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Abstract. In this paper we present a technique for recognising loca-
tion names in non-structured texts. Our approach is based on grammar
rules devised for the Italian language and semantic web tools such as
geographic linked datasets, OWL ontologies, and SWRL rules, to handle
data and reason about them, even in presence of name ambiguities. To
the best of our knowledge, this is the first attempt of addressing the
problem of location recognition in the context of Italian texts with such
an ontological support.

1 Introduction

Recognising location names of geographical places and of public or private build-
ings inside non-structured text documents is an important issue with several
practical applications. For instance, in the investigative field it is important to
reveal a place named in the transcription of an interception (i.e., by means of
wiretapping) and in the social media context to reveal the places visited by users
to provide targeted advertisements. This problem falls both in the category of
information extraction from unlabeled texts and of mamed entity recognition,
where most of the existing approaches are focused on the English language and
are in general not applicable to the Italian language, or they lead to unsatisfac-
tory results due to the peculiarities of the language.

The problem of location name recognition has been addressed in various
ways [24], e.g., using maximum entropy models 23], or with Conditional Ran-
dom Fields [21], or with automatic learning techniques to infer the rules for the
named entities identification inside free texts [14], or, in the last decade, also
with linked data and ontologies [20] (a survey of the main geographical ontolo-
gies and datasets can be found in [15]). However, many of such approaches have
been tested, or developed, vertically on top of the English language, making
them hard to generalize to the Italian language. In addition, in some our pre-
liminary experiment, widespread applications such as Stanbol [1] turned out to
be unsatisfactory from the point of view of success ratio when applied to Italian
places drawn from non-structured text written in Italian.

In this paper we focus on the problem of recognising names of geographical
places in the Italian country, which appear in non-structured Italian text doc-
uments. Our approach consists in extracting location names from Italian texts



according to an extended version of the algorithm presented in [18], and then
storing data and making inferences, even in presence of name ambiguities, with
semantic web tools such as geographic linked datasets, OWL ontologies [4], and
SWRL rules [11].

We recall that the algorithm presented in [18] relies on a set of three fi-
nite state machines, each designed to recognise several sentence patterns for the
Italian language, in which location names are typically found. Such an analysis
takes as input a non-structured text written in Italian and yields as output a
HTML text, where candidate location names have been automatically marked
by a label.

In this contribution, we unified the finite state machines presented in [1§] in
a single automaton, reducing the overall number of states involved during the
extraction of location names from the text; each location detected by the algo-
rithm is then searched in the OpenStreetMap dataset [5]. Such a search yields a
list of possible matches of real places, each with its degree of reliability. Then,
the data retrieved by OpenStreetMap are inserted in a novel ontology, namely
OntoLocEstimation, to handle ambiguous geographical names. OntoLocFEstima-
tion uses the ontology OntoLuoghi, introduced in [17], that contains a detailed
description of the administrative model of Italian places.

The use of open datasets, such as OpenStreetMap, allows a widespread and
detailed coverage of Italian geographical places and provides a high precision
in the detection of real places. In addition, the introduction of Semantic Web
Rule Language (SWRL) rules [11] allows inferences on knowledge, implicitly
contained in the novel ontologies which are more refined than other currently
available ontologies on geographical places.

2 Background

The semantic web is a vision of the World Wide Web in which information car-
ries an explicit meaning, so it can be automatically processed and integrated by
machines, and data can be accessed and modified at a global level, resulting in in-
creased coherence and dissemination of knowledge. Moreover, thanks to suitable
procedures of automated reasoning, it is possible to extract implicit informa-
tion present in data, leveraging a deeper knowledge of the domain. The domain
is specified by means of expressions describing statements about web shared
resources. Such expressions are given as triples of the form subject-predicate-
object. The subject denotes the resource to describe, namely the actor of the
statement, the object denotes the recipient or the result of the action, and the
predicate denotes traits or aspects of the resource, i.e., a relationship between
the subject and the object. For instance, if we wanted to express the concept
“Michelangelo made the Sistine Chapel ceiling”, we would write <#Michelan-
gelo><#makes><#Sistine_Chapel _Ceiling>, where “#” indicates that the lo-
cal context is usedE| Every time we want to add some information about a

! For space reasons, we express triples using a simplified version of the Turtle notation
|13].



specific resource, we reuse the resource as subject or object of a new triple, de-
pending on the type of relationship. For example, if we additionally wanted to
express the creation date of the Sistine Chapel ceiling, we would write <#Sis-
tine_Chapel _Ceiling><#hasCreationDate>“1512”.

Sharing data is an important feature of the semantic web. Because of the
uniqueness of the URI of the resources and of the document, we can refer to them
without ambiguity. For instance, assuming that the URL http://wwww.unict.
it/art.rdf refers to the document containing information about “Michelan-
gelo”, every time we need to state something about him, we use the docu-
ment http://wwww.unict.it/art.rdf, and the resource http://wwww.unict.
it/art.rdf#Michelangelo as a resource in our statements.

Semantic web data are usually published using the Resource Description
Framework (RDF) [9] (or its extension RDF Schema (RDFS) [10]) and the On-
tology Web Language (OWL) [4]. An important feature of the semantic web is
the capability to extract implicit information from the described data. This is
why the language RDFS has been introduced. Unlike the RDF language, RDFS
is powerful enough to enable such a feature since it allows to express subclass
and subproperty relationships. Elements of the domain sharing common charac-
teristics can be grouped in particular sets called classes. Classes, in their turn,
can be organised in hierarchies. A hierarchy of classes is called a tazonomy. Prop-
erties can be organised in hierarchies too. For instance, the relation “has father”
can be modelled as a subproperty of the relation“has ancestor”. If an element of
the domain is related to another element by a subproperty, then it is related to
the superproperty as well. RDFS provides other interesting inference capabilities
that, for space reasons, we do not report here. However, RDFS is far away from
allowing complex reasoning. For instance, let us consider the relation “uncle” in
a domain of persons. If we express that “Marta” is daughter of “Frank”, and
“Frank” is brother of “John”, we are making no assumption on the relationship
between “Marta” and “John”. However, in the knowledge domain we have to
model we might be aware of the fact that “the brother of my father is my uncle”
as a result of the combination of sibling-daughter properties. Relationships of
this type can be expressed in OWL using a multitude of properties.

The task of writing OWL data requires the definition of an ontology. Infor-
mally, in computer science an ontology defines a set of representational primitives
(classes and properties) apt to model a domain of knowledge or of discourse [22].
When an OWL reasoner (namely, a given software system able to extract in-
formation from OWL files) is executed on OWL data, we can perform the task
of mining data from resources. Although an RDFS schema can be potentially
converted into an OWL ontology (such a task is known as RDF alignment [6,7]),
this is not sufficient to turn an RDF document into an OWL ontology. RDF and
OWL partially share the syntax but not the semantics. In fact, OWL allows
one to specify far more about the properties and classes of an RDFS schema
by means of a formal description of the data. Expressiveness of such ontologi-
cal model depends on the OWL profile adopted. Profiles are fragments of the
language that trade off some expressive power for the efficiency of reasoning,



introduced in order to deal with several types of application domains. Some of
these profiles include SWRL rules. Such rules have the form of an implication
between an antecedent (body) and consequent (head). The intended meaning
can be read as: whenever the conditions specified in the antecedent hold, then
the conditions specified in the consequent must hold as well. The desirable fea-
tures of the OWL language shortly outlined above strongly motivate our interest
in using OWL ontologies and related reasoning tools for the location recognition
task. More details about OWL reasoning capabilities, semantics, and profiles can
be found in [4L|7,/11]. In particular, in [16], a reasoning system based on a frag-
ment of set-theory is proposed particularly suitable for the ontologies presented
in this paper.

3 Rule-Based Location Extraction

In this section we briefly illustrate the approach we used to extract geographi-
cal and administrative places from Italian non-structured text. Unlike machine
learning approaches, both unsupervised and supervised, we proposed a rule-
based approach built from simple grammar rules of the Italian language com-
plemented by a dictionary, where each rule identifies a different pattern that
characterises sentences at the end of which we usually find a location name. The
devised rules are supported by a specifically compiled Italian lexicon, containing
the classes of words Articles, Verbs, and Descriptors, and a list of Non-places
words that are known false positives; in order to improve the overall accuracy
of the extraction tool, the lexicon can also be extended by other, user-detected
false positives [18]. As shown in [18], these rules provide a large coverage of the
Italian grammar for what concerns statements about places.

Sentence Splitting

I

Rule2

!

Filter capital letters

!}

Filter non places

!}

Filter verbs

Rule1 Rule3

Fig. 1. Pipe and filter workflow for location extraction.



Figure [1] depicts the entire workflow used for the location extraction: in the
first sentence splitting step, an input text T is separated into a list of sentences
using occurrences of punctuation marks, i.e., full-stop, ellipsis, exclamation-
mark, question-mark. Any other non-letter symbol is ignored, e.g., dollar sign,
percent sign, etc. Each sentence is further segmented into words using the space
character as a separator. The tokens (words) are then fed to a finite state ma-
chine implementing three different rules, i.e., grammar cases possibly implying
the use of a place name at the end of a sentence: if the accepting state (6) of
the automaton is reached, the current token is marked as a location candidate.
The result is a list of candidate words that must pass through a configurable
sequence of filters before being actually labelled as a place name.

A/P
else
D A/P
D else
else A/P
start A/P else o
— )
__4
Vv else
Vv
A/P
Tokens
A: article V: place-related verb
P: preposition L: candidate place
D: descriptor X: anything else

Fig. 2. Unified finite state machine of the three Italian grammar rules in [18].

Figure[2|shows the unified automaton used in this contribution to implement
the three grammar rules defined in [18]; those rules were devised to accommodate
the mentioning of a place name in sentences such as the rule names suggest,
namely, Da Roma (from Rome), Vicino a Roma (Near Rome) and Andando a
Roma (Going to Rome). To give a simple detection example, Figure [3|shows an
excerpt of the unified automaton giving a finite state machine expressing only the
first rule, (Da Roma), whose name recalls the grammar pattern responsible for



the matching. The automaton scans the tokens of a given sentence and remains
in state 0 until a preposition (P) or an article (A) is found, at which point the
automaton changes its internal state to 1. Subsequently, the automaton remains
in state 1 until a different kind of word is encountered, in which case the final
state is reached and a new candidate word is found. However, several candidates
will be actually dropped afterwards by the filters, e.g., known false positives or
conjugated verbs.

else A/P
start A/P else @
TP —> | treni a lunga percorrenza per la Sicilia.
A X I v ¢ X P A L
FP — Se il Ministro.
X A L

Fig. 3. A finite state machine implementing only the first rule Da Roma (from
Rome) in [18], with application examples.

All the candidates found by the automaton are then given as input to a
sequence of filters in order to remove trivial false positives that may have been
selected:

— FilterO: the candidate for a location name must begin with a capital letter;
even if it may considerably improve the detection accuracy in several cases,
this is not a mandatory filter. In fact it is applied only when we can assume
that location names are written with a leading capital letter (e.g., if we are
analysing newspaper articles);

— Filterl: remove all known false positives using the devised lexicon of non-
places;

— Filter2: remove conjugated verbs.

Any word surviving the above filters is labelled as a place name, and is
given to the ontologic support to store the results and automatically retrieve the
information concerning the algorithm and dataset used, and the spotted place.

4 An ontology for reasoning with places

In this section we first describe the ontology OntoLocEstimation, developed with
the purpose of reasoning with geographical and administrative places. Then we
show how the ontology is populated by means of a Java framework. OntoLocFEs-
timation is associated to the algorithm introduced in Section [3|and it allows us
to manage the identification of a specific location even in presence of uncertainty.



4.1 The ontological model

We illustrate how the ontology OntoLocEstimation is structured. OntoLocEs-
timation extends the ontology OntoLuoghi |17] with OWL constructs allowing
us to deal with the administration of Italian places and with the algorithm de-
scribed in Section [3] In its turn, OntoLuoghi reuses some concepts and properties
of LinkedGeoData [3|.

Locations are modelled by means of a taxonomy of OWL classes. Association
among locations is performed through a taxonomy of object-properties. The path
allowed, namely the hierarchy of such classes, is shown in Figure [§] Double-
hoop entities in Figure [p| are considered as optional. Names of the OWL classes
and object-properties involved are shown in Figure Reasoning capabilities
concerning locations are strengthened using the SWRL rules shown in Figure [6}

The entity “Localisation” is equivalent to “LinkedGeoData:Place” (equiva-
lences among subclasses of “Localisation” and of “Place” are not reported here
for space reasons). The object-property “hasLocalisation” is defined as an OWL
transitive property. Thus, if the pairs of objects (z,y) and (y, z) are in the prop-
erty “hasLocalisation”, then the pair (x, z) is included in the property “hasLocal-
isation” too. The property “hasLocalisation” can be used together with its sub-
properties to infer the administrative hierarchy of a location providing only the
top level of a place (i.e., the superproperty). For instance, if we write the state-
ments (Sicily hasState Italy), (Catania hasRegion Italy), (Acireale hasProvince
Catania), then (Sicily hasLocalisation Italy), (Catania hasLocalisation Italy),
(Acireale hasLocalisation Catania), (Acireale hasLocalisation Sicily), (Acireale
hasLocalisation Italy) are inferred thanks to the subproperty relationships and
to the transitivity of “hasLocalisation”. In addition, the set of SWRL rules de-
picted in Figure |§| allows one to infer the statements (Catania hasState Italy),
(Acireale hasRegion Sicilia), (Acireale hasState Italy). Moreover, subproperties
are defined as functional properties so as to guarantee that places can not be
associated to different locations. For instance, Acireale can not be associated to
the province of Catania and Palermo at the same time.

Usually, an algorithm recognising a geographical location from a keyword
in a non-structured text yields several candidates, each in combination with a
degree of belief. The degree of belief indicates how much the association between
the keyword and the candidate geographical place is considered reliable by the
approach in use. The ontology should model this situation and also manage ad-
ditional information such as the algorithm applied for extracting location names
from the text and the dataset adopted. Such information is relevant if one wishes
to compare the accuracy that different algorithms and datasets provide for the
task of recognising location names. Our approach works as follows. Every time
the algorithm finds a keyword, an instance of the class “TextKey” is added
to the dataset. The class “LocEstimation” models the fact that the algorithm
of Section [3] is executed on the keyword and some results are provided. The
instances of “Textkey” and “LocEstimation” are related to each other by the

2 Images in Figures El, and are drawn from the interface of the editor
Protégé [8].
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Fig. 6. SWRL rules for reasoning with
locations.

Fig. 5. Allowed path for locations.

object-property “hasLocEstimation”. For every estimation there may be zero,
one, or more matches. Each match of the algorithm is modelled by the “Guessed-
Location” class. Instances of the class “GuessedLocation” are associated to the
ones of the class “LocEstimation” by the object-property “hasGuessedLocation”.
Each instance of the class “GuessedLocation” provides information concerning
the candidate geographical place and the relative degree of belief. The degree
of belief is introduced by means of the data-property “hasGuessedValue” hav-
ing the data-type double as range. The geographical place is specified with the
object-property “hasReferredLoction” having as range every instance of the class
“Localisation”. Figure [7]illustrates classes and properties introduced in order to
model the recognition of places, an example is shown in Figure

The ontology provided takes also into account information concerning the
algorithm for the extraction of the location and the dataset used. Classes and
object-properties defined for this purpose are shown in Figure [9]

A class “Algorithm” provides information about the algorithm applied. Cur-
rently, we identify two types of algorithms, but others can be added. The class
“DetectionAlgorithm” includes all the algorithms used to establish in a non-
structured text whether a word represents a geographical place while the class
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Fig. 8. Example of location estimation.
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“EstimationAlgorithm” includes information about the algorithm used to choose
a set of possible geographical places and to assign them a degree of belief. In ad-
dition, it is possible to specify the dataset used by the algorithm by means of the
class “Dataset”. The subclasses of the class “Dataset” describe the type of the
dataset. For instance, the class “LocationGeneralDataset” is used to represent
the datasets containing general geographical information.

In order to keep track of the algorithms used, we provide the class “Algo-
rithmSet” that is associated to an instance of the class “LocEstimation” by
means of the object-property “hasAlgorithmSet”. To each instance of the class
“AlgorithmSet”, one or more instances of the class “AlgorithmCore” are asso-
ciated by means of the object-property “hasAlgorithmCore”. The latter class
relates an algorithm to the datasets used. In order to indicate the datasets used,
the “hasDataSet” object-property is provided, having as range the “DataSet”
class. Analogously, to associate an algorithm to an instance of the class “Dat-
aCore”, the object-property “hasAlgorithm” is provided, having as range the
class “Algorithm”. In particular, two subproperties of the class “hasAlgorithm”
are provided: the property “hasDetectionAlgorithm”, that associates an instance
of the class “AlgorithmCore” to an instance of the class “DetectionAlgorithm”,
and the property “hasEstimationAlgorithmCore” for the instances of the class
“EstimationAlgorithm”. How these classes and relations are used is shown in
the example of Figure Note that, by means of the class “AlgorithmCore”,
additional information about why, how, and when the algorithm set is used can
be tracked.

4.2 Populating the ontology

We describe shortly how the ontology OntoLocEstimation is populated by means
of a built ad-hoc Java framework. The first step of the process is to retrieve an
open dataset of locations, that is as rich as possible, and to map such knowledge
inside the ontology. We take into account the OpenStreetMap dataset and imple-
ment a Java parser in order to populate the ontology with the OpenStreetMap
entries. The parser exploits the OWL API library [19] together with Jena On-
tology API [2] that we adopted to perform SPARQL [12] queries. We used the
reasoner Pellet [25] to carry out inferences on our ontology. As far as we know,
Pellet provides the best deal between efficiency and data-type reasoning capa-
bilities.

In a preliminary phase of this work we also considered the LinkedGeoData
dataset that provides a semi-automated conversion of a subset of the Open-
StreetMap dataset in RDF format. However, as outlined at the beginning of this
paper, conversion of RDF in OWL is not straightforward. Thus, being mainly in-
terested in OWL reasoning, we opted to provide the mapping of OpenStreetMap
data in OWL statements by means of a simple parser.



5 Conclusions

We have presented an application that automatically recognises locations inside
non-structured texts written in Italian and that is supported by an OWL ontol-
ogy for locations management. The ontology also keeps track of the algorithm
applied for detecting places and stores the degree of belief of each candidate
location. Different algorithmic approaches can be stored in the ontology and,
consequently, compared. Data of geographical locations are retrieved from an
open dataset, i.e. OpenStreetMap, and adapted to the logical model of the on-
tology.

The results presented here can find applications in several contexts, such as
the digital humanities field. The techniques illustrated can be adapted to recog-
nise other kinds of elements inside non-structured text, such as descriptors of
archaeological findings and finding places. This process simplifies the task of the
automatic processing of archaeological archives, digitalisation and subsequent
conversion in linked data format. In |17] we proposed an ontology for pottery
classification, cataloguing, and reasoning that lends itself particularly well to
such a task. This approach, combined with OWL reasoning capabilities, allows
one to gain a deeper knowledge and better dissemination of the considered ap-
plication domain.

We plan to introduce additional filters and rules in the algorithm so as to
gain a larger coverage of the Italian grammar. In particular, we aim to make
the algorithm sensitive to the contexts from which words are drown, namely
non-structured texts. Finally, we plan to abandon external datasets, i.e. Open-
StreetMap, in favour of internal built-in datasets that can be integrated by in-
formation provided by local governments or final users.
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