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Abstract. Multi-label classification is an approach to classification prob-
lems that allows each data point to be assigned to more than one class at
the same time. Real life machine learning problems are often multi-label
in nature—for example image labelling, topic identification in texts, and
gene expression prediction. Many multi-label classification algorithms
have been proposed in the literature and, although there have been some
benchmarking experiments, many questions still remain about which ap-
proaches perform best for certain kinds of multi-label datasets. This pa-
per presents a comprehensive benchmark experiment of eleven multi-
label classification algorithms on eleven different datasets. Unlike many
existing studies, we perform detailed parameter tuning for each algorithm-
dataset pair so as to allow a fair comparative analysis of the algorithms.
Also, we report on a preliminary experiment which seeks to understand
how the performance of different multi-label classification algorithms
changes as the characteristics of multi-label datasets are adjusted.

1 Introduction

There are many important real-life classification problems in which a data point
can be a member of more than one class simultaneously [9]. For example, a gene
sequence can be a member of multiple functional classes, or a piece of music can
be tagged with multiple genres. These types of problems are known as multi-label
classification problems [23]. In multi-label problems there are typically a finite
set of potential labels that can be applied to data points. The set of labels that
are applicable to a specific data point are known as the relevant labels, while
those that are not applicable are known as irrelevant labels.

Early, näıve approaches to the multi-label problem (e.g. [1]) consider each la-
bel independently using a one-versus-all binary classification approach to predict
the relevance of an individual label to a data point. The outputs of a set of these
individual classifiers are then aggregated into a set of relevant labels. Although
these approaches can work well [11], their performance tends to degrade signif-
icantly as the number of potential labels increases. The prediction of a group
of relevant labels effectively involves finding a point in a multi-dimensional label
space, and as the number of labels increases this becomes more challenging as
this space becomes more and more sparse. An added challenge is that multi-label



problems can suffer from a very high degree of label imbalance. To address these
challenges, more sophisticated multi-label classification algorithms [9] attempt
to exploit the associations between labels, and use ensemble approaches to break
the problem into a series of less complex problems (e.g. [1, 20, 17, 14]).

We describe an experiment to benchmark the performance of eleven of the
most widely-cited approaches to multi-label classification on a set of eleven multi-
label classification datasets. While there are existing benchmarks of this type (eg.
[14, 15]), they do not sufficiently tune the hyper-parameters for each algorithm,
and so do not compare approaches in a fair way. In this experiment extensive
hyper-parameter tuning is performed. The paper also presents the results of an
initial experiment to investigate how the performance of different multi-label
classification algorithms changes as the characteristics of datasets (e.g. the size
of the set of potential labels) change.

The remainder of the paper is structured as follows. Section 2 provides a brief
survey of existing multi-label classification algorithms and previous benchmark
studies. Section 3 describes the benchmark experiment, along with an analysis of
the results of this experiment. Section 4 describes the experiment performed to
explore the performance of multi-label classification algorithms as the character-
istics of the dataset change. Section 5 draws conclusions from the experimental
results and outlines a path for future work.

2 Multi-Label Classification Algorithms

Multi-label classification algorithms can be divided into two categories: problem
transformation and algorithm adaptation [23]. The problem transformation ap-
proach transforms the multi-label dataset so that existing multi-class algorithms
can be used to solve the transformed problem. Algorithm adaptation methods
extend multi-class algorithms to directly work with multi-label datasets. In this
section the most widely used approaches in each category will be described (in-
cluding those used in the experiment described in Section 3). The section will
end with a review of existing benchmark experiments.

2.1 Problem Transformation

The most trivial approach to multi-label classification is the binary relevance
method [1]. Binary relevance adopts a one-vs-all ensemble approach, training
independent binary classifiers to predict the relevance of each label to a data
point. The independent predictions are then aggregated to form a set of relevant
labels. Although binary relevance is a simple approach, Luaces et al. [11] show
that a properly implemented binary relevance model, with a carefully selected
base classifier, can achieve good results.

Classifier chains [14] take a similar approach to binary relevance but explic-
itly take the associations between labels into account. Again a one-vs-all classifier
is built for each label, but these classifiers are chained together in order such



that the outputs of classifiers early in the chain (the relevance of specific labels)
are used as inputs into subsequent classifiers.

Rather than trying to transform the multi-label classification problem into
multiple binary classification problems, the label powerset method [1] transforms
the multi-label problem into a single multi-class classification problem. Each
unique combination of relevant labels is mapped to a class to create a trans-
formed multi-class dataset which can be used to train a classification model
using any multi-class learning algorithm. Although the label powerset method
can perform well, as the number of labels increases the number of possible unique
label combinations grows exponentially giving rise to a very sparse and imbal-
anced equivalent multi-class dataset.

The random k-label set (RAkEL) approach [20] attempts to strike a balance
between the binary relevance and label powerset approaches. RAkEL divides the
full set of potential labels in a multi-label problem into a series of label subsets,
and for each subset builds a label powerset model. By creating multiple multi-
label problems with small numbers of labels, RAkEL reduces the sparseness and
imbalance that affects the label powerset method, but still takes advantage of
the associations that exist between labels.

Hierarchy of multi-label classifiers (HOMER) [17] also divides the multi-label
dataset into smaller subsets of labels, but in a hierarchical manner. Calibrated
label ranking (CLR) [8] takes a paired approach by training an ensemble of
classifiers for each possible pair of labels in the dataset using only the data
points which have either of the labels in the pair assigned to them.

2.2 Algorithm Adaptation

Multi-label k-nearest neighbour (MLkNN ) [25] is one of the most widely cited
algorithm adaptation approaches. MLkNN is essentially a binary relevance algo-
rithm, which acts on the labels individually, but instead of applying the standard
k-nearest neighbour algorithm directly, it combines it with the maximum a pos-
teriori principle. Dependent MLkNN (DMLkNN ) [22] follows the same principle
as MLkNN but incorporates all of the labels while deciding the probability for
each label, therefore taking label associations into account. IBLR-ML [4] is an-
other modification of the k-nearest neighbour algorithm. It finds the nearest
neighbours of the data point to be labeled, and trains a logistic regression model
for each label using the labels of these neighbourhood points as features, thus
taking the label associations into account. An algorithmic performance improve-
ment of binary relevance combined with standard k-nearest neighbour, BRkNN,
has also been proposed [16].

Multi-label decision tree (ML-DT) [5] extends the C4.5 decision tree algo-
rithm to allow multiple labels in the leaves, and choose node splits based on a
re-defined multi-label entropy function. Rank-SVM [7], is a support vector ma-
chine based approach that defines one-vs-all SVM classifiers for each label, but
uses a cost function across all of these models that captures incorrect predictions
of pairs of relevant and irrelevant labels. Backpropagation for multi-label learn-
ing (BPMLL) [24], is a neural network modification used to train multi-label



datasets using a single hidden layer feed forward architecture using the back
propagation algorithm.

2.3 Multi-label Classification Benchmark Studies

A number of papers that describe new multi-label classification approaches [3, 14,
15] benchmark different multi-label classification algorithms against their newly
proposed method. One of the limitations of these studies, however, is a lack
of hyper-parameter tuning, and a reliance on default hyper-parameter settings.
Rather than proposing a new algorithm, Madjarov et al. [13] describes a bench-
mark study of several multi-label classification algorithms using several datasets.
Hyper-parameter tuning is performed in this study. There is, however, a mis-
match between the hamming loss measure used to select hyper-parameters and
the measures used to evaluate performance in the benchmark. The study iden-
tifies HOMER, binary relevance, and classifier chains as promising approaches.

To perform a fair comparison of algorithms, the benchmark experiment de-
scribed in this paper uses extensive parameter tuning. For consistency, the mea-
sure used to guide this parameter tuning—label based macro averaged F-Score
(see Section 3.2)—is the same as the measure used to compare algorithms in
the benchmark. The set of algorithms used overlaps with, but is different than,
those in Madjarov et al. [13].

3 Multi-label Classification Algorithm Benchmark

This section describes a benchmark experiment performed to evaluate the per-
formance of a collection of multi-label classification algorithms across several
datasets. This section introduces the datasets and performance measure used in
the experiment as well as the experimental methodology. Finally, the results of
the experiment are presented and discussed.

3.1 Datasets

Table 1 describes the eleven datasets used in this experiment. The datasets cho-
sen are widely used in the multi-label literature, and have a diverse set of prop-
erties, listed in Table 1. Instances, inputs and labels indicate the total number
of data points, the number of predictor variables, and the number of potential
labels, respectively. Total labelsets indicates the number of unique combinations
of relevant labels in the dataset, where each such unique label combination is
a labelset. Single labelsets indicates the number of data points having a unique
combination of relevant labels. Cardinality indicates the average number of la-
bels assigned per data point. Density is a normalised dimensionless indicator
of cardinality computed by dividing the value of cardinality by the number of
labels. MeanIR [2] indicates the average degree of label imbalance in the multi-
label dataset—a higher value indicates more imbalance. These label parameters



Table 1: Datasets
Total Single

Dataset Instances Inputs Labels Labelsets Labelsets Cardinality Density MeanIR

yeast 2417 103 14 198 77 4.237 0.303 7.197
scene 2407 294 6 15 3 1.074 0.179 1.254
emotions 593 72 6 27 4 1.869 0.311 1.478
medical 978 1449 45 94 33 1.245 0.028 89.501
enron 1702 1001 53 753 573 3.378 0.064 73.953
birds 322 260 20 89 55 1.503 0.075 13.004
genbase 662 1186 27 32 10 1.252 0.046 37.315
cal500 502 68 174 502 502 26.044 0.150 20.578
llog 1460 1004 75 304 189 1.180 0.016 39.267
slashdot 3782 1079 22 156 56 1.181 0.054 17.693
corel5k 5000 499 374 3175 2523 3.522 0.009 189.568

together describe the properties of the datasets which may influence the perfor-
mance of the algorithms. Collectively, these properties will be referred to as label
complexity in the remainder of this text.

All datasets were acquired from [18]. In the birds dataset, several data
points are without any assigned label. To avoid problems computing perfor-
mance scores, we have added an extra other label to this dataset which is added
to a data point when it has no other labels assigned to it.

3.2 Experimental Methodology

In this study we use label based macro averaged F-measure [23] for both hyper-
parameter selection and performance comparison. Higher values indicate better
performance. This measure was selected as it allows performance of algorithms
on minority labels to be captured and balances precision and recall for each label
[10].

The algorithms used in this experiment are: binary relevance (BR) [1], classi-
fier chains (CC) [14], label powerset (LP) [1], RAkEL-d [20], HOMER [17], CLR
[8], BRkNN [16], MLkNN [25], DMLkNN [22], IBLR-ML [4] and BPMLL [24].
All algorithm implementations come from the Java library MULAN [19]. For
each algorithm-dataset pair, a grid search on different parameter combinations
was performed. For an algorithm-dataset pair, for each parameter combination
selected from the grid, a 2 × 5-fold cross-validation run was performed, and
the F-measure was recorded. When the grid search is complete, the parameter
combination with the highest F-measure was selected. These selected scores are
shown in Table 2 and used to compare the classifiers.

For each problem transformation method—CC, BR, LP and CLR—a sup-
port vector machine with a radial basis kernel (SVM-RBK) was used as the base
classifier. The SVM models were tuned over 12 parameter combinations of the
regularisation parameter (from the set {1, 10, 100}) and the kernel spread pa-
rameter (from the set {0.01, 0.05, 0.001, 0.005}). For RAkEL-d the subset size



Table 2: Best mean Label Based Macro Averaged F-Measure
Dataset CC RAkEL-d BPMLL LP HOMER BR CLR IBLR-ML MLkNN BRkNN DMLkNN

yeast 0.451 0.437 0.436 0.451 0.448 0.387 0.399 0.394 0.377 0.392 0.380
scene 0.804 0.802 0.778 0.802 0.800 0.799 0.793 0.749 0.742 0.695 0.750
emotions 0.624 0.628 0.690 0.596 0.621 0.604 0.616 0.658 0.629 0.633 0.634
medical 0.692 0.697 0.558 0.659 0.611 0.676 0.520 0.434 0.540 0.474 0.505
enron 0.289 0.288 0.281 0.278 0.281 0.284 0.286 0.153 0.177 0.169 0.163
birds 0.158 0.181 0.343 0.181 0.155 0.157 0.156 0.255 0.226 0.273 0.216
genbase 0.944 0.943 0.815 0.941 0.939 0.941 0.931 0.910 0.850 0.837 0.821
cal500 0.185 0.179 0.237 0.178 0.199 0.181 0.169 0.178 0.101 0.124 0.107
llog 0.292 0.300 0.295 0.297 0.256 0.296 0.281 0.110 0.263 0.255 0.248
slashdot 0.469 0.472 0.209 0.474 0.477 0.466 0.151 0.214 0.194 0.164 0.200
corel5k 0.222 0.217 0.219 0.210 0.197 0.213 DNF 0.084 0.190 0.186 0.181

Average Rank 3.364 3.455 4.818 4.909 5.455 5.546 7.300 7.909 8.091 8.364 8.546

was varied between 3 and 6, and for HOMER the cluster size was varied between
3 and 6. For both RAkEL-d and HOMER, the base classifiers were label pow-
erset models, using SVM-RBK models tuned as outlined above. The BRkNN,
MLkNN, DMLkNN and IBLR-ML were tuned over 4 to 26 nearest neighbours,
with a step size of 2. For BPMLL the tuning was two step in order to make it
computationally feasible. First, a grid with 120 different parameter combinations
for the regularisation weight, learning rate, number of iterations and the num-
ber of hidden units were created and the best combination was found using only
the yeast dataset. Next, using this best combination of hyper-parameters other
algorithm-dataset pairs were tuned over hidden layers containing units equal to
20%, 40%, 60%, 80% and 100% of the number of inputs for each dataset, as
recommended by Zhang et al. [24].

3.3 Benchmark results

The results of the benchmark experiment performed as explained in Section 3.2
are summarised in Table 2. The columns of the table are ordered in the increasing
order of the average rank (a lower average rank is better) of the algorithms over
all the datasets. The best performance per dataset is highlighted with bold-face.

Direct interpretations of Table 2 indicate that CC achieved the top score on
4 of the datasets, whereas BPMLL was able to achieve the top score 3 times,
with RAkEL-d getting top score twice, and LP and HOMER once each. It is also
interesting to note that the k-nearest neighbour based algorithms—IBLR-ML,
MLkNN, BRkNN and DMLkNN—are ranked in that order and close to each
other. DNF appears in Table 2 for the CLR algorithm on the corel5k dataset as
the experiment did not finish, due to the huge number of label pairs generated
for the 347 labels in this dataset (this is a common outcome for this dataset, eg.
[12]).

To further explore these results, as recommended by Demšar [6], first a Fried-
man test was performed which indicated that a significant difference between the
performance of the algorithms over the datasets did exist; then a pairwise Ne-
menyi test with a significance level of α = 0.05 was performed. The results



indicate that the algorithms do not vary very much across the datasets. Figure
1 shows the critical difference plot for the pairwise Nemenyi test. The different
algorithms indicated on the line are ordered by average ranks over the datasets.
Algorithms that are not significantly different to each other over the datasets,
found by the Nemenyi test with the significance level of α = 0.05, are connected
with the bold horizontal lines.

Overall, Figure 1 indicates that CC, RAkEL-d, BPMLL and LP performed
well, whereas the nearest neighbour based algorithms performed relatively poorly.
Among the different nearest neighbour based algorithms, IBLR-ML performs
better than others over the datasets, but all the nearest neighbour based algo-
rithms perform significantly worse than CC. Hence, the overall performance of
the algorithms indicate that—although over the different datasets none of the
algorithms decisively outperforms the others—CC, RAkEL-d, BPMLL and LP
perform well, and the nearest neighbour based algorithms perform poorly in
general.

4 Label Analysis

A preliminary experiment was also performed to understand how multi-label
classification approaches perform when the number of labels is increased, while
the input space is kept the same. Section 4.1 describes the experimental setup
and Section 4.2 discusses the results.

4.1 Experimental Setup

The corel5k dataset has 50 times as many potential labels as the scene dataset.
There are also significant differences in their MeanIR values: 1.254 for scene and

Fig. 1: Comparison of algorithms based on pairwise Nemenyi test. Connected
groups with bold line are not significantly different with the significance level
α = 0.05



189.568 for corel5k. Table 2 indicates that all of the multi-label classification
approaches perform much better on scene than corel5k. It is tempting to draw
a conclusion that this is because of the complexity of the labelsets, but this
is probably a mistake. One multi-label classification problem can be inherently
more difficult than another. The prediction performance of an algorithm on a
multi-label dataset depends not only the label properties, but also the predictor
variables in the input space. Therefore, attempting to establish a relationship
between the performances of algorithms on different datasets with varying label
properties can be misleading.

To assess the impact of changing label complexity on the performance of
multi-label classification algorithms, a group of datasets were generated synthet-
ically that vary label complexity but keep all input variables the same. These
datasets were generated using the yeast dataset as the starting point. 13 syn-
thetic datasets were formed from the yeast dataset. The input space of these 13
datasets are kept identical, with the kth dataset having the first k labels of the
dataset in the original order, where 2 ≤ k ≤ 14. Similarly, the emotions dataset
was also used to generate 5 such synthetic datasets. The yeast and emotions
datasets were selected for this preliminary study for two reasons. First, these
are widely used datasets that are somewhat typical of multi-label classification
problems—they have medium cardinality and the frequencies of the different
labels are relatively well balanced. Second, this experiment is computationally
quite expensive (multiple days are required for each run) and so the sizes of these
datasets makes repeated runs feasible for this preliminary study.

Following the experimental methodology explained in Section 3.2 the perfor-
mance of the BR, CC, LP, RAkEL, IBLR-ML, BRkNN, CLR and BPMLL were
assessed on the 13 datasets created based on the yeast data, and the 5 synthetic
datasets based on emotions dataset. The results of this experiment are discussed
in the following section.

4.2 Label Analysis Results

In Figures 2a and 2b the number of labels used in the dataset (wither yeast
or emotions) is shown on the x–axis and the label based macro averaged F-
measure is shown on the y–axis (note that the graphs do not use a zero baseline
for F-measure so as to emphasise the differences between approaches). These
plots indicate that all the algorithms have responded similarly with respect to
F-measure as the number of labels vary. Figures 2c and 2d, however, show how
the relative ranking of the performance of the different algorithms changes as
label complexity increases, and here interesting patterns are observed.

Figure 2c, related to the yeast dataset, indicates that the performance of
BR starts in a high rank, but reduces as the number of labels increases. CLR
does better in rank than BR, but keeps on decreasing as the number of labels
increases. For LP and CC, the performance increases as the number of labels
increases, ending at the first and the second position respectively. BPMLL starts
with the lowest rank, but quickly increases maintaining the best rank most of
the time. RAkEL-d stays in the middle. BRkNN and IBLR-ML stays at the



Fig. 2: Number of labels selected from yeast and emotions dataset, when com-
pared against classifier performance.
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(b) Macro average F-Measure performance
changes, emotions.
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(c) Relative rank changes, yeast.
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(d) Relative rank changes, emotions.
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bottom positions, though IBLR-ML was able to get a better rank than BRkNN
most of the times. In Figure 2d related to emotions dataset, BPMLL and CC
both continued to rise up, CLR and BR floated down, IBLR-ML and BRkNN
were relatively flat, while IBLR-ML achieved a better ranking most of the time.

This preliminary study indicates that LP, CC and BPMLL were able to per-
form comparatively better than others, while BR showed consistent decrease in
rank. To establish a definite relation, a more detailed study should be performed.

Figure 3 shows how the label complexity parameters for the yeast and emo-
tions datasets change as the number of labels are varied in the synthetically



Fig. 3: Change of a few label complexity parameters as the number of labels
change
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generated datasets. Although it looks like there is some relationship between the
change of Density in Figure 3 with the change of performance in Figures 2a and
2b, but such a conclusion from this experiment may be misleading, and hence
requires further study.

5 Discussion and Future Work

This paper focuses on two aspects. Firstly, the benchmarking of several multi-
label classification algorithms over a diverse collection of datasets. Secondly, a
preliminary study to understand the performance of the algorithms when the



input space is kept identical, while varying the label complexity. For the bench-
mark experiment, the hyper-parameters for each algorithm-dataset pair were
tuned based on label based macro averaged F-measure to provide the fairest com-
parison between approaches. The algorithms DMLkNN, BRkNN and MLkNN
perform poorly overall. On the other hand CC, RAkEL-d and BPMLL were the
top three algorithms, in that order. The pairwise Nemenyi test, however, indi-
cates that overall there is not a statistical difference between the performance
of most of the pairs of different algorithms. This is perhaps unsurprising, and
provides a reinforcement of the no free lunch theorem [21] in the context of
multi-label classification.

The preliminary label analysis provides some interesting results. The per-
formance of BPMLL, LP and CC improve as the number of labels increases,
whereas the performance of BR decreases in comparison. IBLR-ML appears to
have consistently better ranks than BRkNN.

The level of research in the multi-label classification field is continuing to in-
crease, with new methods being proposed and existing methods being improved.
Further investigations can be done to understand the performance of additional
algorithms over even more datasets to understand their overall effectiveness. Our
label analysis experiment was limited to two datasets. Given the preliminary ob-
servations from this study, it would be interesting to further investigate if any
consistent relationship exists between algorithm performance and the label prop-
erties of the dataset under consideration, which may provide a guideline for the
suitable application of multi-label algorithms.
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