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Abstract—Big Data aims at the efficient processing of massive 

amounts of data. Performance modeling is often used to optimize 

performance of systems under development. Based on 

experiences from modeling Big Data solutions, we describe some 

problems in applying performance modeling and discuss 

potential solution approaches. 
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I. MOTIVATION 

Big Data solutions store, transfer, and process huge data 

sets. Modeling the architecture of Big Data systems in a 

component-based fashion and using architectural models for 

conducting performance analysis is essential to compare design 

alternatives. As Big Data solutions are typically realized as 

distributed systems, performance analysis can help to 

determine the required amount of resources and the distribution 

of analysis tasks over a cluster prior to implementation. 

An established research area at the intersection of model-

driven and component-based software engineering is using 

component models to conduct performance simulation and 

prediction. There are numerous approaches with varying focus 

in this area [3]. The key research that led to this paper was 

driven from experience with Palladio [4], however, we believe 

that most of our points hold for the broader field of model-

based performance prediction of component-based systems.  

In our research, we aim to apply model-based performance 

prediction to Big Data systems. Such systems typically use 

established infrastructures like Storm, Spark, etc. Our current 

focus is on performance models for near real-time computation 

for financial data streams [7]. As a consequence, our discussion 

of the approaches and their limitations is driven from this 

background. However, we believe that several of our points 

actually apply to a larger range of situations. As part of our 

discussion, we will make explicit which problems are particular 

to Big Data and which ones probably apply to a wider range. 

The structure of the paper is: In Section II we describe the 

identified problems. This is the core of this contribution, as this 

is to our knowledge the first time these issues are made 

explicit. In Section III we discuss some initial ideas on how to 

address these issues. Finally, in Section IV we conclude.  

II. IDENTIFIED PROBLEMS 

Our analysis was mainly driven from attempts to model the 

performance of Big Data systems for achieving adaptive 

behavior. Our modeling studies were performed with Palladio. 

Hence, in terms of experiences the points below must be 

regarded as Palladio-specific. However, as we will discuss, the 

points also apply to a broader range of modeling approaches 

and (partially) even beyond Big Data systems. First limitations 

of Palladio for modeling Big Data systems have been described 

in [7]. Our analysis goes beyond these limitations and is 

structured into 3+1 points: the first three issues refer to 

potential problems in modeling characteristics of Big Data 

systems, while the last point is of a more fundamental nature.  

Flexible Component Distribution: In Big Data systems, it is 

often necessary to modify the distribution of worker 

implementations across different resources, e.g., switching 

from two servers responsible for a certain kind of processing to 

three servers hosting the same logical component. This can also 

be combined with adding servers (e.g., automatic scale-out). 

Such behavior is not specific to Big Data systems, as even web 

shops like Amazon do this. These distribution changes are 

triggered by changes in the workload of the system.  

Today capabilities for describing arbitrarily complex 

dynamic component-resource binding do not exist in 

performance modeling and analysis approaches like Palladio. 

However, approaches like SimuLizar [1] and iObserve [2] are 

able to support some specific adaptations. SimuLizar considers 

deployment changes during analysis at design-time. iObserve 

focuses on reflecting observed changes in the running system 

in deployment like migration and (de-)replication.  

Data-oriented Load Distribution: Big Data is centered on 

data processing and the data itself is used to control the 

applications, i.e., the processing component is selected based 

on the type of data (data-flow processing). In contrast, existing 

performance modeling approaches focus on the call-relation 

among components and do not consider data as first class 

entities. Thus, they do not provide capabilities for modeling 

data streams. Based on our experience, this makes it very hard 

to model Big Data applications. However, beyond ease and 

adequacy of modeling, it also leads to situations were specific, 

performance-relevant aspects cannot be modeled, e.g., if the 

amount of data stays the same over time, but the composition 

of data types change, this may lead to adaptations. It seems 

these issues are particularly relevant to Big Data applications.  

Explicit Queuing Components: Big Data applications utilize 

queuing components for various purposes, but in particular, to 

organize the distribution of data across the application and to 

smooth peak loads. Thus, queuing has a very significant 

performance impact. The precise impact depends on specific 



aspects of the queuing. Any performance models that omit such 

aspects are significantly insufficient, but current component-

based modeling approaches like Palladio do not have modeling 

capabilities for queuing components. (Queuing exists, but is 

restricted to modeling resource usage). Thus, it is impossible to 

create adequate models of this aspect of system behavior. As 

internal queuing exists in other systems as well, we assume that 

this will be a problem for modeling these types of systems, too. 

The previous three points describe three dimensions of 

modeling capabilities that are not – or not sufficiently – 

supported by existing performance modeling approaches like 

Palladio. However, there exists a broader and more 

fundamental problem to which we will turn now: 

Blackbox Infrastructure: In Big Data applications, 

technologies like Storm, Spark, Hadoop, etc. play a central 

role, however, these are very large and complex infrastructures. 

There do not exist any models of their behavior and because of 

their size alone it would be a daunting task to construct one. 

The situation that large, unknown infrastructures are part of the 

models is not new. But, experience shows that for traditional 

systems, despite abstracting from classical infrastructures it 

was possible to get very adequate results [4]. This is different 

for Big Data, as the infrastructure operations may have a strong 

impact on system performance. This leads to the fundamental 

problem of how to derive models (at least of critical aspects) of 

such large infrastructures? Manual model construction seems 

out of scope, as the modeling alone would be often many times 

more complex than modeling the core application. Moreover, it 

would entail a significant reengineering project.  

III. SOLUTION IDEAS 

Based on the problems identified in Section II we will now 

discuss some potential solution approaches. 

Flexible Component Distribution: Performance analysis of 

systems with flexible component distribution requires the 

inclusion of adequate modeling primitives to support this. An 

approach that already heads in this direction is SimuLizar [1]. 

It supports the modeling of self-adaptation rules, e.g. for load 

balancing. However, the expressiveness of its rules is not 

sufficient to support all relevant distribution adaptations. 

In order to improve the capabilities of performance 

modeling approaches, we assume it is necessary to significantly 

enhance the capabilities for describing runtime adaptation rules 

and further enhance analysis approaches so the adaptation 

effects are taken into account in the analysis.  

Data-oriented Load Distribution: As discussed earlier, the 

key issue is that the modeling of component-oriented 

approaches relies on call-relations, while in Big Data systems, 

the key relation is the data flow. Hence, we assume a natural, 

but necessary extension, will be to extend the modeling 

approaches with explicit data-flow modeling primitives.  

However, we are not the first to propose this. Seifermann 

proposed such an extension for the Palladio approach [6]. His 

motivation was completely different, i.e., it focused on 

analyzing systems for privacy or SLAs violations. We imagine 

that an appropriate extension for dataflow modeling could 

actually simultaneously serve both purposes. 

Explicit Queuing Components: To the best of our 

knowledge queuing components are not yet considered as 

predefined model elements on architecture level in existing 

approaches to architecture analysis. They may be constructed 

manually using formalisms like Layered Queuing Networks 

(LQNs) and Queuing Petri Nets (QPNs). However, to support 

an integrated performance analysis in a component-based 

paradigm, it would be necessary to integrate these capabilities 

into the underlying component models. We regard this as a 

difficult, but mandatory challenge for the performance analysis 

of Big Data systems. 

Blackbox Infrastructure: Even if the above extensions 

would be sufficient to model the characteristics of complex Big 

Data systems, the problem would remain that the underlying 

infrastructures would need to be modeled as well. Given 

existing performance-oriented reengineering approaches, this 

would require significant reengineering efforts that seem rather 

unrealistic. Hence, the challenge here is: how can we (semi-) 

automatically derive sufficient model information from such 

infrastructures? If these infrastructures would be once 

comprehensively modeled, these models could be reused as a 

single component or as a parameterizable pattern. 

IV. CONCLUSION 

In this paper, we provided an initial discussion of current 

shortcomings in model-driven performance engineering. While 

it was based on modeling Big Data systems with Palladio, we 

believe the experiences hold at least for the broader range of 

performance modeling of big data systems and some of them 

may hold for a much wider range of cases were complex off-

the-shelf infrastructures are used in system development.  

It is the goal of our ongoing research to address the 

identified shortcomings by augmenting modeling approaches 

and providing novel methods for model construction. 
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