
Performance Modeling in the Age of Big Data
Some Reflections on Current Limitations

Robert Heinrich

Software Design and Quality

Karlsruhe Institute of Technology

Karlsruhe, Germany

robert.heinrich@kit.edu

Holger Eichelberger, Klaus Schmid

Software Systems Engineering

University of Hildesheim

Hildesheim, Germany

{eichelberger,schmid}@sse.uni-hildesheim.de

Abstract—Big Data aims at the efficient processing of massive

amounts of data. Performance modeling is often used to optimize

performance of systems under development. Based on

experiences from modeling Big Data solutions, we describe some

problems in applying performance modeling and discuss

potential solution approaches.

Index Terms—Performance, modeling, Big Data, Palladio

I. MOTIVATION

Big Data solutions store, transfer, and process huge data

sets. Modeling the architecture of Big Data systems in a

component-based fashion and using architectural models for

conducting performance analysis is essential to compare design

alternatives. As Big Data solutions are typically realized as

distributed systems, performance analysis can help to

determine the required amount of resources and the distribution

of analysis tasks over a cluster prior to implementation.

An established research area at the intersection of model-

driven and component-based software engineering is using

component models to conduct performance simulation and

prediction. There are numerous approaches with varying focus

in this area [3]. The key research that led to this paper was

driven from experience with Palladio [4], however, we believe

that most of our points hold for the broader field of model-

based performance prediction of component-based systems.

In our research, we aim to apply model-based performance

prediction to Big Data systems. Such systems typically use

established infrastructures like Storm, Spark, etc. Our current

focus is on performance models for near real-time computation

for financial data streams [7]. As a consequence, our discussion

of the approaches and their limitations is driven from this

background. However, we believe that several of our points

actually apply to a larger range of situations. As part of our

discussion, we will make explicit which problems are particular

to Big Data and which ones probably apply to a wider range.

The structure of the paper is: In Section II we describe the

identified problems. This is the core of this contribution, as this

is to our knowledge the first time these issues are made

explicit. In Section III we discuss some initial ideas on how to

address these issues. Finally, in Section IV we conclude.

II. IDENTIFIED PROBLEMS

Our analysis was mainly driven from attempts to model the

performance of Big Data systems for achieving adaptive

behavior. Our modeling studies were performed with Palladio.

Hence, in terms of experiences the points below must be

regarded as Palladio-specific. However, as we will discuss, the

points also apply to a broader range of modeling approaches

and (partially) even beyond Big Data systems. First limitations

of Palladio for modeling Big Data systems have been described

in [7]. Our analysis goes beyond these limitations and is

structured into 3+1 points: the first three issues refer to

potential problems in modeling characteristics of Big Data

systems, while the last point is of a more fundamental nature.

Flexible Component Distribution: In Big Data systems, it is

often necessary to modify the distribution of worker

implementations across different resources, e.g., switching

from two servers responsible for a certain kind of processing to

three servers hosting the same logical component. This can also

be combined with adding servers (e.g., automatic scale-out).

Such behavior is not specific to Big Data systems, as even web

shops like Amazon do this. These distribution changes are

triggered by changes in the workload of the system.

Today capabilities for describing arbitrarily complex

dynamic component-resource binding do not exist in

performance modeling and analysis approaches like Palladio.

However, approaches like SimuLizar [1] and iObserve [2] are

able to support some specific adaptations. SimuLizar considers

deployment changes during analysis at design-time. iObserve

focuses on reflecting observed changes in the running system

in deployment like migration and (de-)replication.

Data-oriented Load Distribution: Big Data is centered on

data processing and the data itself is used to control the

applications, i.e., the processing component is selected based

on the type of data (data-flow processing). In contrast, existing

performance modeling approaches focus on the call-relation

among components and do not consider data as first class

entities. Thus, they do not provide capabilities for modeling

data streams. Based on our experience, this makes it very hard

to model Big Data applications. However, beyond ease and

adequacy of modeling, it also leads to situations were specific,

performance-relevant aspects cannot be modeled, e.g., if the

amount of data stays the same over time, but the composition

of data types change, this may lead to adaptations. It seems

these issues are particularly relevant to Big Data applications.

Explicit Queuing Components: Big Data applications utilize

queuing components for various purposes, but in particular, to

organize the distribution of data across the application and to

smooth peak loads. Thus, queuing has a very significant

performance impact. The precise impact depends on specific

aspects of the queuing. Any performance models that omit such

aspects are significantly insufficient, but current component-

based modeling approaches like Palladio do not have modeling

capabilities for queuing components. (Queuing exists, but is

restricted to modeling resource usage). Thus, it is impossible to

create adequate models of this aspect of system behavior. As

internal queuing exists in other systems as well, we assume that

this will be a problem for modeling these types of systems, too.

The previous three points describe three dimensions of

modeling capabilities that are not – or not sufficiently –

supported by existing performance modeling approaches like

Palladio. However, there exists a broader and more

fundamental problem to which we will turn now:

Blackbox Infrastructure: In Big Data applications,

technologies like Storm, Spark, Hadoop, etc. play a central

role, however, these are very large and complex infrastructures.

There do not exist any models of their behavior and because of

their size alone it would be a daunting task to construct one.

The situation that large, unknown infrastructures are part of the

models is not new. But, experience shows that for traditional

systems, despite abstracting from classical infrastructures it

was possible to get very adequate results [4]. This is different

for Big Data, as the infrastructure operations may have a strong

impact on system performance. This leads to the fundamental

problem of how to derive models (at least of critical aspects) of

such large infrastructures? Manual model construction seems

out of scope, as the modeling alone would be often many times

more complex than modeling the core application. Moreover, it

would entail a significant reengineering project.

III. SOLUTION IDEAS

Based on the problems identified in Section II we will now

discuss some potential solution approaches.

Flexible Component Distribution: Performance analysis of

systems with flexible component distribution requires the

inclusion of adequate modeling primitives to support this. An

approach that already heads in this direction is SimuLizar [1].

It supports the modeling of self-adaptation rules, e.g. for load

balancing. However, the expressiveness of its rules is not

sufficient to support all relevant distribution adaptations.

In order to improve the capabilities of performance

modeling approaches, we assume it is necessary to significantly

enhance the capabilities for describing runtime adaptation rules

and further enhance analysis approaches so the adaptation

effects are taken into account in the analysis.

Data-oriented Load Distribution: As discussed earlier, the

key issue is that the modeling of component-oriented

approaches relies on call-relations, while in Big Data systems,

the key relation is the data flow. Hence, we assume a natural,

but necessary extension, will be to extend the modeling

approaches with explicit data-flow modeling primitives.

However, we are not the first to propose this. Seifermann

proposed such an extension for the Palladio approach [6]. His

motivation was completely different, i.e., it focused on

analyzing systems for privacy or SLAs violations. We imagine

that an appropriate extension for dataflow modeling could

actually simultaneously serve both purposes.

Explicit Queuing Components: To the best of our

knowledge queuing components are not yet considered as

predefined model elements on architecture level in existing

approaches to architecture analysis. They may be constructed

manually using formalisms like Layered Queuing Networks

(LQNs) and Queuing Petri Nets (QPNs). However, to support

an integrated performance analysis in a component-based

paradigm, it would be necessary to integrate these capabilities

into the underlying component models. We regard this as a

difficult, but mandatory challenge for the performance analysis

of Big Data systems.

Blackbox Infrastructure: Even if the above extensions

would be sufficient to model the characteristics of complex Big

Data systems, the problem would remain that the underlying

infrastructures would need to be modeled as well. Given

existing performance-oriented reengineering approaches, this

would require significant reengineering efforts that seem rather

unrealistic. Hence, the challenge here is: how can we (semi-)

automatically derive sufficient model information from such

infrastructures? If these infrastructures would be once

comprehensively modeled, these models could be reused as a

single component or as a parameterizable pattern.

IV. CONCLUSION

In this paper, we provided an initial discussion of current

shortcomings in model-driven performance engineering. While

it was based on modeling Big Data systems with Palladio, we

believe the experiences hold at least for the broader range of

performance modeling of big data systems and some of them

may hold for a much wider range of cases were complex off-

the-shelf infrastructures are used in system development.

It is the goal of our ongoing research to address the

identified shortcomings by augmenting modeling approaches

and providing novel methods for model construction.

V. REFERENCES

[1] M. Becker, M. Luckey, and S. Becker. Performance analysis of

self-adaptive systems for requirements validation at design-time.

Quality of Software Architectures, pp. 43-52, ACM, 2013.

[2] R. Heinrich. Architectural run-time models for performance and

privacy analysis in dynamic cloud applications. Performance

Evaluation Review, 43(4):13-22, ACM, 2016.

[3] H. Koziolek. Performance evaluation of component-based

software systems: A survey. Performance Evaluation, 67(8):634–

658, Elsevier, 2010.

[4] J. Kroß, A. Brunnert, and H. Krcmar. Modeling Big Data Systems

by Extending the Palladio Component Model. Softwaretechnik-

Trends 35(3). GI. 2015.

[5] R. Reussner et al., (Ed.). Modeling and Simulating Software

Architectures – The Palladio Approach. MIT Press, 2016. ISBN:

978-0-262-03476-0.

[6] S. Seifermann. Architectural data flow analysis. IEEE/IFIP

Working Conference on Software Architecture, pp. 270-271, IEEE,

2016.

[7] C. Qin and H. Eichelberger. Impact-minimizing Runtime Switching

of Distributed Stream Processing Algorithms. Big Data Processing

- Reloaded, Joint Conference, CEUR-WS.org, 2016.

