free Jacobi parameters. When parameters are 
changed multiparametric transform is changed too taking form of all known and 
unknown orthogonal wavelet transforms. It gives unified approach to describ-
ing a wide set of cyclic orthogonal wavelet transforms and endows with adap-
tive properties of those transforms. 
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1 Introduction 

The wide class of orthogonal wavelet transforms WT  can be defined by two sets of 
coefficients 1, 2: 0h , 1h , …, 1Lh 

 and 0g , 1g , …, 1Lg  , where 2L D  is an even 

number. In fact WT  is determined only by a set of h -coefficients 0h , 1h , …,. 1Lh 
, 

since the second set of coefficients is usually assigned according to the rule 

0 1Lg h  , 1 2Lg h   , …, 1 0Lg h   . For this reason we will designate wavelet 

transform as 0 1 12
, , ,n Lh h h 

  WDT . 

Coefficients 0h , 1h ,…, 1Lh 
 depend upon each other, because changing any coefficient 

from them requires changing the rest ones, if we wish are stayed in the orthogonal 
class of wavelet transforms. The coefficients, which we can change independently of 
one another, staying wavelet transform in the class of orthogonal transforms, will be 
called parameters in this paper. 
We will prove that multiparametric presentation of wavelet transform exists and that 
any orthogonal wavelet transform depends on D  angle-parameters  0 , 1 , …, 1D 

:  

 0 1 1 0 1 12 2
, , , , , ,n nL Dh h h    

      WDT WDT , (1) 
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where 2L D . Let  2
log 2m D  be the smallest positive integer such that 

12 2 2m mD
  . Let 
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0 1 1 0 1 12 2 21
2 , ,..., [ , ,..., ] IL Ln

n m

n r n n r
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h h h h h h 

 

   


    
   WDT AWT  

be arbitrary cyclic wavelet transform, written in stairs-like form. 

2 Third canonical form of MPWT 

2.1 Multiparametric presentation of atomic wavelet transforms 

In order to find multiparametric form of wavelet transform we will use the Jacobi 
rotations. For that we should define the (2 2 )n n  sparse rotation matrix on an angle   

in the plane spanned on i  and j  basis vectors, where  cosc   and  sins  : 
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The wavelet transform 
2nWDT  is factorized into a product of sparse matrixes, named 

stairs-like atomic wavelet transform 0 1 12
, , ,n Lh h h 

  AWT . We will multiply the 

wavelet transform matrix 0 1 12
, , ,n Lh h h 

  AWT  by , ( )i j CS  matrix sequentially 

with such choice of angles   that product 

0 0 1 10 0, , 2( ) ( ) , , ,k Lk k
ni j i j h h h 
     CS CS  AWT  will be permutation matrix or unit ma-

trix. As an example, we have taken the atomic Daubechies-6  8 8 -matrix: 
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AWT
 (3) 

The angle 0  can be chosen such a way that the coefficient 5 0h   in the zeroth and 

fourth rows in the left product of matrix (3) by 0,4 0( )CS . In this case coefficient 4h  

will be zero in the same rows too. That is, coefficients are zeroed by couples. 
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0 0

CS
0 0

AWT
 (4) 

if the angle is chosen such that 0 5 0 0 0c h s h  , where  0 0cosc   and  0 0sins  . 
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CS CS CS CS AWT

AW 8 0 1 2 3, , , .h h h h     T

 (5) 

As a result we get a new atomic matrix 8 0 1 2 3, , ,h h h h     AWT  with four coefficients. 

To get the atomic matrix with two coefficients we should iterate foregoing procedure: 

0,7 1 3,6 1 2,5 1 1,4 1 8 0 1 2 3 8 0 1( ) ( ) ( ) ( ) , , , , .h h h h h h                   CS CS CS CS AWT AWT  (6) 

Reiteration of this procedure on matrix 8 0 1,h h   AWT  results in: 

 1,7 2 0,6 2 3,5 2 2,4 2 8 0 1 8( ) ( ) ( ) ( ) , ,h h           CS CS CS CS PAWT  (7) 

where 8P  is a quasipermutation matrix (there are only 1  or 1  in every row and in 

every column of it). As the final result we get: 

 
1,7 2 0,6 2 3,5 2 2,4 2

0,7 1 3,6 1 2,5 1 1,4 1

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

   

   

     

      

CS CS CS CS

CS CS CS CS
 

 3,7 0 2,6 0 1,5 0 0,4 0 8 0 1 2 3 4 5 8( ) ( ) ( ) ( ) , , , , , .h h h h h h              CS CS CS CS PAWT  (8) 

From here we obtain the multiparametric representation of the atomic wavelet trans-
form matrix: 



 

     

8 0 1 2 3 4 5 3,7 0 2,6 0 1,5 0 0,4 0

0,7 1 3,6 1 2,5 1 1,4 1

0 1 2
1,7 2 0,6 2 3,5 2 2,4 2 8 8 0 8 1 8 2 8

, , , , , ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ,
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CS CS CS CS

CS CS CS CS

CS CS CS CS P T T T P

AWT

 (9) 

where  cosi ic  ,  sini is  , 0,1,2i   and every matrix  8 iT  is the product 

of the following sparse rotation sin/cos – matrixes: 
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T CS CS CS CS

T CS CS CS CS

T CS CS CS CS

 (10) 

Let us clarify regularity in the sequences of index’s couples. If r  is a number of an 
iteration within atomic function in multiparametric presentation and i  is a number of 

the matrix  2n

i
iT , the rule of index’s couples generating could be defined as fol-

lows:  
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We will get the same results if  16 16 -matrix 16 0 1 2 3 4 5, , , , ,h h h h h h  AWT  is cho-

sen as the source atomic transform matrix with the identical set of coefficients. In 
order to zero the coefficients let us apply foregoing procedure to this matrix (compare 
the result with (9)): 
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 (12) 

where T –matrixes are the products of multiplying of CS -matrixes. This result is 

general and valid for any  2 2r r  atomic matrix: 
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It is the multiparametric representation of the atomic orthogonal wavelet transform 
matrix. 

2.2 Multiparametric representations of wavelet transforms and wavelet 
packets 

Let’s begin with consideration of  16 16  Daubechies-4 wavelet transform. In the 

matrix form it is the product of the following atomic matrixes: 

    16 0 1 2 3 4 12 8 8 16, , , .h h h h      I IWDT AWT AWT AWT  (14) 

Every atomic matrix 4AWT , 8AWT , 16AWT  can be represented in multiparametric 

form: 
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Therefore, 
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 T P I T P  (16) 

It is two-parametric form of Daubechies-4 wavelet transform. It is possible to obtain 

all the transforms of 16 0 1 2 3, , ,h h h h  WDT -type by changing the angles 0  and 1 .  

All the atomic matrices in multiparametric representation of wavelet transform are 
characterized by the same set of angle-parameters. And all the angles have equal val-
ues in each atomic matrix and have to be chosen synchronously. Of course, it is possi-
ble to use different angles sets in different atomic matrixes and to change them not 
synchronously, but in this case we will get heterogeneous wavelet transforms.  
The most general expression for multiparametric presentation of wavelet transform is 
the following: 
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  T P IWDT  (17) 

where 
2n r
  is addition modulo 2n r . The last expression presents any wavelet trans-

form in multiparametric form. We will call it the third canonical form. 



The classical wavelet transform with coefficients 0 1 2 1, ,..., Dh h h 
 is constructed from 

atomic wavelet transforms according to the following rule: 
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   IWDT AWT  (18) 

The atomic transform is used only once within each iteration in (18). In fact, the atom-
ic transform could be repeated not more then 1 12 / 2 2n n r r    times. Let 

1 2 12
( , ,..., ,..., )r r r r r

t rs s s s s  be a binary 12r -digital integer. Every binary digit r
ts con-

trols the tht position of the matrix 12n r AWT  in the thr  iteration sparse matrix. 
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All such matrices form a packet of atomic matrices  
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Using atomic packets 12
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 AWT , we obtain discrete controlled wavelet packet 
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with discrete binary parameters  1 1
1 ,ss  2 2 2
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 T PAWT . Substituting this expression in (21), 

we obtain the third multiparametric representation of wavelet packets 
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s s s T PWDP (22) 

Multiparametric wavelet packets represent a generalization of multiresolution decom-
position and comprise the entire family of subband (tree) decomposition. Wavelet 
packet best basis selection can be very efficient realize with help of multiparametric 
wavelet packets. 



2.3 The inverse multiparametric wavelet transform 

The direct multiparametric wavelet transform (MPWT) is defined by expression: 
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 T P IWDT  (23) 

This is the orthogonal matrix and so its inverse matrix coincides with its transpose 
one. Transposing of the left and the right sides of equation (23) gives expression for 
inverse matrix. To do this operation we rewrite expression (23) in more compact 
form: 
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since  ( ) ( )
t

  T T . Substituting (26) into (24), we get  
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Every matrix 12
( )i

n r i  T  is the product of commutative rotation CS -matrixes in the 

case of direct wavelet transform:  
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Substituting (28) into (27), we get the final expression for inverse wavelet transform: 
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where 
12r

  is addition modulo 12r . 

In much the same manner we get the expression of inverse wavelet packets: 
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3 Fourth Canonical Form of MPWT  

3.1 The direct multiparametric wavelet transform  

The atomic matrixes, which we took up below, were recorded with the “normal” order 

of rows. That means the averaging h -rows is situated before the differencing g -rows 

within the atomic matrix. The fourth canonical form of MPWT can be found with 
using the cyclic presentation of atomic matrix: 
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P 8CAT AWT  (31) 

where 
2nP  is the permutation matrix of ideal 2-adic mixing, which swaps the rows of 

atomic matrix in stairs-like form  0 1 52
, , ,n h h hAWT  according to the rule 
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0 1 2 3 4 2 2 2 1
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 (32) 

In order to find third canonical form of multiparametric wavelet transforms we used 
the Jacobi rotation matrix , ( )i j CS . In this case to find fourth canonical form of 

MPWT we will use the sparse rotation matrix with reflection in the plane spanned on 
i  and j  basis vectors. We will designate this matrix as , ( )R

i j CS  and its definition is: 
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We will multiply matrix  0 1 2 12
, , ,n Dh h h CAT  sequentially with rotation-reflection 

matrixes  01 0
R CS ,  23 0

R CS , ,  2 2,2 1 0
R

D D  CS  choosing angles   in such way 

as to product will be the matrix  0 1 2 32
, , ,n Dh h h 

   CAT  with the new set of coeffi-

cients, which quantity less by two then in the source matrix. As an example we take 
the atomic transform  8 0 1 5, , ,h h hCAT  above mentioned in (31). 
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Let us to iterate foregoing procedure on the just gotten new atomic matrix. As a result 
we get a block-permutation matrix with the orthogonal  2 2  blocks: 

            70 1 56 1 34 1 12 1 8 0 1 2 3 8 0 1, , , , .R R R R h h h h h h            CS CS CS CS CAT CAT  (35) 

If we will use appropriate rotation-reflection matrixes, we could transform this matrix 
to permutation one: 
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where 2
8C  is the matrix of cyclic modulo 8 shift on two positions. Thus, 

        2 1 0 2
8 2 8 1 8 0 8 0 1 5 8, , , ,h h h     T T T CCAT  (37) 

where  
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iT  is product of rotation-reflection matrixes  ,
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Since matrixes  
2n

i
iT  are both symmetric and orthogonal, then 
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   T T . Therefore 

            0 1 2 2
8 0 1 5 8 0 1 2 8 0 8 1 8 2 8, , , , , 1 ,h h h          T T T CCAT CAT  (39) 

so the atomic wavelet transform matrix can be represented as the following product: 

            0 1 2 2
8 0 1 5 8 0 1 2 8 8 0 8 1 8 2 8, , , , , 1 .h h h             P T T T CAWT AWT  (40) 

Let us to construct the multiparametric form of wavelet transform  16 0 1 5, , ,h h hWT . 

Since      16 0 5 8 0 5 8 16 0 5,..., ,..., ,..., ,h h h h h h    IWT AWT AWT  then 
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This result is general and valid for any  2 2n n  atomic matrix: 
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Taking into account (18), we get the following multiparametric presentation of cyclic 
orthogonal wavelet transform, which we call the fourth canonical form: 
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Similarly, we get the expression for MPWP, substituting (42) into (24): 
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3.2 The inverse multiparametric wavelet transform  

The matrix  0 1 12
, , ,n D   AWT  is the orthogonal matrix and its inverse matrix 

coincides with its transpose one. Therefore, in order to get expression for inverse mul-
tiparamteric atomic wavelet transform, we should transpose the left and the right sides 
of the equation (42): 
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Since  1
12n

D i
D i 

 T  is the product of symmetric and orthogonal rotation-reflection 
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Substituting (45) into (26) we get the expression for inverse MPWT: 
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In much the same manner we get the expression for inverse wavelet packets: 
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4 MPWT compression properties estimation 

In order to estimate compression properties of multiparametric orthogonal wavelet 
transform we have conducted experiments for revealing dependency of spectra’s coef-
ficients entropy  0 1, , ,D

DE     on quantity of angle-parameters D  and values of 

angle-parameters i . We use the entropy of spectra’s coefficients, quantized to inte-



ger values, as the cost function. The form of the dependency  2
0 1,E    (case of two-

parametric transform) is shown on figure 1. 

 

Fig. 1. Entropy of spectra 2E  relative to parameters 0  and 1  for  8 0 12
, WDT . Test 

image is “Lena”. 

Figure 1 show that researched dependency has local and global minimums that cor-
respond the best from the point of view of compression the wavelet transforms. 

5 Conclusion 

In this paper we defined the new representation of orthogonal wavelet transform, 
named multiparametric form of cyclic orthogonal wavelet transform. This form is the 
product of sparse rotation matrixes and it describes fast algorithm for cyclic wavelet 
transforms. Defined representation of wavelet transform depends on finite set of free 
parameters, which could be changed independently of one another. For each set of 
parameters values we get the unique cyclic orthogonal wavelet transform. All of that 
makes the base for uniform presentation of all same transforms. 
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