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Abstract. A condition characterizing the class of regular languages
which have several nonisomorphic minimal reversible automata is pre-
sented. The condition concerns the structure of the minimum automaton
accepting the language under consideration.
It is also observed that there exist reduced reversible automata which are
not minimal, in the sense that all the automata obtained by merging some
of their equivalent states are irreversible. Furthermore, it is proved that
if the minimum deterministic automaton accepting a reversible language
contains a loop in the “irreversible part” then it is always possible to
construct infinitely many reduced reversible automata accepting such a
language.

1 Introduction

A device is said to be reversible when each configuration has exactly one pre-
decessor and one successor, thus implying that there is no loss of information
during the computation. On the other hand, as observed by Landauer, logical irre-
versibility is associated with physical irreversibility and implies a certain amount
of heat generation [7]. In order to avoid such a power dissipation and, hence, to
reduce the overall power consumption of computational devices, the possibility
of realizing reversible machines looks appealing.

A lot of work has been done to study reversibility in different computational
devices. Just to give a few examples, in the case of general devices as Turing
machines Bennet proved that each machine can be simulated by a reversible
one [2], while Lange, McKenzie, and Tapp proved that each deterministic machine
can be simulated by a reversible machine which uses the same amount of space [8].
As a corollary, in the case of a constant amount of space, this implies that
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each regular language is accepted by a reversible two-way deterministic finite
automaton. Actually, this result was already proved by Kondacs and Watrous [4].

However, in the case of one-way automata, the situation is different.1 In fact,
as shown by Pin, the regular language a∗b∗ cannot be accepted by any reversible
automaton [10]. So the class of languages accepted by reversible automata is
a proper subclass of the class of regular languages. Actually, there are some
different notions of reversible automata in literature. In 1982, Angluin intro-
duced reversible automata in algorithmic learning theory, considering devices
having only one initial and only one final state [1]. On the other hand, the de-
vices considered in [10], besides a set of final states, can have multiple initial
states, hence they can take a nondeterministic decision at the beginning of the
computation. An extension which allows one to consider nondeterministic transi-
tions, without changing the class of accepted languages, has been considered by
Lombardy [9], introducing and investigating quasi reversible automata. Classical
automata, namely automata with a single initial state and a set of final states,
have been considered in the works by Holzer, Jakobi, and Kutrib [5,3,6]. In par-
ticular, in [3] the authors obtained a characterization of regular languages which
are accepted by reversible automata. This characterization is given in terms
of the structure of the minimum deterministic automaton. Furthermore, they
provide an algorithm that, in the case the language is acceptable by a reversible
automaton, allows one to transform the minimum automaton into an equivalent
reversible automaton, which in the worst case is exponentially larger than the
given minimum automaton. In spite of that, the resulting automaton is minimal,
namely there are no reversible automata accepting the same language with a
smaller number of states. However, the minimal automaton is not necessarily
unique, in fact there could exist different reversible automata with the same
number of states accepting the same language.

We continue the investigation of minimality in reversible automata and we
will refer to the following notions. Let C be the family of reversible automata
accepting a given language L and A ∈ C:

– The automaton A is reduced in C if every automaton obtained from A by
merging some equivalent states does not belong to C.

– The automaton A is minimal in C if each automaton in C has at least as
many states as A.

– The automaton A is the minimum in C if it is the unique (up to isomorphism)
minimal automaton in C.

Our first result is a condition that characterizes languages having several different
minimal reversible automata. This condition is on the structure of the transition
graph of the minimum automaton accepting the language under consideration.
As a special case, we show that whenever the “irreversible part” of the minimum
automaton contains a loop, it is possible to construct at least two different
minimal reversible automata.
1 From now on, we will consider only one-way automata. Hence we will omit to specify
“one-way” all the times.
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We also observe that there exist reversible automata that are reduced, but
not minimal. Investigating this phenomenon in detail, we were able to find a
language for which there exist arbitrarily large, and hence infinitely many, reduced
reversible automata. Furthermore, we obtained a general construction that allows
to obtain arbitrarily large reversible automata for each language accepted by a
minimum deterministic automaton satisfying the structural condition given in [3]
and such that the “irreversible part” contains a loop. We know that this is also
possible in other situations, namely that our condition is not necessary.

Now we introduce a few preliminary notations and notions. A deterministic
automaton (dfa) is a tuple A = (Q,Σ, δ, qI , F ) with the usual meaning. We allow
the transition function δ to be partial and througthout the paper, we assume that
all states are useful, namely they are used to accept some word. This implies that
a dfa does not contain any dead state. We denote by δR the reverse transition
function that associates with each state r ∈ Q and letter a ∈ Σ the set of states
from which r can be reached by reading a, i.e., δR(r, a) = {q ∈ Q | δ(q, a) = r}.
A state r is said to be irreversible when there are at least two transitions on the
same letter entering r, i.e., #δR(r, a) ≥ 2, otherwise r is reversible. A dfa is
said to be reversible (rev-dfa) when each state is reversible. A language is
reversible when there exists a rev-dfa accepting it.

A dfa A can be split in two parts: the reversible part and the irreversible
part. Roughly speaking, the irreversible part consists of all states that can be
reached with a path which starts in an irreversible state, and of all transitions
connecting those states. The reversible part consists of the remaining states
and transitions, namely the states that can be reached from the initial state by
visiting only reversible states, and their outgoing transitions.

The above mentioned algorithm [3] for converting a minimum irreversible
dfa A into an equivalent minimal rev-dfa A′, if possible, keeps the same
reversible part of A and creates some copies of states and transitions in the
irreversible part. However, different equivalent minimal rev-dfas might exist.
(See Figure 1).

2 Minimal Reversible Automata

In this section we present a characterization of the languages having several differ-
ent minimal reversible automata. From now on, let us fix a reversible language L
and the minimum dfa M = (Q,Σ, δ, qI , F ) accepting it.

Theorem 1. The following statements are equivalent:

1. There exists a state q ∈ Q in the irreversible part such that δR(q, a) 6= ∅,
δR(q, b) 6= ∅, for two symbols a, b ∈ Σ, with a 6= b.

2. There exist at least two minimal nonisomorphic rev-dfas accepting L.

As a consequence of Theorem 1 we have the following characterization of
reversible languages having a unique minimal (hence a minimum) rev-dfa:
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Fig. 1. A minimum dfa accepting the language L = (aa)∗ + a∗ba∗, with two minimal
nonisomorphic rev-dfas. In the dfa on the left the reversible part consists of the
states qI and p, while the irreversible one of the state q. The rev-dfa in the center
is obtained by the algorithm in [3].

Corollary 2. There exists a unique (up to isomorphism) minimal rev-dfa
accepting L if and only if for each state p ∈ Q in the irreversible part, all the
transitions entering in p are on the same symbol.

We proved that when the minimum dfa accepting a reversible language
contains a loop in the irreversible part the condition in Corollary 2 is always
false, hence there exist at least two minimal nonisomorphic rev-dfas. As a
consequence, considering Corollary 2, we can observe that when a reversible
language has a unique minimal rev-dfa, all the loops in the minimum dfa
accepting it should be in the reversible part. However, the converse does not hold,
namely there are languages whose minimum dfa does not contain any loop in
the irreversible part, which does not have a unique minimal rev-dfa. Indeed,
in [3] an example with a finite language is presented.

3 Reduced Reversible Automata

In this section, we consider reduced rev-dfas. There exist rev-dfas which
are reduced but not minimal. Furthermore, there exist reversible languages having
arbitrarly large reduced rev-dfas and, hence, infinitely many reduced rev-
dfas.

In Figure 2 a reduced rev-dfa equivalent to the dfas in Figure 1 is
depicted. If we try to merge two states in the loop, then the loop collapses to
a single state, so producing the minimum dfa, which is irreversible. Actually,
this example can be modified by using a loop of N states: if (and only if) N is
prime, we get a reduced automaton. This is a special case of the construction we
obtained to prove the following:

Theorem 3. If M contains a state q in the irreversible part such that the lan-
guage accepted by computations starting from q is infinite, then there exist in-
finitely many nonisomorphic reduced rev-dfas accepting L.
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Fig. 2. A reduced rev-dfa equivalent to dfas in Figure 1.

The condition in Theorem 3 is not necessary. In fact, we found an example
where the minimum dfa does not contain any loop in the irreversible part, but
it is possible to construct infinitely many equivalent reduced rev-dfas.
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