
Towards a Meta-Model for Quality-aware Self-

Adaptive Systems Design

Esma Maatougui, Chafia Bouanaka, Nadia Zeghib

LIRE Laboratory

University of Constantine 2-Abdelhamid Mehri

Constantine, Algeria.

esma.maatougui@univ-constantine2.dz, chafia.bouanaka@univ-constantine2.dz, nadia.zeghib@univ-constantine2.dz

Abstract—Self-adaptation is a promising technique to manage

software systems maintainability and evolution. A self-adaptive

system is able to adapt its structure and behavior autonomously

at run-time in response to changes in the context in which it is

actually running to achieve particular quality goals. However,

designing and verifying quality-aware self-adaptive systems

remains a challenging task. In this paper, we propose a formal

approach that combines the advantages of both component-

based modeling (e. g., reduces model complexity), MDE (e. g.,

facilitates the development process) and Maude (a formal

language) to define a development process for quality-aware self-

adaptive software. We particularly focus on the specification of

quality-aware adaptation strategies required to ensure

continuous satisfaction of non-functional requirements (Quality

of service).

Index Terms— Self-adaptive systems; QoS; Component-Based

Software Engineering; Model-Driven Engineering; Maude.

I. INTRODUCTION

 Nowadays, users extensively rely on software systems

quality, especially in the presence of parametric and variable

execution contexts. However, ensuring the required qualities

of software systems that might operate in dynamic

environments, poses severe engineering challenges, since they

must become more versatile, flexible, resilient, dependable,

energy-efficient, recoverable, customizable, configurable, and

self-optimizing by adapting themselves to changes that may

occur in their operational contexts, environments and system

requirements. Self-adaptation [1] is generally considered as a

promising solution to manage the complexity of such software

systems since it enables the system to adapt itself to internal

dynamics and changing conditions in the runtime environment

to achieve particular quality goals automatically.

 A key characteristic of self-adaptive systems engineering is

to provide guarantees about the required runtime quality

properties. Nevertheless, the central role of QoS requirements

has to be considered at the early stages of design. Hence, the

emergence of the software system architecture provides the

right level of abstraction, sets the basis to achieve both

functional and non-functional requirements, and needs to be

supported by methodologies and tools to capture these two

dimensions of the product at the same time which generally can

deal with the challenges of self-adaptation [3]. The component-

based approach can provide an appropriate level of abstraction

to describe dynamic changes in a system structure and increase

the reusability and portability of software pieces. However, a

key issue to be faced concerns the assessment of self-adaptive

systems effectiveness, in terms of their ability to meet the

required QoS under different context conditions. In particular,

this assessment should take into account the cost of the

adaptation process itself. Since, adapting a system can require

time and system resources to be carried out, and this cost could

even outweigh the potential benefit [3]. In addition to

component-based software engineering (CBSE) [4], Model-

driven engineering (MDE) [5] is an emerging approach to

address these and other challenges.

MDE advocates the use of models, not only for capturing

high-level design ideas and documenting the final product, but

as key artefacts throughout the development process. The goal

is to reduce the development time and efforts, and to

increase product quality by raising the level of abstraction

and automating some time consuming and error prone

activities, e.g., by generating code directly from detailed

models instead of implementing it manually [6].

One major advantage of MDE is the opportunity to

automatically transform design models into analytical ones,

thus enabling formal verification of system properties;

including non-functional ones. A largely adopted approach is

the combination of MDE and formal methods to ensure and

guarantee functional correctness of the adaptation logic. This

provides a rigorous means for modeling, specifying and

reasoning about self-adaptive systems’ behavior, both at design

time and at runtime.

A variety of research work has been realized and significant

efforts invested to propose models for QoS-aware self-adaptive

systems. However, existing techniques for non-functional

properties analysis rely on very specific quality-related

formalisms such as Petri Nets (PNs), or Markovian models, but

software systems are rarely represented in these terms [3].

Besides, most of these approaches do not take into account the

separation of concerns between user requirements in terms of

QoS contract and system QoS parameters. Moreover,

designers, who usually lack sufficient experience in

requirements engineering, prefer design-oriented formalisms

such as UML [7] which reflects more the modeling intent.

In this paper, we present a component-based contractual

approach to define a model for designing, specifying and

verifying self-adaptive systems with respect to QoS contracts.

To address this problem, we define a model for QoS contracts

as a natural and effective way for user requirements.

 The remainder of the paper is organized as follows. Section

2 discuses some models for self-adaptive systems that are

relevant to our work. Section 3 is dedicated to the presentation

of our model and the generation of the corresponding formal

specification. Section 4 illustrates our proposal via a case

study to validate our model. Finally, Section 5 rounds up the

paper.

II. RELATED WORK

A variety of models for Self-adaptive systems have been

proposed and various modeling methodologies have been

adopted, including MDE [7, 8], requirements engineering [9]

and component-based development [12].

Vogel and Giese [8] propose a MDE-based model for Self-

Adaptive Software with EUREMA approach that realizes self-

adaptation using the so-called executable runtime mega-

models. In [7], a UML-based modelling language called Adapt

Case Modeling Language (ACML) is presented. The language

allows a separate and explicit specification of self-adaptivity

concerns using the concept of the MAPE-K loop. Based on

formal semantics, they apply quality assurance techniques to

the modeled self-adaptive system.

Brown and Cheng [9] adopt a Goal-Oriented Requirements

Engineering to present the Awareness-Requirement and

propose a way to elicit and formalize such requirements using

the OCL language. A methodology for generating feedback

from such requirements, as well as fragments of a prototype

implementation founded on an existing requirements

monitoring framework is proposed. Elkodary et al. present an

approach, named FUSION [10], which uses feature diagrams

as a system model where self-adaptation is realized by

switching between different system configurations. The self-

adaptation in FUSION is goal-driven, i.e., relying on

predefined functional or non-functional goals. Each goal

consists of a metric and a utility. While the metric is a

measurable entity as response time, a utility is a feature which

has influence on the metric, and is triggered when FUSION

detects that a goal is violated. The violation of a goal is

detected via defined monitoring functions.

DYNAMICO [11] is a reference model for engineering

adaptive software aligned with the vision of self-adaptive

systems, where dynamic adaptation is necessary to ensure the

continuous satisfaction of their functional requirements while

preserving the predefined conditions on Quality of Service

levels. These QoS levels are usually represented in the form of

Service Level Agreements (SLAs), and their enforcement

mechanisms are based on contracts and policies. Castaneda

Bueno designs a component-based reference architecture [12]

with distribution and extensible capabilities for self-adaptive

systems according to the reference model DYNAMICO.

In the present work, we propose a component-based

contractual approach for quality-aware self-adaptive software

systems specification that supports system and QoS contracts

modeling together with the corresponding adaptation logic. The

proposed approach defines QoS constraints in an independent

way from system QoS parameters. This separation of

concerns reduces system modeling complexity and increases

model reusability and maintainability. Our model for quality-

aware self-adaptive systems provides a clear satisfaction of

QoS contacts by applying adaptation strategies in case of

violation of QoS constraints.

III. A COMPONENT-BASED CONTRACTUAL

APPROACH FOR SELF- ADAPTIVE SYSTEMS

 We adopt a component-based contractual approach to

define a model for designing and formally specifying self-

adaptive systems with respect to QoS contracts CBSE can help

in the development of self-adaptive software in two ways.

First, it is easier to design and implement adaptable software

relying on component models. Second, the adaptation engine

needs to be modular and reusable. Additionally, CBSE can

also be adopted in the development phase of the self-adaptive

system. However, the Component-oriented paradigm still

requires comprehensive and sound QoS contract-aware self-

adaptation theories, models and mechanisms further

trustworthy, extensible and reusable in order to realize its

contract. Moreover, in the CBSE vision, contracts play a

fundamental role, as they must capture the functional and

extra-functional user requirements.

 We define a QoS-aware component-based model for self-

adaptive systems where context and functional entities are

viewed as components that interact via adaptation strategies,

and designed in an entirely independent manner and only

relationships between them are specified, thereby simplifying

the adaptation mechanisms. To achieve this goal, we model an

adaptation strategy as a pair of elements: an action associated

with the notification of events that violate their contracted

QoS constraints. The adaptation strategy adapts system

functionalities according to context changes in terms of

variations on system structure and/or behavior.

 The model is designed with a focus on the separation of

concerns between the specification of QoS parameters;

defining user quality requirements, and software components

quality parameters (see Figure 1). The first ones are specified

in the QoS contract while the second ones are directly defined

of the component specification.

Figure. 1. An Overview of the proposed model.

QoS contracts comprise a number of quality of service

constraints that might be satisfied and preserved by a managed

system. These QoS constraints are specified for each of the

different context conditions that the managed system is faced

with while it is running. Thus, the continuous satisfaction of a

QoS contract (i.e., its preservation) implies satisfying each of

the QoS constraints that the user expects, under each of the

corresponding varying conditions of execution contexts. At

runtime, once these conditions actually occur in the execution

context of the managed application, the respective QoS

constraints must be monitored, and their fulfillment enforced.

To be able to automatically ensure QoS contracts, a

component-based self-adaptive system requires (i) to maintain

a structural representation of itself (ii) to have a representation

of the contracted QoS constraints under the different context

conditions; (iii) to be self-monitoring, that is, to identify and

notify events on the QoS constraints violations; and (iv) to

apply the dynamic reconfiguration in response to events

notifying imminent violation of QoS constraints, as specified in

the QoS contracts.

Based on the previous considerations, we build our

component-based QoS-aware model for self-adaptive systems.

We first present our meta-model-based definitions for

component-based self-adaptive software structure and QoS

contracts respectively. Then, we define transformation rules to

be applied to generate automatically a Maude formal

specification of models instantiating the already defined meta-

model.

3.1. Model-based self-adaptive systems design

Our model exploits the MDE techniques to provide a

solution for self-adaptation via meta-models which describe

concepts that can be used for constructing models that conform

to its definition, and describes in an abstract way, the possible

structure of the underlying models. The meta-model of Figure

2, specifies the various concepts that intervene to define the

structure of quality-aware self-adaptive systems together with

their pertinent relationships. It is structured in four parts:

A. The first part contains four meta-classes representing a

quality of service contract. A QosContract is defined by its

name and a set of QoS properties. A QoS property denotes a

specific non-functional characteristic of the considered system

such as its performance, reliability, and cost. A QoSproperty

is defined by a name and a weight reflecting the relative

importance of the QoSproperty with regards to the user

preferences. To facilitate the specification of user preferences,

three weight values are predefined in the Weight Enumeration

(high, low, medium). Each QosProperty needs one or more

metrics to be quantitatively measured. A QosMetric, defined

by its idMetric, represents a non-functional property which

belongs to a domain of values as response time. Finally, we

associate a QosConstraint to the entire or a subset of QoS

properties in different conditions of context. In general, a

QosConstraint consists of a relational operator (e.g., <, >, =)

and a value representing a threshold.

B. The second part contains two meta-classes

representing context sensors used to model context sources and

values. The ContextSensor meta-class is defined by its

SensorID and sensor type. Three types of sensors are identified

in [13] : Physical, Virtual and Logical sensors. Sensor types are

represented via the SensorTypes Enumeration. The Context

meta-class defines anything that interacts and affects the target

or functional system. The Context is defined by its ContextID

and the corresponding possible values.

C. The third part contains the AdaptationStrategy meta-

class, which represents scenarios of adaptation that will be

applied in the case of violation of the QoS Constraints. These

scenarios are defined by a set of adaptation rules that can be

of the following types: (i) add a component to the actual system

configuration, (ii) remove a component, and (iii) replace one

component by another.

D. The last part of the meta-model contains necessary

concepts to define the functional system configuration, viewed

as a set of components which require or provide services to

each other through specific interfaces. These components are

represented by the Component meta-class and defined by a

name specified in the CName attribute. A component

comprises a set of Quality attributes (quality attributes of the

running service), and a set of provided interfaces

(ProvidedInterface) and Required ones (RequiredInterface).

Each interface exposes a set of services that are required or

provided by the component. Connections in our model are

dynamic and only established whenever one component is

providing the service and the other one is requesting it.

3.2. Model Transformation for Generating Maude

specifications

 Albeit, MDE tries to facilitate software development and

simplify the design process by specifying meta-models

focusing on the structural and static semantics of software

systems, it lacks necessary concepts to define the semantics or

behavior of software systems and thus verification

mechanisms that are among the major issues in specifying

self-adaptive systems. A reasonable and desirable formal

method to be adopted for this scope should be powerful

enough to capture the principal models of computation and

specification methods, and endowed with a meta-model-based

definition conforming to the underlying meta-modeling

framework. Additionally, the formal approach should allow

working at different levels of abstraction, and be executable,

in order to validate the meta-model semantics. Rewriting logic

[14] via its implementation language Maude [15] is an

adequate candidate for the definition of the semantics basis of

our meta-model for many reasons. First, the versatility of

rewrite theories can offer the appropriate level of abstraction

for addressing the specification, modelling and analysis of

self-adaptive systems and their environment within one single

coherent framework. Second, since Maude is a rule-based

language, the adaptation logic can be naturally expressed as a

subset of the available rules, and the meta-programming

capability of Maude can be exploited to enforce the execution

of a given adaptation rule to maintain QoS parameters via

Maude strategies. Third, the formal analysis toolset of Maude

can support simulations and analysis over the self-adaptive

system.

Figure 2.Self-adaptive system meta-model.

 The bridge between MDE and formal methods is

established via model transformation techniques, realized via a

set of transformation rules. A model transformation consists in

general of a computation that applies repeatedly a set of

transformation rules to a model, where the model represents

the structure of a sentence in a given formal language, defined

by a meta-model. EMF (Eclipse Modeling Framework) [16]

and specially Acceleo [17] are used in our case as a modeling

framework and code generator implementation of the OMG’s

Model-to-text specification for building tools and applications

based on models defined in the Ecore meta-model. This tool

provides the capability to define advanced code generators for

transforming models to a target code by defining

transformation templates.

 Table 1 illustrates some results of transformation rules

defined between the self-adaptive meta-model and the formal

semantics. The meta-model and the imposed constraints

provide the capability to achieve a formal specification

generation through template models. Our goal is to transform

EClass, EAttribute, EReference and EOperation of the self-

adaptive model to Maude constructs to facilitate self-adaptive

systems specification.

 Since Maude offers two possible representations, the

algebraic and the object-oriented ones, we have adopted an

object-oriented representation in order to reflect the

hierarchical structure of self-adaptive systems and avoid the

flat structure while adopting algebraic terms. In addition, all

structural concepts are transformed to Maude classes while

behavioral concepts as Adaptation Rules and Adaptation

Strategies are transformed to rewriting rules and Maude

Strategies respectively. The first mapping of Table 1 concerns

structural concepts that can be defined as an Acceleo template

as follows:

[template public generateElement(Package : EPackage)]
[comment @main/]
[file (Package.name.concat('.maude'), false, 'UTF-8')]
 (omod [Package.name.toUpperFirst()/] is
 for (c: EClass | Package.eAllContents(EClass))
separator('\t')]
 [if c.name.equalsIgnoreCase('AdaptationStrategy')=
false)]
 [if(c.name.equalsIgnoreCase('AdaptationRule')=
false)]
 class [c.name.toString()/] | [for (a: EAttribute
|c.eAttributes) separator(',')] [a.name/] :
[if (a.eAttributeType.name='EString')]String [/if]
[if (a.eAttributeType.name<>'EString')]
[a.eAttributeType.name/] [/if] [/for]
[if (c.eReferences<>null)] ,
[c.eReferences->first().name/] [/if] : OidList.
 [/if]
 [/if]
 [/for]
endom)
[/file]
[/template]

 The template for structural concepts generates a Maude file,

using a tag [file] to specify the output file, that contains the

various classes and their attributes as specified in Table 1. It

begins by testing if the considered element is not a behavioral

concept, i.e., neither an adaptation rule nor an adaptation

strategy. Such verification is realized via the conditional

statement [if]. Then, it generates a class from each EClass of

the meta-model via the [for] bloc, together with the

corresponding attributes.

A B
C D

TABLE 1. Transformation results.

IV. MOTIVATING ADAPTATION SCENARIO

The scenario of a firefighting system [18, 19] is used as

an example. Fire fighters often work in dangerous and

dynamic environments. Moreover, a fire accident is one of

the most frequent incident types. The early detection and

timely preventive measures are effective methods for

limiting fire damage and reducing casualties. In this

example, the firefighting system is a component-based

software system designed to detect fire signals and make

effective fire-management strategies. When fire danger

occurs, these components dynamically restructure into a

firefighting plan by choosing appropriate firefighting

resources from the component library. These well-

restructured components then drive the corresponding fire-

extinguishing installations to perform the firefighting plan.

The Firefighting System automatically takes effective

measures to prevent the fire disaster (Goal). This goal can be

further decomposed into: (G1) detect fire signals in the early

stage and (G2) assemble a set of fire-fighting devices in

response to a real-time fire situation. To achieve these self-

adaptation objectives, we should identify detectable contexts

reflecting the software running state or physical

environment, and then identify adaptive actions that can be

performed at runtime to change the system behavior. In this

example, the detectable fire signals (contexts) are various,

such as CO, CO2, along with high temperature, and strong

flame. Therefore, the context to be chosen depends on the

occurring place and the fire disaster type.

 Self-adaptive Firefighting System is used to monitor

indoor fire disasters. It is composed of two essential parts,

see Figure 3: context layer and functional one. We identify

Temperature, Smoke Concentration, CO Concentration and

Infrared Wavelengths as different contexts. The

corresponding Maude specification of the available contexts

is given by the following fragment of code:

< 'CTXS1 : ContextSonsor | SonsorID : "FireMonitor_TEM" , Type :

PhysicalSonsor , context : 'CTX1 >

< 'Temperature : Context | ContextID : "Temperature" ,ContextValue : "65" >

 < 'CTXS2 : ContextSonsor | SonsorID : "FireMonitor_CO" , Type :

PhysicalSonsor , context : 'CTX1 >

< 'CO-Con : Context | ContextID : "CO-Con" , ContextValue : "70%" >

Structural concepts

Eclass Maude specification

QosContract

QosProperty

QosMetric

QosConstraint

class QosContract | name : String , QosProperties : OidListe .
class QosProperty | name : QosPropertyName , Weight : Weight , Qosmetrics : OidListe .
class QosMetric | idMetric : String , QosContraints : OidListe .
class QosConstraint | value : Float , operator : String , contextValue : Oid.

FonctionnelSys

Component

ProvidedInterface

RequiredInterface

Service

class FonctionnelSystem | Components : OidListe .
class Component | Cname : String , QualityAttribute : Oid , ProvidedInterfaces : OidListe ,
RequiredInterfaces : OidListe .
class ProvidedInterface | ProvidedServices : OidListe .
class RequiredInterface | RequiredServices : OidListe .
class Service | Servicename : String ,QualityAttribute : Oid , isActive : Bool ,Parameters :
OidListe.
class QualityAttribute | name : String , value : Float .

Behavioral concepts

AdaptationRule crl [ReplaceComponent] :
< F : FonctionnelSystem | Components : C CL >
< C : Component | Cname : name , QualityAttribute: Q1 ,ProvidedInterfaces: I PIL ,RequiredInterfaces
: RIL >
< C' : Component |Cname: name2 ,QualityAttribute: Q2 ,ProvidedInterfaces: IL ,RequiredInterfaces: L >
< Q1 : QualityAttribute | name : QN , value : V1 >
< Q2 : QualityAttribute | name : QN , value : V2 >
=>
< F : FonctionnelSystem | Components : (del(C, (add(C' , CL)))) >
< Q2 : QualityAttribute | >
< C' : Component |Cname: name2 ,QualityAttribute: Q2 ,ProvidedInterfaces: IL , RequiredInterfaces: L
>
if V2 < V1 .

AdaptationStrategy (fmod SelfAdapt-STRA is
pr REW-SEQ .
op SelfAdaptStrat : -> List{Tuple{Qid, Substitution}} [memo] .
eq SelfAdaptStrat = ('ReplaceComponent, 'F:Oid <- ''F.Qid ; 'C:Oid <- '' FireManComp.Qid ;
'C':Oid <- '' FireEngComp.Qid) .

Figure 3. Self-adaptive Firefighting System model.

 We also identify three types of components: Fireman,

Fire Engine and Extinguisher. In the example, fire-

prevention measures are made by dynamically restructuring

the firefighting components. The corresponding Maude

specification of these components is given by the following

fragment of code:

< 'F : FonctionnelSystem | Components : 'FireManComp 'ExgComp >

< 'FireManComp : Component | Cname : "FireMan" , QualityAttribute : 'Q1 ,

ProvidedInterfaces : 'FM_Interface >

< 'FireEngComp : Component | Cname : "FireEngineComp" , QualityAttribute

: 'Q2 , ProvidedInterfaces : 'FE_Interface >

< 'ExgComp : Component | Cname : "Extinguisher_Comp" , QualityAttribute :

'Q3 , ProvidedInterfaces : 'EX_Interface >

< 'FM_Interface : ProvidedInterface | ProvidedServices : 'StartCompFM >

< 'FE_Interface : ProvidedInterface | ProvidedServices : 'StartCompFE >

< 'EX_Interface : ProvidedInterface | ProvidedServices : 'StartCompEX >

< 'StartCompFM : Service | Servicename : "StartCompFM" , QualityAttribute :

'Q1 , isActive : true , Parameters : 'PL >

< 'StartCompFE : Service | Servicename : "StartCompFE" , QualityAttribute :

Q2 , isActive : false , Parameters : 'PL >

< 'Q1 : QualityAttribute | name : "ResponseTime" , value : 50.0 >

< 'Q2 : QualityAttribute | name : "ResponseTime" , value : 20.0 >

 The “FireManComp” component has “Q1” as a quality

attribute which represents the response time of 50 sec and a

Provided Interface “FM_Inerface” that proposes a unique

running service “StartCompFM”.

 In the firefighting system, we are concerned with the

analysis of the performance quality parameters in terms of

the response. For this reason, we identify the

Firefighting_Contract which comprises the Performance

as a QosProperty and ResponseTime, see Figure 3, as a

metric that is used to evaluate the performance. We propose

two QosConstraint in this example: The response time in the

Temperature context must not exceed 30 sec. But, in the

context of CO-Concentration, the response time might not

exceed 20 sec. The corresponding Maude specification of

this QosContract is given by the following fragment of

code:

< 'QosContract : QosContract | name : "FireFighting" , QosProperties : 'P1 >

< 'P1 : QosProperty | name : "Performance" , Weight : hight , Qosmetrics :

'M >

< 'M : QosMetric | idMetric : "ResponseTime" , QosContraints : 'C1 'C2 >

< 'C1 : QosConstraint | value : 30.0 , operator : "<" , contextValue :

'Temperature >

< 'C2 : QosConstraint | value : 20.0 , operator : "<" ,contextValue : 'Co-Con >

 As an example of adaptation strategies application, we

consider the case of a violation of the response time in the

Temperature context by the actually running component

"FireManComp". In this case, the system detects a violation

of QoS Constraint and applies the adaptation strategy that

replaces the "FireManComp" by "FireEngineComp"

component. Figure 4 shows the result of the adaptation

strategy. "FireEngineCom” component that respects the

QosConstraint “C1” (reponse time of FireEngineComp =

20ms), is added to the list of components in the functional

system and its service “StartCompFE” becomes running

(isActive : true). It replaces “FireManComp” which does

not meet the quality requirements.

Maude> …
Introduced module SelfAdapt-STRA

result Configuration : …
< 'F : FonctionnelSystem |
 Components :('ExgComp 'FireEngComp)> <
'FE_Interface : ProvidedInterface | ProvidedServices :
'StartCompFE >
< 'FireEngComp : Component | Cname :
 "FireEngineComp",ProvidedInterfaces :
'FE_Interface,QualityAttribute : 'Q2 >
< 'StartCompFE : Service | Parameters : 'PL,
QualityAttribute : 'Q2, Servicename : "StartCompFE",
isActive : true > < 'StartCompFM : Service | Parameters
: 'PL, QualityAttribute : 'Q1,Servicename :
“StartCompFM",isActive : false >

Figure. 4. A strategy application result.

V. Conclusion

 In this paper, we have proposed a component-based

contractual approach for designing and specifying self-

adaptive systems with respects to Quality of Service

contracts. The approach establishes a clear separation of

concerns between the specification of user definable QoS

quality parameters and quality parameters of the software

components. To implement the proposed approach, we have

combined the MDE techniques and a formal method in

order to provide an intuitive modeling notation, supporting a

graphical view, but still having a rigorous syntax and

semantics. Such combination also facilitates the use of

formal methods in many stages of the development process

including the analysis phase that includes validation and

verification techniques.

As future work, we intend to exploit main characteristics of

formal methods to rigorously verify the behaviors of model-

based self-adaptive systems, formal specifications are

automatically generated. We will mainly adopt a stochastic

model-checking technique to ensure quality properties of

self-adaptive systems. Besides, we plan to develop a

modeling tool that facilitates the creation and the

implementation of quality-aware self-adaptive systems. We

aim to integrate formal techniques within the MDE ones.

The role of MDE is the definition of system graphical

models and formal methods serve to validate and verify the

self-adaptive system in order to guarantee that system model

satisfies global properties and particularly quality ones.

Furthermore, we aim to apply our approach on

supplementary case studies in the goal of optimizing the

existing quality properties modeling, the verification and

implementation capabilities of the self-adaptive systems

modeling framework.

ACKNOWLEDGMENTS

 This work is published through funding provided under

the CMEP/TASSILI project N°08MDU945.

REFERENCES

[1] R. Laddaga , P. Robertson , Self-adaptive software: a position
paper, in: Proceed-ings of International Workshop onSelf-Star
Properties in Complex Information Systems, Bertinoro, 2004.

[2] Cheng, B., et al. . Software Engineering for Self-Adaptive
Systems: A Research Roadmap. Software Engineering for
Self-Adaptive Systems, 2009.

[3] V.Grassi, R.Mirandola, E.Randazzo, Model-Driven
Assessment of QoS-Aware Self-Adaptation, Software
Engineering for Self-Adaptive Systems, 2009.

[4] George T. Heineman and William T. Councill, editors.
Component-Based Software Engineering: Putting the Pieces
Together. Addison-Wesley Longman, 2001.

[5] R. da Silva, Model-driven engineering: a survey supported by
a unified conceptual model, Comput. Lang. Syst. Struct. 2015.

[6] J.Carlson & al. Deployment Modelling and Synthesis in a
Component Model for Distributed Embedded Systems; 2010.

[7] M. Luckey and G. Engels, “High-quality specification of self-
adaptive software systems,” in Proceedings of the 8th

International Symposium on Software Engineering for
Adaptive and Self-Managing Systems , ser. SEAMS ’2013.

[8] T. Vogel and H. Giese. Model-driven engineering of self-
adaptive software with EURUMA. ACM Trans. Auton Adapt.
Syst., Jan. 2014.

[9] Brown, G., Cheng, B.H., Goldsby, H., Zhang, J.: Goal-
oriented specification of adaptation requirements engineering
in adaptive systems. In: ACM 2006 , Shanghai, China, 2006.

[10] A. Elkhodary, N. Esfahani, and S. Malek. FUSION: a
framework for engineering self-tuning self-adaptive software
systems. In Proceedings of the eighteenth ACM SIGSOFT
international symposium on foundations of software
engineering, FSE '10, pages 7-16, New York, NY, USA,
2010.

[11] N. M. Villegas, G. Tamura, H. A. M̈uller, L. Duchien, and R.
Casallas, DYNAMICO: A Reference Model for Governing
Control Objectives and Context Relevance in Self-Adaptive
Software Systems , ser. LNCS. Springer, 2013.

[12] L.Castaneda Bueno, A Reference Architecture for
Component-Based Self-Adaptive Software Systems. Magister
Graduation Project. Department of Information and
communication Technologies Faculty of
Engineering.Universidad ICESE. 2012

[13] J. Zhang and B. Cheng. Model-based development of
dynamically adaptive software. In 28th International
Conference on Software Engineering . ACM, 2006

[14] Meseguer, J., Conditional rewriting logic as a unified model
of concurrency. Theor. Comput. Sci. 96 (1), 73–155. 1992.

[15] Clavel, M., Durn, F., Eker, S., Lincoln, P., Mart-oliet, N.,
Meseguer, J., Talcott, C.,. Maudemanual.version 2.6. 2011

[16] Steinberg D, Budinsky F, Paternostro M, Merks E, Eclipse
EMF. Modeling framework. 2nd editionAddison-Wesley;
2009.

[17] http://www.eclipse.org/acceleo.

[18] D Han, Q Yang, J Xing, J Li, H Wang, FAME: A UML-based
framework for modeling fuzzy self-adaptive software, Article
 in Information and Software Technology. April 2016.

[19] C An, Y Luo, A Timm-Giel.Adaptive Routing in Wireless

Sensor Networks for Fire Fighting. - Information and

Communication Technologies, Springer, 2012.

http://www.eclipse.org/acceleo

