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Abstract. Since the late 80s, LTL and CTL model checking have been
extensively applied in various areas of computer science and AI. Even
though they proved themselves to be quite successful in many application
domains, there are some relevant temporal conditions which are inherently
“interval based” (this is the case, for instance, with telic statements like
“the astronaut must walk home in an hour” and temporal aggregations like
“the average speed of the rover cannot exceed the established threshold”)
and thus cannot be properly modelled by point-based temporal logics.
In general, to check interval properties of the behavior of a system, one
needs to collect information about states into behavior stretches, which
amounts to interpreting each finite sequence of states as an interval and
to suitably defining its labelling on the basis of the labelling of the states
that compose it.
In order to deal with these properties, a model checking framework based
on Halpern and Shoham’s interval temporal logic (HS for short) and its
fragments has been recently proposed and systematically investigated in
the literature. In this paper, we give an original proof of EXPSPACE
membership of the model checking problem for the HS fragment AABBE
(resp.,AAEBE) of Allen’s interval relationsmeets,met-by, started-by (resp.,
finished-by), starts, and finishes. The proof exploits track bisimilarity and
prefix sampling, and it turns out to be much simpler than the previously
known one. In addition, it improves some upper bounds.
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1 Introduction

Interval temporal logics (ITLs) have been proposed as an alternative setting
for reasoning about time [7, 17, 20] with respect to standard, point-based logics
such as LTL [18] and CTL [6]. ITLs take intervals, rather than points, as their
primitive entities, and their expressiveness enables them to specify, for instance,
actions with duration, accomplishments, and temporal aggregations, which are
inherently “interval-based” and cannot be expressed by point-based logics.

In this paper, we make use of ITLs as the specification language in model
checking (MC), one of the most successful techniques in the area of formal meth-
ods, which allows a user to automatically check whether some desired properties
of a system, specified by a temporal logic formula, hold over a model of it (usually
a Kripke structure). In order to verify interval properties of computations, one
needs to collect information about states into computation stretches: each finite
path in a Kripke structure is interpreted as an interval, whose labelling is defined
on the basis of the labelling of the component states. We focus our attention on
Halpern and Shoham’s modal logic of time intervals (HS) [7] which features one
modality for each of the 13 possible ordering relations between pairs of intervals
(the so-called Allen’s relations [1]), apart from equality. Its satisfiability problem
turns out to be undecidable for all relevant (classes of) linear orders [7]. The
same holds for most fragments of HS [3, 8, 12]; however, some exceptions exist,
e.g., the logic of temporal neighbourhood and the logic of sub-intervals [4, 5].

TheMC problem for HS has been considered only very recently [2, 9, 10, 11, 13,
14, 15, 16]. In [13], Molinari et al. study MC for full HS (under the homogeneity
assumption [19]). They introduce the problem and prove its non-elementary
decidability. In [2], the authors prove its EXPSPACE-hardness. Since then,
the attention was also brought to the fragments of HS, which, similarly to what
happens with satisfiability, are often computationally better. The MC problem for
epistemic extensions of some HS fragments has been investigated by Lomuscio
and Michaliszyn [9, 10, 11] (a detailed account of their results can be found
in [13]). However, their semantic assumptions differ from those of [13] (we make
the same assumptions here), thus making it difficult to compare the two research
lines.

In this paper, we study the MC problem for the HS fragment AABBE (resp.,
AAEBE), whose modalities allow one to access intervals which are met by/meet
the current one, or are prefixes (resp., suffixes) or right/left-extensions of it. In [15],
the authors show that the problem is in EXPSPACE. The MC algorithm they
describe exploits the possibility of finding, for each track of a Kripke structure,
a satisfiability-preserving track of bounded length, called a track representative.
Thus, the algorithm needs to check only tracks with a bounded maximum length.
In [14], they prove the problem to be PSPACE-hard. The proof of membership
to EXPSPACE is rather involved, and two very technical notions, namely, the
notions of scan function and configuration, are introduced in order to determine
the aforementioned bound to the length of representatives. Here, we provide a
much easier proof, which leads to another class of track representatives, with the
same purpose of those of [15], but shorter in general.
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Table 1. Allen’s relations and corresponding HS modalities.

Allen relation HS Definition w.r.t. interval structures Example
x y

v z
v z

v z
v z
v z

v z

meets 〈A〉 [x, y]RA[v, z] ⇐⇒ y = v
before 〈L〉 [x, y]RL[v, z] ⇐⇒ y < v

started-by 〈B〉 [x, y]RB [v, z] ⇐⇒ x = v ∧ z < y
finished-by 〈E〉 [x, y]RE [v, z] ⇐⇒ y = z ∧ x < v

contains 〈D〉 [x, y]RD[v, z] ⇐⇒ x < v ∧ z < y
overlaps 〈O〉 [x, y]RO[v, z] ⇐⇒ x < v < y < z

The paper is organized as follows. In the next section, we introduce the
fundamental elements of the MC problem for HS, and we give a short account
of the known complexity results about MC for HS fragments. In Sect. 3, we
introduce the notion of bisimilarity among tracks, that is exploited in Sect. 4,
along with prefix samplings, to build, given a (generic) track ρ, a track ρ′ of
bounded length, and indistinguishable from ρ with respect to satisfiability of
AABBE formulas, having nesting depth of modality 〈B〉 up to some k ≥ 0.

2 Preliminaries

The interval temporal logic HS. An interval algebra to reason about intervals
and their relative order was proposed by Allen in [1], while a systematic logical
study of interval representation and reasoning was done a few years later by
Halpern and Shoham, who introduced the interval temporal logic HS featuring
one modality for each Allen relation, but equality [7]. Table 1 depicts 6 of the
13 Allen’s relations, together with the corresponding HS (existential) modalities.
The other 7 relations are the 6 inverse relations (given a binary relation R , the
inverse relation R is such that bR a if and only if aR b) and equality.

The language of HS consists of a set of proposition letters AP , the Boolean
connectives ¬ and ∧, and a temporal modality for each of the (non trivial) Allen’s
relations, i.e., 〈A〉, 〈L〉, 〈B〉, 〈E〉, 〈D〉, 〈O〉, 〈A〉, 〈L〉, 〈B〉, 〈E〉, 〈D〉, and 〈O〉. HS
formulas are defined by the grammar ψ ::= p | ¬ψ | ψ ∧ ψ | 〈X〉ψ | 〈X〉ψ, where
p ∈ AP and X ∈ {A,L,B,E,D,O}. In the following, we will also exploit the
other usual logical connectives (disjunction ∨, implication →, and double impli-
cation↔) as abbreviations. Furthermore, for any modality X, the dual universal
modalities [X]ψ and [X]ψ are defined as ¬〈X〉¬ψ and ¬〈X〉¬ψ, respectively.

The joint nesting depth of B and E in a formula ψ, denoted by dBE(ψ),
is defined as: (i) dBE(p) = 0, for any p ∈ AP ; (ii) dBE(¬ψ) = dBE(ψ); (iii)
dBE(ψ∧φ) = max{dBE(ψ),dBE(φ)}; (iv) dBE(〈X〉ψ) = 1+dBE(ψ), when X = B
or X = E; (v) dBE(〈X〉ψ) = dBE(ψ), when both X 6= B and X 6= E. If we
consider formulas ψ of HS fragments devoid of E (resp., B), the nesting depth
of modality B (resp., E) in ψ, denoted as dB(ψ) (resp., dE(ψ)), accounts for
modality B (resp., E) only, and dB(ψ) = dBE(ψ) (resp., dE(ψ) = dBE(ψ)).

Given any subset of Allen’s relations {X1, .., Xn}, we denote by X1 · · ·Xn the
HS fragment featuring existential (and universal) modalities for X1, .., Xn only.
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W.l.o.g., we assume the non-strict semantics of HS, which admits intervals
consisting of a single point5. Under such an assumption, all HS modalities can
be expressed in terms of modalities 〈B〉, 〈E〉, 〈B〉, and 〈E〉 [20]. HS can thus
be regarded as a multi-modal logic with these 4 primitive modalities and its
semantics can be defined over a multi-modal Kripke structure, called abstract
interval model, where intervals are treated as atomic objects and Allen’s relations
as binary relations between pairs of intervals. Since later we will focus on the HS
fragments AAEBE and AABBE—which do not feature 〈B〉 and 〈E〉 respectively—
we add both 〈A〉 and 〈A〉 to the considered set of HS modalities.

Definition 1. [13] An abstract interval model is a tuple A =(AP ,I,AI,BI,EI,σ),
where AP is a set of proposition letters, I is a possibly infinite set of atomic
objects (worlds), AI, BI, and EI are three binary relations over I, and σ : I 7→ 2AP

is a (total) labeling function, assigning a set of proposition letters to each world.

In the interval setting, I is interpreted as a set of intervals and AI, BI, and EI as
Allen’s relations A (meets), B (started-by), and E (finished-by), respectively; σ
assigns to each interval in I the set of proposition letters that hold over it.

Given an abstract interval model A = (AP , I, AI, BI, EI, σ) and an interval
I ∈ I, the truth of an HS formula over I is inductively defined as follows:
– A, I |= p iff p ∈ σ(I), for any p ∈ AP ;
– A, I |= ¬ψ iff it is not true that A, I |= ψ (also denoted as A, I 6|= ψ);
– A, I |= ψ ∧ φ iff A, I |= ψ and A, I |= φ;
– A, I |= 〈X〉ψ, for X ∈ {A,B,E}, iff there is J ∈ I s.t. I XI J and A, J |= ψ;
– A, I |= 〈X〉ψ, for X ∈ {A,B,E}, iff there is J ∈ I s.t. J XI I and A, J |= ψ.

Kripke structures and abstract interval models. In the context of MC, finite state
systems are usually modelled as finite Kripke structures. In [13], the authors
define a mapping from Kripke structures to abstract interval models, that allows
one to specify interval properties of computations by means of HS formulas.

Definition 2. A finite Kripke structure is a tuple K = (AP ,W, δ, µ, w0), where
AP is a set of proposition letters, W is a finite set of states, δ ⊆ W ×W is a
left-total relation between pairs of states, µ : W 7→ 2AP is a total labelling function,
and w0 ∈W is the initial state.

For all w ∈W , µ(w) is the set of proposition letters that hold at w, while δ
is the transition relation that describes the evolution of the system over time.

v0
p

v1
q

Fig. 1. The Kripke structure Ka.

Fig. 1 depicts the finite Kripke structure
Ka = ({p, q}, {v0, v1}, δ, µ, v0), where δ =
{(v0, v0), (v0, v1), (v1, v0), (v1, v1)}, µ(v0) =
{p}, and µ(v1)={q}. The initial state v0 is
identified by a double circle.

Definition 3. A track ρ of a finite Kripke structure K = (AP ,W, δ, µ, w0) is a
finite sequence of states v1 · · · vn, with n ≥ 1, s.t. (vi, vi+1) ∈ δ for i ∈ [1, n− 1].
5 All the results we prove in the paper hold for the strict semantics as well.
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Let TrkK be the (infinite) set of all tracks over a finite Kripke structure K . For
any track ρ = v1 · · · vn ∈ TrkK , we define:
– |ρ| = n, fst(ρ) = v1, and lst(ρ) = vn;
– any index i ∈ [1, |ρ|] is called a ρ-position and ρ(i) = vi;
– states(ρ) = {v1, · · · , vn} ⊆W ;
– ρ(i, j) = vi · · · vj , for 1 ≤ i ≤ j ≤ |ρ|, is the subtrack of ρ bounded by i, j;
– Pref(ρ) = {ρ(1, i) | 1 ≤ i ≤ |ρ| − 1} and Suff(ρ) = {ρ(i, |ρ|) | 2 ≤ i ≤ |ρ|} are

the sets of all proper prefixes and suffixes of ρ, respectively.
Given ρ, ρ′ ∈ TrkK , we denote by ρ · ρ′ the concatenation of the tracks ρ and ρ′.
Moreover, if lst(ρ) = fst(ρ′), we denote by ρ ? ρ′ the track ρ(1, |ρ| − 1) · ρ′. In
particular, when |ρ| = 1, ρ ? ρ′ = ρ′. In the following, when we write ρ ? ρ′, we
implicitly assume that lst(ρ) = fst(ρ′). Finally, if fst(ρ) = w0 (the initial state of
K ), ρ is called an initial track.

An abstract interval model (over TrkK ) can be naturally associated with a
finite Kripke structure K by considering the set of intervals as the set of tracks
of K . Since K has loops (δ is left-total), the number of tracks in TrkK , and thus
the number of intervals, is infinite.

Definition 4. The abstract interval model induced by a finite Kripke struc-
ture K = (AP ,W, δ, µ, w0) is AK = (AP , I, AI, BI, EI, σ), where I = TrkK , AI =
{(ρ, ρ′) ∈ I × I | lst(ρ) = fst(ρ′)}, BI = {(ρ, ρ′) ∈ I × I | ρ′ ∈ Pref(ρ)},
EI = {(ρ, ρ′) ∈ I × I | ρ′ ∈ Suff(ρ)}, and σ : I 7→ 2AP is such that σ(ρ) =⋂
w∈states(ρ) µ(w), for all ρ ∈ I.

Relations AI, BI, and EI are interpreted as the Allen’s relations A,B, and
E, respectively. Moreover, according to the definition of σ, p ∈ AP holds over
ρ = v1 · · · vn if and only if it holds over all the states v1, · · · , vn of ρ. This conforms
to the homogeneity principle [19], according to which a proposition letter holds
over an interval if and only if it holds over all its subintervals.

Definition 5. Let K be a finite Kripke structure and ψ be an HS formula; we
say that a track ρ ∈ TrkK satisfies ψ, denoted as K , ρ |= ψ, iff it holds that
AK , ρ |= ψ. Moreover, we say that K models ψ, denoted as K |= ψ, iff for all
initial tracks ρ′ ∈ TrkK it holds that K , ρ′ |= ψ. The model checking problem for
HS over finite Kripke structures is the problem of deciding whether K |= ψ.

In Fig. 2, we provide an example of a finite Kripke structure KSched that
models the behaviour of a scheduler serving three processes which are continuously
requesting the use of a common resource (it is a simplified version of an example
given in [13]). The initial state is v0: no process is served in that state. In any
other state vi and vi, with i ∈ {1, 2, 3}, the i-th process is served (this is denoted
by the fact that pi holds in those states). For the sake of readability, edges are
marked either by ri, for request(i), or by ui, for unlock(i). Edge labels do not
have a semantic value, that is, they are neither part of the structure definition,
nor proposition letters; they are simply used to ease reference to edges. Process
i is served in state vi, then, after “some time”, a transition ui from vi to vi is
taken; subsequently, process i cannot be served again immediately, as vi is not
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directly reachable from vi (the scheduler cannot serve the same process twice in
two successive rounds). A transition rj , with j 6= i, from vi to vj is then taken
and process j is served.

v0
∅

v2
p2

v1
p1

v3
p3

v1
p1

v2
p2

v3
p3

r1

r2

r3

u1 u2 u3

r2

r3

r1 r3

r1

r2

Fig. 2. The Kripke structure KSched.

We now show how some meaning-
ful properties to be checked against
KSched can be expressed in HS, in
particular, by formulas of AAEBE. In
all formulas, we force the validity of
the considered property over all le-
gal computation sub-intervals by us-
ing modality [E] (all computation
sub-intervals are suffixes of at least
one initial track). The truth of the
next statements can easily be checked
(〈E〉k stands for k occurrences of
modality 〈E〉):

– KSched |= [E]
(
〈E〉3> → (χ(p1, p2) ∨ χ(p1, p3) ∨ χ(p2, p3))

)
,

where χ(p, q) := 〈E〉 〈A〉 p ∧ 〈E〉 〈A〉 q;
– KSched 6|= [E](〈E〉10> → 〈E〉 〈A〉 p3);
– KSched 6|= [E](〈E〉5 → (〈E〉 〈A〉 p1 ∧ 〈E〉 〈A〉 p2 ∧ 〈E〉 〈A〉 p3)).

The first formula states that in any suffix of length at least 4 of an initial track,
at least 2 proposition letters are witnessed. KSched satisfies the formula since a
process cannot be executed twice in a row. The second formula states that in
any suffix of length at least 11 of an initial track, process 3 is executed at least
once in some internal states (non starvation). KSched does not satisfy the formula
since the scheduler can avoid executing a process ad libitum. The third formula
states that in any suffix of length at least 6 of an initial track, p1, p2, p3 are all
witnessed. The only way to satisfy this property is to constrain the scheduler to
execute the 3 processes in a strictly periodic manner, but this is not the case.

The general picture. Now we summarize the known complexity results about the
MC problem for HS fragments (see Fig. 3 for a graphical account).

In [13], Molinari et al. show that, given a finite Kripke structure K and a
bound k on the structural complexity of HS formulas (nesting depth of 〈E〉 and
〈B〉 modalities), it is possible to obtain a finite representation for AK , which is
equivalent to AK w. r. to satisfiability of HS formulas with structural complexity
less than or equal to k. Then, by exploiting such a representation, they prove
that the MC problem for (full) HS is decidable, providing an algorithm with
non-elementary complexity. In [2], Bozzelli et al. show that the problem for
the fragment BE, and thus for full HS, is EXPSPACE-hard. In [15], Molinari
et al. study the fragments AABBE and AAEBE, devising for each of them an
EXPSPACE MC algorithm which exploits the possibility of finding, for each
track of a Kripke structure, a satisfiability-preserving track of bounded length
(track representative). In this way, the algorithm needs to check only tracks
having a bounded maximum length. In [14], they prove that the problem for
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AABE PSPACE-complete 2,3 B PSPACE-complete 4

E PSPACE-complete 4

AAEE PSPACE-complete 5AABB PSPACE-complete 5

AA PNP[O(log2 n)] 4

PNP[O(log n)]-hard 4
A PNP[O(log2 n)] 4

PNP[O(log n)]-hard 4

B coNP-complete 5

E coNP-complete 5

Prop coNP-complete 3

AABBE EXPSPACE 2

PSPACE-hard 3

succinct AABBE EXPSPACE 2

NEXP-hard 2
BE nonELEMENTARY 1

EXPSPACE-hard 5

full HS nonELEMENTARY 1

EXPSPACE-hard 5

hardness

hardness

hardness

hardness

upper-bound

hardness

hardness

hardness
hardness

1 [13], 2 [15], 3 [14], 4 [16], 5 [2]

Fig. 3. Complexity of the MC problem for HS fragments

AABBE and AAEBE is PSPACE-hard (with a succinct encoding of formulas the
algorithm remains in EXPSPACE, but a NEXPTIME lower bound can be
given [15]). The MC problem for other HS fragments has been studied in the
following papers:
– AABE, B, E, AABB, and AAEE are PSPACE-complete [2, 14, 15, 16];
– AA, A, and A are in between PNP[O(logn)] and PNP[O(log2 n)] [16];
– B, E, Prop (the propositional fragment of HS) are co-NP-complete [2, 14].
In the next sections, we shall reconsider the MC problem for the fragment

AABBE (and the symmetric fragment AAEBE), proving in a much simpler way
(compared to [15]) its membership to EXPSPACE. We shall show that, given
a track ρ and h ≥ 0, there is a track ρ′, whose length is at most (|W | + 2)h+2,
such that for every AABBE formula ψ, with dB(ψ) ≤ h, K , ρ |= ψ iff K , ρ′ |= ψ.
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3 Track Bisimilarity

In this short section, we introduce the notions of prefix-bisimilarity and suffix-
bisimilarity between a pair of tracks ρ and ρ′ of a Kripke structure. As proved
by Proposition 2 below, prefix-bisimilarity (resp., suffix-bisimilarity) is a suffi-
cient condition for two tracks ρ and ρ′ to be indistinguishable with respect to
satisfiability of (some classes of) AABBE (resp., AAEBE) formulas, respectively.

Definition 6 (Prefix-bisimilarity and Suffix-bisimilarity). Let h ≥ 0 and
ρ and ρ′ be two tracks of a Kripke structure K . We say that ρ and ρ′ are h-prefix
bisimilar if the following conditions inductively hold:
– for h = 0: fst(ρ) = fst(ρ′), lst(ρ) = lst(ρ′), and states(ρ) = states(ρ′).
– for h > 0: ρ and ρ′ are 0-prefix bisimilar and for each proper prefix ν of
ρ (resp., proper prefix ν′ of ρ′), there exists a proper prefix ν′ of ρ′ (resp.,
proper prefix ν of ρ) such that ν and ν′ are (h− 1)-prefix bisimilar.
The notion of h-suffix bisimilarity is defined in a symmetric way by consid-

ering suffixes of tracks instead of prefixes.

Property 1. Given a Kripke structure K , for all h ≥ 0, h-prefix (resp., h-suffix)
bisimilarity is an equivalence relation over TrkK .

Moreover, h-suffix bisimilarity and h-prefix bisimilarity propagate downwards.

Property 2. Given a Kripke structure K and two tracks ρ, ρ′ ∈ TrkK , for all h > 0,
if ρ and ρ′ are h-prefix (resp., h-suffix) bisimilar, then they are also (h−1)-prefix
(resp., (h− 1)-suffix) bisimilar.

The following result can easily be proved by induction on h ≥ 0.

Proposition 1. Let h ≥ 0, and ρ and ρ′ be two h-prefix (resp., h-suffix) bisimilar
tracks of a Kripke structure K . Then, for each track ρ′′ of K ,
1. ρ′′ ? ρ and ρ′′ ? ρ′ are h-prefix (resp., h-suffix) bisimilar;
2. ρ ? ρ′′ and ρ′ ? ρ′′ are h-prefix (resp., h-suffix) bisimilar.

By Proposition 1 and a straightforward induction on the structural complexity
of formulas, we obtain that h-prefix (resp., h-suffix) bisimilarity preserves the
satisfiability of AABBE (resp., AAEBE) formulas having nesting depth of modality
B (resp., E) at most h.

Proposition 2. Let h ≥ 0, and ρ and ρ′ be two h-prefix (resp., h-suffix) bisimilar
tracks of a Kripke structure K . For each AABBE (resp., AAEBE) formula ψ with
dB(ψ) ≤ h (resp., dE(ψ) ≤ h), it holds that K , ρ |=ψ iff K , ρ′ |=ψ.

4 The Fragments AABBE and AAEBE: Exponential-Size
Model-Track Property

In this section, we focus on the fragment AABBE (the case of AAEBE is completely
symmetric). We shall show how to determine a subset of positions of a track ρ
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(a prefix sampling of ρ), starting from which it is possible to build another track
ρ′, of bounded exponential size, which is indistinguishable from ρ with respect
to the fulfilment of AABBE formulas up to a given nesting depth of modality B
(exponential-size model-track property). We start by introducing the notions of
induced track, prefix-skeleton sampling, and h-prefix sampling, and prove some
related properties.

Definition 7 (Induced track). Let ρ be a track of length n of a Kripke struc-
ture K . A track induced by ρ is a track π of K such that there exists an increasing
sequence of ρ-positions i1 < . . . < ik, with i1 = 1, ik = n, and π = ρ(i1) · · · ρ(ik).

Note that if π is induced by ρ, then fst(π) = fst(ρ), lst(π) = lst(ρ), and |π| ≤ |ρ|
(in particular, |π| = |ρ| iff π = ρ). Intuitively, a track induced by ρ is obtained
by contracting ρ, namely, by concatenating some subtracks of ρ, provided that
the resulting sequence is a track of K as well.

In the following, given a set I of natural numbers, by “two consecutive elements
of I” we refer to a pair of elements i, j ∈ I s.t. i < j and I ∩ [i, j] = {i, j}.

Definition 8 (Prefix-skeleton sampling). Let ρ be a track of a Kripke struc-
ture K = (AP ,W, δ, µ, w0). Given two ρ-positions i and j, with i ≤ j, the prefix-
skeleton sampling of ρ(i, j) is the minimal set P of ρ-positions in the interval [i, j]
satisfying: (i) i, j ∈ P ; (ii) for each state w ∈W occurring along ρ(i+ 1, j − 1),
the minimal position k ∈ [i+ 1, j − 1] such that ρ(k) = w is in P .

From Definition 8, it immediately follows that the prefix-skeleton sampling
P of (any) track ρ(i, j) is such that |P | ≤ |W |+ 2 and i+ 1 ∈ P whenever i < j.

Definition 9 (h-prefix sampling). Let ρ be a track of a Kripke structure K .
For each h ≥ 1, the h-prefix sampling of ρ is the minimal set Ph of ρ-positions
inductively satisfying the following conditions:
– Base case: h = 1. P1 is the prefix-skeleton sampling of ρ;
– Inductive step: h > 1. (i) Ph ⊇ Ph−1 and (ii) for all pairs of consecutive

positions i, j in Ph−1, the prefix-skeleton sampling of ρ(i, j) is in Ph.

The following upper bound to the cardinality of prefix samplings holds.

Property 3. Let h ≥ 1 and ρ be a track of a Kripke structure K . The h-prefix
sampling Ph of ρ is such that |Ph| ≤ (|W |+ 2)h.

We now prove a technical lemma that will be used in the proof of Lemma 2.

Lemma 1. Let h ≥ 1, ρ be a track of K , and i, j be two consecutive ρ-positions
in the h-prefix sampling of ρ. Then, for all ρ-positions n, n′ ∈ [i+ 1, j] such that
ρ(n) = ρ(n′), it holds that ρ(1, n) and ρ(1, n′) are (h− 1)-prefix bisimilar.

Proof. The proof is by induction on h ≥ 1.
– Base case: h = 1. The 1-prefix sampling of ρ is the prefix-skeleton sampling

of ρ. Hence, being i and j consecutive positions in this sampling, for each
position k ∈ [i, j−1], there is ` ≤ i such that ρ(`) = ρ(k). Since ρ(n) = ρ(n′),
states(ρ(1, n))=states(ρ(1, n′)), so ρ(1, n) and ρ(1, n′) are 0-prefix bisimilar.
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– Inductive step: h > 1. By definition of h-prefix sampling, there are two
consecutive positions i′, j′ in the (h− 1)-prefix sampling of ρ such that i, j
are consecutive positions of the prefix-skeleton sampling of ρ(i′, j′).
If i = i′, then j = i + 1, hence, being n, n′ ∈ [i + 1, j], we get that n = n′,
and the result trivially holds.
Now, assume that i 6= i′, thus i > i′. As in the base case, we easily deduce
that ρ(1, n) and ρ(1, n′) are 0-prefix bisimilar. It remains to show that for
each proper prefix ν of ρ(1, n) (resp., proper prefix ν′ of ρ(1, n′)), there is a
proper prefix ν′ of ρ(1, n′) (resp., proper prefix ν of ρ(1, n)) such that ν and
ν′ are (h − 2)-prefix bisimilar. Let us consider a proper prefix ν of ρ(1, n)
(the proof for the other direction is symmetric). Hence, ν = ρ(1,m) for some
m < n. We distinguish two cases:
• m ≤ i. Hence ρ(1,m) is a proper prefix of ρ(1, n′) and the result follows.
• m > i: since i and j are consecutive positions of the prefix-skeleton sam-

pling of ρ(i′, j′), i > i′, and m ∈ [i+ 1, j− 1] (hence m < j′), there exists
m′ ∈ [i′ + 1, i] such that ρ(m′) = ρ(m) and m′ is in the prefix-skeleton
sampling of ρ(i′, j′). Let ν′ = ρ(1,m′). Evidently ν′ is a proper prefix of
ρ(1, n′) (as n′ ≥ i+ 1). Moreover, since m,m′ ∈ [i′ + 1, j′] and i′, j′ are
consecutive positions in the (h−1)-prefix sampling of ρ, by the inductive
hypothesis ν = ρ(1,m) and ν′ = ρ(1,m′) are (h− 2)-prefix bisimilar. ut

The next lemma and the following theorem show how to derive, from any track
ρ of a Kripke structure, another track ρ′, induced by ρ and h-prefix
bisimilar to ρ, such that |ρ′| ≤ (|W | + 2)h+2. By Proposition 2, ρ′ is indistin-
guishable from ρ w.r.t. the fulfilment of any AABBE formula ψ with dB(ψ) ≤ h.

In order to build ρ′, we first compute the (h+ 1)-prefix sampling Ph+1 of ρ.
Next, for all the pairs of consecutive ρ-positions i, j ∈ Ph+1, we consider a track
induced by ρ(i, j), with no repeated occurrences of any state, except at most the
first and last ones (hence, it is no longer than (|W | + 2)). The track ρ′ is just
the ordered concatenation (by means of the ? operator) of all these tracks. The
aforementioned bound on |ρ′| holds as, by Property 3, |Ph+1| ≤ (|W |+2)h+1. The
following preparatory lemma states that ρ and ρ′ are indeed h-prefix bisimilar.

Lemma 2. Let h ≥ 1, ρ be a track of K , and ρ′ = ρ(i1)ρ(i2) · · · ρ(ik) be a track
induced by ρ, where 1 = i1 < i2 < . . . < ik = |ρ| and Ph+1 ⊆ {i1, . . . , ik}, with
Ph+1 the (h+ 1)-prefix sampling of ρ. Then, for all j ∈ [1, k], ρ′(1, j) and ρ(1, ij)
are h-prefix bisimilar.

Notice that, in particular, ρ and ρ′ are h-prefix bisimilar.

Proof. Let Q = {i1, . . . , ik} (hence Ph+1 ⊆ Q) and let j ∈ [1, k]. We prove by
induction on j that ρ′(1, j) and ρ(1, ij) are h-prefix bisimilar. As for the base
case (j = 1), the result holds, since i1 = 1.

Now assume that j > 1. We first show that ρ(1, ij) and ρ′(1, j) are 0-prefix
bisimilar. Clearly, ρ(1) = ρ(i1) = ρ′(1), ρ(ij) = ρ′(j), and states(ρ′(1, j)) ⊆
states(ρ(1, ij)). Now, if, by contradiction, there was a state w such that w ∈
states(ρ(1, ij))\states(ρ′(1, j)), then for all l ∈ Q, with l ≤ ij , ρ(l) 6= w. However,
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the prefix-skeleton sampling P1 of ρ is contained in Q, and the minimal ρ-position
l′ such that ρ(l′) = w belongs to P1. Since w ∈ states(ρ(1, ij)), l′ ≤ ij . Thus, we
get a contradiction, implying that states(ρ′(1, j)) = states(ρ(1, ij)).

It remains to prove that: (1) for each proper prefix ν′ of ρ′(1, j), there exists
a proper prefix ν of ρ(1, ij) such that ν and ν′ are (h− 1)-prefix bisimilar, and
(2) for each proper prefix ν of ρ(1, ij), there exists a proper prefix ν′ of ρ′(1, j)
such that ν and ν′ are (h− 1)-prefix bisimilar.

As for (1), let ν′ be a proper prefix of ρ′(1, j). Hence, there exists m ∈ [1, j−1]
such that ν′ = ρ′(1,m). By the inductive hypothesis, ρ′(1,m) and ρ(1, im) are
h-prefix bisimilar, and thus (h − 1)-prefix bisimilar as well (Property 2). Since
ρ(1, im) is a proper prefix of ρ(1, ij), by choosing ν′ = ρ(1, im) (1) follows.

As for (2), assume that ν is a proper prefix of ρ(1, ij). Therefore, there exists
n ∈ [1, ij − 1] such that ν = ρ(1, n). We distinguish two cases:
– n ∈ Ph+1. Since n < ij , there exists m ∈ [1, j − 1] such that n = im. By

the inductive hypothesis, ρ(1, n) and ρ′(1,m) are h-prefix bisimilar, and thus
(h− 1)-prefix bisimilar as well (Property 2). Since ρ′(1,m) is a proper prefix
of ρ′(1, j), by choosing ν′ = ρ′(1,m) (2) follows.

– n /∈ Ph+1. It follows that there exist two consecutive positions i′ and j′ in
Ph+1, with i′ < j′, such that n ∈ [i′+ 1, j′−1]. By definition of (h+ 1)-prefix
sampling, there exist two consecutive positions i′′ and j′′ in the h-prefix
sampling of ρ, with i′′ < j′′, such that i′ and j′ are two consecutive positions
in the prefix-skeleton sampling of ρ(i′′, j′′).
First, we observe that i′ 6= i′′ (otherwise, j′ = i′ + 1, which contradicts the
fact that [i′ + 1, j′ − 1] 6= ∅, as n ∈ [i′ + 1, j′ − 1]). Thus, by definition of
prefix-skeleton sampling applied to ρ(i′′, j′′), and since n ∈ [i′ + 1, j′ − 1],
there must be ` ∈ [i′′ + 1, i′] such that ρ(`) = ρ(n) and ` is in the prefix-
skeleton sampling of ρ(i′′, j′′). Hence ` ∈ Ph+1 by definition of (h+ 1)-prefix
sampling. As a consequence, since ` < n < ij , there exists m ∈ [1, j− 1] such
that ` = im. By applying Lemma 1, we deduce that ρ(1, n) and ρ(1, im) are
(h− 1)-prefix bisimilar. Moreover, by the inductive hypothesis, ρ(1, im) and
ρ′(1,m) are (h− 1)-prefix bisimilar. Thus, by choosing ν′ = ρ′(1,m), ν′ is a
proper prefix of ρ′(1, j) which is (h− 1)-prefix bisimilar to ν = ρ(1, n). ut

Theorem 1 (Exponential-size model-track property for AABBE). Let ρ
be a track of a Kripke structure K and h ≥ 0. Then, there exists a track ρ′ induced
by ρ, whose length is at most (|W |+ 2)h+2, such that for every AABBE formula
ψ with dB(ψ) ≤ h, it holds that K , ρ |= ψ iff K , ρ′ |= ψ.

Proof. Let Ph+1 be the (h+ 1)-prefix sampling of ρ. For all pairs of consecutive
ρ-positions i and j in Ph+1, there exists a track induced by ρ(i, j) having length at
most |W |+2, featuring no repeated occurrences of any internal state. We now de-
fine ρ′ as the track of K obtained by concatenating in order all these induced tracks
by means of the ? operator. It is immediate to see that ρ′ = ρ(i1)ρ(i2) · · · ρ(ik),
for some indexes 1 = i1 < i2 < · · · < ik = |ρ|, where {i1, . . . , ik} contains the
(h + 1)-prefix sampling Ph+1 of ρ. It holds that |ρ′| ≤ |Ph+1| · (|W | + 2) and
since, by Property 3, |Ph+1| ≤ (|W |+ 2)h+1, we obtain that |ρ′| ≤ (|W |+ 2)h+2.
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Moreover, by Lemma 2, ρ and ρ′ are h-prefix bisimilar. By Proposition 2, the
result follows. ut

Theorem 1 allows us to easily devise an EXPSPACE MC algorithm for
AABBE formulas (and symmetrically for AAEBE formulas) which is basically the
same as that presented in [15]. However, in that paper, the authors prove—in a
much more involved way—the existence of a bound on the length of equivalent
induced tracks which is greater than the present one, that is, O(|W |2h+4).

5 Conclusions and Future Work

In this paper, we dealt with the problem of finding bounded representatives of
tracks of a Kripke structure to solve the MC problem for the HS fragments
AABBE and AAEBE. The proposed solution slightly reduces the bounds for track
representatives given for the same problem in [15]; moreover, it substantially
simplifies the constructions and the complexity of the proofs. As for future work,
we would like to precisely characterize the complexity of MC for AABBE and
AAEBE. At the moment, we only know that it belongs to EXPSPACE and it is
PSPACE-hard [14]. More generally, we are looking for possible improvements to
known complexity results for MC of (full) HS. We know that it is EXPSPACE-
hard (we proved EXPSPACE-hardness of its fragment BE [2]), while the only
available decision procedure is nonelementary [13].
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