
Multi-level Language Descriptions

Andreas Prinz

Department of ICT, University of Agder, Grimstad, Norway
andreas.prinz@uia.no

Abstract. Language descriptions are a multi-level issue. In particular,
the de�nition and handling of instantiation semantics connects three lev-
els. This paper looks at two language workbenches without support for
multi-level modelling and their handling of the multi-level part of lan-
guage descriptions. From these observations, the importance of runtime
instantiation in terms of an underlying machine is established.

1 Introduction

Levels in modelling and in programming are typically considered in a hierarchy
that is given by instantiation. Generally, the main idea of multi-level modelling
is to provide ways to not only in�uence the instances of a model, but also the
instances of these, as observed in [5]. In the area of language description, this
concerns instantiation semantics, which is about instantiation of the instances.

Therefore, instantiation semantics, also known as structural semantics, is a
multi-level issue. The same is true for execution semantics, which is based on
the instantiation semantics since executions are sequences of instance structures.
This paper will not discuss execution semantics; the interested reader is pointed
to [17] for more information.

The problem of instantiation semantics is approached by observing two tools,
LanguageLab [9] and MPS [16]. Both tools are language workbenches, and not
multi-level modelling tools. However, they handle instantiation semantics, which
is a multi-level issue.

The experience with the tools is used to propose a framework for the dis-
cussion of instantiation semantics and multi-level modelling. The framework is
used to revisit two old problems of non-multi-level approaches as discussed in
[2]. First, using only two levels leads to ambiguous classi�cation, in that it is
di�cult to place the concepts on the correct levels. An example from UML are
the two concepts Node and NodeInstance, which should be on the same level,
as they both belong to the same language, but need to be on di�erent levels, as
they describe aspects that are on di�erent levels. The second problem concerns
the replication of model elements, mostly due to the fact that instantiation is
available between every two levels and this has to be described on each level.

This kind of problems has lead to the idea that the OMG architecture is bro-
ken and has to be �xed. Multi-level modelling [2] came to the rescue, allowing in-
stantiation over several levels. Several approaches for multi-level modelling have
been proposed, among them orthogonal (linguistic plus ontological) approaches



[3], deep instantiation (potencies and clabjects) [2], and powertype-based ap-
proaches [11]. They solve the problems with the architecture, but also bring a
new level of complexity.

Our experience with the tools shows that language descriptions can be han-
dled in the OMG architecture based on the concept of runtime environment.

This paper continues with Sect. 2 which explains levels and their relation to
language descriptions. Section 3 looks into tool handling of instantiation seman-
tics. In Sect. 4, underlying machines and instantiation are considered. Section 5
introduces runtime environments, leading to a discussion of the two problems in
Sect. 6. Finally, the paper is summarized in Sect. 7.

2 Metamodelling and MDA

OMG has de�ned model-driven architecture (MDA) for using models in the
development process, see [12]. MOF [7] and UML [18] are key languages of the
MDA, but MDA is open for other languages. MDA is based on an understanding
of a four-level hierarchy of abstractions as illustrated in the table below. M0 is

OMG Level Examples Grammar example OCL example

M3 = meta languages MOF EBNF MOF

M2 = languages UML metamodel Java grammar OCL language

M1 = models UML model a program a formula

M0 = instances objects of UML classes a run a truth value

the lowest level. It contains concrete (runtime) objects. The next level (M1)
includes the models that describe the M0 objects. On top of M1 there is a level
describing how models are formed, which is a meta-model or language level,
called M2. Finally, the architecture is closed with a level M3 (meta-language)
that is supposed to both describe M2 as well as describing itself.

2.1 De�nition and Use

The relation between levels is the de�nition-use relation, where the higher level
provides the de�nition and the lower level includes the use. This is the instan-
tiation relation (meta-relation) as for example stated in [8, 21]. As an example,
the de�nition of a program on M1 is related to a use (a run) on level M0. In [3],
this level-crossing relation is called linguistic instantiation. The second related
dimension, called ontological instantiation, is discussed in Sect. 6.

De�nition and use refer to roles, not to absolute properties. This means that
the same entity can be both use and de�nition depending on context, which leads
to the notion of clabjects in [1]. This way all the four OMG levels are spanned
by the de�nition-use relation, connecting two adjacent levels thereby raising an
arbitrary number of levels, see also [14]. With the de�nition-use relation only
crossing one level boundary, MDA is not a multi-level approach per se.



The de�nition-use relation is also known as type-element pattern, where a
de�nition (type) gives rise to a number of uses (elements). The connection be-
tween de�nition and use is provided by a semantic function, associating the
de�nition with a set of possible uses. The de�nition-use relation also appears
between compile time (de�nition) and runtime (use). Typically, the de�nition is
read-only while the use is read/write.

2.2 Language Descriptions

Formal language descriptions on OMG level M2 have the aspects structure,
syntax, and semantics ([14]).

Language structure de�nes the concepts of the language and their relation to
each other, maybe as a MOF class diagram. This way, the structure aspect allows
describing all possible instances in a generative way. In addition, constraints
restrict the possible instances by rejecting some of them as invalid.

The syntax aspect can have di�erent kinds of presentation, e.g. textual, graph-
ical, and tabular presentations and a mixture of them. It is often de�ned by the
speci�cation of a presentation domain and a one-to-one mapping between pre-
sentation domain and structure.

The semantics (meaning) can be given in several di�erent ways. For exam-
ple, semantics can de�ne language instance execution (operational semantics), or
de�ne a mapping into another language (transformation semantics). An impor-
tant part of operational semantics is instantiation semantics, i.e. the way how
instances of the language are instantiated.

Each language aspect requires a meta-language for its description, which
amounts to a potentially large number of meta-languages. MOF is an example
of a meta-language for structure, while OCL is an example for constraints.

In this paper, instantiation semantics is most important. It is de�ned by the
language itself (on M2) and might depend on the actual program (on M1). It
describes how to create objects at runtime (M0). This way it is a multi-level
issue. In fact, none of the other language aspects are multi-level, as structure,
syntax, and transformation do only cross one level boundary.

With instantiation semantics, the language bridges three levels, see [15].

1. the language speci�cation, or the meta-model,
2. the user speci�cation, or the model, and
3. objects of the model.

After the two-level de�nition-use, this introduces a three-level pattern that is
repeated in MDA: M2-M1-M0, M3-M2-M1, M3-M3-M2.

3 Levels and Instantiation in Tools

3.1 MPS

Meta-Programming System (MPS) [16] is a tool to de�ne domain-speci�c lan-
guages. It is geared towards professional developers and is often used in a Java



environment. It is written in Java, but can be used with other languages as well.
The mbeddr project [20] has applied MPS to programming of embedded devices
in a C/C++ environment.

The general philosophy of MPS can be explained in connection with the
OMG four-level architecture. The meta-languages (M3) in MPS are prede�ned
by the platform and �xed. Being a professional tool, MPS has a large variety of
meta-languages to describe all aspects of languages.

The �rst main activity in MPS is the description of a language on M2 using
the M3 languages. This language description is translated by MPS into MPS
internal Java code thereby creating an IDE for the language described. An ex-
ample is the de�nition of a Petrinet language with the MPS meta-languages for
structure, constraints, text syntax, transformation, intentions, and behaviour.

The second main activity in MPS is the de�nition of programs or speci�ca-
tions on M1 in the IDE for the language de�ned on M2. MPS provides a pro-
jectional editor starting from the internal objects and showing either a default
view or a language-de�ned view. If the programs written should be executable,
a transformation has to be provided, typically into Java. If this is the case, then
user programs are transformed into standard Java programs.

Finally, MPS does not care for M0, as it relies on the built-in execution and
instantiation as given by Java (or C++, if C++ code is generated). This way,
M0 need not be handled in MPS.

For the levels M3-M2 and M2-M1, MPS uses its built-in instantiation seman-
tics, which is accessible using an internal language called S (for structure). For
instantiation between M1 and M0, the instantiation semantics of the generated
code is used.

3.2 LanguageLab

LanguageLab [9] is an educational tool for language description theory. Only a
few languages exist in LanguageLab and they are related to teaching or to the
platform itself. LanguageLab provides very simple meta-languages for structure,
textual syntax and transformation, thereby being much simpler than MPS.

An example is the basic structure meta-language, which is de�ned using the
basic meta-languages for structure, text syntax and transformation.

LanguageLab favours a relative approach and does not use absolute levels as
MDA. In particular, all the levels M3, M2, M1, and M0 are similar in Language-
Lab. This is achieved by a modular approach, where the main entity is a module,
which can be a language or a speci�cation or a meta-language. Modules come
with two sets of interfaces: provided interfaces (lower interfaces) in the sense of
de�nitions, that are available for use, and required interfaces (upper interfaces),
which are uses of de�nitions on the next upper level. This way, LanguageLab
mirrors the de�nition-use relation.

LanguageLab is implemented in Java, but the user has no access to the
implementation. The user only sees the languages provided. This is achieved by
the de�nition of a platform, which is the underlying abstract runtime machine of
LanguageLab. This platform provides instantiation, presentation and mapping



primitives and thus allows languages to be de�ned and executed. LanguageLab
uses the same platform instantiation between any two adjacent levels.

3.3 Bootstrapping

Both MPS and LanguageLab claim to be bootstrapped, i.e. the meta-languages
given in them are de�ned in the platform itself.

LanguageLab has two parts of the tool, the platform and the languages. The
semantics of the languages is provided by mapping them to the elements of
the platform. So an editor description is mapped to a runtime editor in the
platform. Normally, LanguageLab modules are de�ned by other LanguageLab
modules, but it is not a problem to de�ne them by themselves. In this case,
the upper module is read-only, while the lower one is read/write. For bootstrap,
the meta-languages are de�ned using a read-only version of themselves, which
is then translated to the platform primitives. Execution in the platform is given
by the underlying LanguageLab machine.

MPS bootstrapping is more tricky. The MPS meta-languages are translated
into Java. This Java code is related to several interfaces and stubs for the MPS
tool platform. When these interfaces are used, the platform ensures the correct
result. In addition to the interfaces, MPS also uses the speci�cations in the
languages for cross-referencing and similar purposes.

In order to achieve bootstrapping in MPS, the previous generated code is
stored and used for generating the new version of the code. Then, the new
code is compiled and a new version of the platform is provided. Again, the old
version of the module is used in a read-only way in order to produce the new
one. The trick is to generate the same code as before, in particular the same
concept identi�ers, because otherwise it would not be possible to connect the
old instances of concepts to the new generated concepts.

4 Machines: MOF-VM

Semantics, in particular instantiation semantics, is based on an underlying mech-
anism that provides basic execution and instantiation. This mechanism could be
very low level as in machine code, where an indication of a memory area leads to
the provision of an actual memory (simple instantiation). It could also be more
high level as in a virtual machine that features class instantiation. In this paper,
the basis is a mechanism that provides general object-oriented instantiation with
the name MOF-VM (see also [10]). This is similar to the underlying instantiation
in MPS and LanguageLab, see also Fig. 1. MOF-VM is a virtual machine that
has instantiation semantics like MOF, which means that classes de�ned in the
MOF-VM can be instantiated into objects. This way, all existing instances are
internally MOF-VM objects, including the objects on M2, M1, and M0.

Figure 1 shows the underlying MOF-VM instantiation on the right-hand side.
A class RT_ActiveClass is instantiated and yields an object :RT_ActiveClass
with the attribute name being �Factory�. That instantiation is internal.



Fig. 1. MOF-VM instantiation versus language instantiation.

The left-hand-side shows the language instantiation with Factory being an
instance of ActiveClass. While the right bottom shows the default presentation
coming from the platform, the left bottom shows the language-de�ned presenta-
tion. Both presentations show the same internal object. The last relation in the
�gure called applied mapping is explained in Sect. 5.

In Fig. 1, language instantiation is a composition of three relations: applied
mapping,MOF-VM instantiation, and presentation. The MOF-VM instantiation
is built-in and provides the level-crossing relation in the OMG architecture. By
using the MOF-VM instantiation, language de�nitions do not need to cross levels
in order to de�ne their (linguistic) instantiation.

Instantiation in MOF as a language works in the same way - using the built-in
MOF-VM instantiation. MOF-VM instantiation is related to the MDA platform
de�nition and not the language de�nition of MOF. This means that apart from
linguistic and ontological instantiation, there is also MOF-VM (runtime) instan-
tiation, which is used to achieve linguistic instantiation. It is crucial to keep
these three apart when trying to understand instantiation semantics.

An important point is the presentation in Fig. 1. The objects on the right-
hand side (grey) do not have any presentation, because they are objects of the
underlying machine (MOF-VM). The notation used in Fig. 1 is therefore just an
ad-hoc presentation of these objects.

Even though MOF-VM provides execution and instantiation, it is abstract.
There will be a target platform below MOF-VM used as concrete real machine
for execution. There are known and proven techniques and methods to achieve
this mapping onto a real machine, and this paper does not go into these details.

5 Runtime Environment

As discussed in Sect. 2, each language has to de�ne how to instantiate its ele-
ments, e.g. what are instances of classes, modules, methods, and variables. The
structures (possible states) existing at runtime are commonly called runtime en-
vironment (RTE). RTE states are purely structural and runtime state changes



are based on them, see also [19]. The read-only program itself is somehow avail-
able in the runtime state, such that the execution can refer to the program. The
de�nition of RTE belongs to the language, i.e. level M2. But also the speci�ca-
tion might in�uence the RTE, such that the de�nition has to be done on level
M1. In order to sort out the levels, we distinguish several kinds of elements in
the RTE as follows.

� Global elements are runtime elements coming from the language, e.g. prede-
�ned libraries, program counter, and exception storage. They are �xed by
the language on M2, and are independent of the speci�c program.

� Local elements relate to language concepts and describe how these are in-
stantiated at runtime. They are related to their respective concepts, but are
�xed on the level of the language (M2), like storage areas for static variables.
For any language concept, the instantiation can yield none (1:0), one (1:1),
or many (1:n) runtime elements depending on the language.

� Dependent elements are similar to local elements, but they depend on the
speci�c program. Objects of classes and stack frames for methods are two
examples. They cannot be de�ned statically on level M2. Instead, on M2
a mapping from the language concepts to the runtime structures can be
de�ned. Again, the mapping can be 1:0, 1:1 and 1:n.

In Fig. 1, the instantiation from M2 to M1 is de�ned by a (meta-)language
on M3. MOF-VM knows by means of an applied mapping that it should use
RT_ActiveClass in order to instantiate ActiveClass (Fig. 1). The applied map-

ping (M2) is a use of the de�ned mapping (M3), see Fig. 2. All the di�erent kinds
of runtime elements can be captured with such a de�ned mapping.

Fig. 2. De�ned mapping versus applied mapping.

Similarly, the instantiation semantics of a language description (RTE struc-
ture) is de�ned at M2 as a mapping from the program on M1 to the MOF-VM
classes on M1, which then get instantiated at M0 as MOF-VM objects.



6 Solving Multi-level Modelling Problems

Based on the concepts presented in Sect. 5, we revisit the two problems men-
tioned in the introduction: use of non-multi-level approaches leads to (1) am-
biguous classi�cation and (2) replication of model elements.

MPS and LanguageLab are not multi-level, but still they do not have these
problems. What is their solution? For the problem (2), both tools use a rela-
tive approach, where languages are not placed on �xed levels, but de�nitions of
languages are placed relative to their uses.

For the solution to problem (1), we have to look more closely into the three
kinds of instantiation. Figure 3 shows the combination of the relations de�ned
mapping (D), applied mapping (A), and presentation (P). On the left of the �gure,

Fig. 3. Repeated Application of Language De�nition.

the user view of instantiation is presented. On level M0, a dummy presentation
of the runtime object for Factory is used, in order to make the �gure complete.
Most often, the objects on M0 have no language-de�ned presentation. To the
right, there are the three instances of the language de�nition and use pattern
stretching over three levels each: M2-M1-M0, M3-M2-M1, and M4-M3-M2. All
level-crossing on the right part is MOF-VM instantiation. A similar pattern is



also used quite often in [13], and it is the natural way to think when using
language-oriented programming [6].

The important part of Fig. 3 is the level M2, as here we have three relations
at the same time. The same would be true for any higher levels, but Fig. 3 does
not show all these relations. In particular, there is a presentation relation on
each level, connecting the runtime view and the language view. These two are
separate, therefore there is no ambiguous classi�cation. Clabjects show these two
in one presentation, which blurs the di�erence between them. BTW, clabjects
would look di�erently on levels M1 and M0.

When it comes to expressing the mappings, there are many ways to do this.
A simple way to de�ne a mapping for local elements and maybe even for global
elements are attributes with potency 2 in a deep modelling context.

A modelling language on M2 may provide as many ontological levels as
needed, see also [4]. Its RTE has to de�ne instantiation for each of them, in-
dicating what elements can appear on level M0, based on runtime instantiation.
This way ontological language levels can be captured with the MDA architecture.

7 Summary

This paper has reviewed the multi-level needs for language descriptions, in par-
ticular instantiation semantics. MOF-VM (runtime) instantiation as a basis for
linguistic instantiation was found to be the backbone of the OMG four-level
architecture and strict meta-modeling.

The de�nition of runtime environment is essentially the de�nition of instanti-
ation semantics. RTE is not de�ned out of thin air, but related to an underlying
machine, which is MOF-VM in this article. Several possible kinds of instantiation
relations between speci�cation and RTE were identi�ed. They are speci�ed for
a language as a mapping between speci�cation and MOF-VM, which is de�ned
at language level and used at speci�cation level.

There are three kinds of instantiation: linguistic, ontological, and runtime
instantiation.
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