
Recent Developments
in OCL and Textual Modelling

Achim D. Brucker1, Jordi Cabot2,3, Gwendal Daniel4, Martin Gogolla5,
Adolfo Sánchez-Barbudo Herrera6, Frank Hilken5, Frédéric Tuong7,

Edward D. Willink8, and Burkhart Wolff7

1 Department of Computer Science, The University of Sheffield, Sheffield, UK
a.brucker@sheffield.ac.uk

2 ICREA, Spain
3 UOC, Spain

jordi.cabot@icrea.cat
4 AtlanMod Team, Inria, Mines Nantes & Lina

gwendal.daniel@inria.fr
5 University of Bremen, Bremen, Germany

{gogolla|fhilken}@informatik.uni-bremen.de
6 Department of Computer Science, University of York, York, UK

asbh500@york.ac.uk
7 LRI, Univ Paris Sud, CNRS, Centrale Suplélec, Université Saclay, France

wolff@lri.fr
8 Willink Transformations Ltd, Reading, England

ed_at_willink.me.uk

Abstract The panel session of the 16th OCL workshop featured a light-
ning talk session for discussing recent developments and open questions
in the area of OCL and textual modelling. During this session, the OCL
community discussed, stimulated through short presentations by OCL
experts, tool support, potential future extensions, and suggested initia-
tives to make the textual modelling community even more successful.
This collaborative paper, to which each OCL expert contributed one
section, summarises the discussions as well as describes the recent devel-
opments and open questions presented in the lightning talks.

1 Introduction

Textual modelling in general and OCL in particular are well established, e.g.,
the first OCL standard [13] is nearly 20 years old. Still, it is an active research
area, ranging from the foundations (e.g., the formal semantics of textual mod-
elling languages) to novel applications (e.g., applying textual modelling to non
relational databases).

The lighting talks at the panel session of the 16th OCL workshop provided
a platform for the textual modelling community to discuss and present tools,
ideas, and proposals to support textual modelling as well as to shape the future
of textual modelling.

The following sections, each of them contributed by one expert of the field,
discuss the different tools and ideas that were discussed during the panel session.

157



Figure 1. HOL-OCL user interface and shallow mode certificathion.

2 A Formal Methods Environment for OCL
Achim D. Brucker, Frédéric Tuong, and Burkhart Wolff

The HOL-OCL system is an interactive proof environment (extending Is-
abelle/HOL [12]) for UML/OCL specifications as well as a tool for formal au-
thoring environment for a machine-checked formal semantics of OCL (e.g., for
providing a consistent and machine checked formal Annex A, as part of the next
version of the OCL standard [14]).

At the OCL workshop, we presented a major update to the HOL-OCL sys-
tem: HOL-OCL 2.0. While it shares many concepts with HOL-OCL 1.0, it is
a complete rewrite that, on the one hand, supports the latest OCL standard
(including a four-valued logic) and, on the other hand, brings the latest features
of the Isabelle architecture to OCL (e.g., IDE, document generation, advanced
proof procedures).

Figure 1 shows the HOL-OCL 2.0 user interface. In the upper part, an excerpt
of an UML/OCL specification (using a textual notation inspired by the USE
tool [10]). The lower part shows a type-cast property which is automatically
proven by HOL-OCL 2.0.

Besides the obvious improvements in the user interface and proof support,
HOL-OCL 2.0 differs in several technical aspects. For example, while previous

158



versions [2, 3] of are based on an extensible “open-world” data model, HOL-OCL
2.0 uses a “closed-world” data model that is implemented using a reflection-
based approach. This reflection based approach can be understood as a formal
meta-modelling approach.

Appliations of HOL-OCL 2.0 comprise formal, interactive proofs for

– the satisfiability of invariants even in presence of unbounded data (involving
mathematical integers and reals, for example),

– the subsumption of some invariant by other invariants,
– the implementability of operation contracts (“can all input satisfying the pre-

condition result in output and post-states satisfying the post-condition”)
– the feasibility of operation sequences, etc.

The system offers the basis for refinement proofs of class models as well as well
as correctness proofs for model transformations. For details about the formal
semantics of the OCL basic operations (i.e., logics, arithmetics, collection types),
we refer the reader to [1]); for details about the formal meta-modelling approach,
we refer the reader to [16].

3 The Importance of Opposites
Edward D. Willink

By itself, OCL is almost useless since it lacks models to query. Once embedded
within a model provider, OCL is still of limited utility since a side-effect free
language cannot modify anything. The QVTc and QVTr declarative languages
extend OCL to support model transformation without undermining the side-
effect free characteristics of OCL. UML navigations and OCL constraints are
used to specify the relationships between input and output model elements. No
model mutations occur within the definition of the model transformation, rather
the necessary model mutations are relegated to an implementation detail to be
orchestrated by a practical tool.

Model transformation rules relate potentially overlapping patterns of source
and target elements. The ATL example9 in Figure 2 shows the relationship be-
tween the forwardList, forwardList.name, forwardList.headElement source
pattern and the reverseList, reverseList.name, reverseList.headElement
target pattern. ATL supports the overlap between the headElement mapping
and another rule (not shown) using an implicit and opaque resolveTemp capa-
bility.

Modeling the overlaps is difficult, if not impossible, without introducing new
objects to identify each pattern of source and target elements. QVTc (and QVTr)
therefore introduce an additional trace model which comprises a trace class for

9 The example is an excerpt from “Local Optimizations in Eclipse QVTc
and QVTr using the Micro-Mapping Model of Computation”, E.D.Willink,
“Second International Workshop on Executable Modeling (EXE 016)”,
http://www.eclipse.org/mmt/qvt/docs/EXE2016/MicroMappings.pdf

159



Figure 2. Example using ATL.

each pattern, with trace properties to identify the role of each source and tar-
get class within the pattern. Each trace class instance therefore groups related
source and target elements. Simple UML navigations enforce most of the required
relationships. Additional OCL constraints enforce more complex relationships.
Figure 3 shows the UML Instance Diagram variant that the Eclipse QVTd im-
plementation uses for the example.

Figure 3. QVTs-like exposition of QVTc mapping.

The left hand column shows the blue source pattern. The right hand column
shows the target pattern. The ‘copied’ value is shared at the top of the middle
column. The additional two trace objects in the middle column identify the
green creation of a match of the list2list rule using a Tlist2list instance
and a cyan dependency on a Telement2element instance, which is a match of
the element2element rule (not shown).

The transformation author defines the trace model explicitly in QVTc, or
implicitly in QVTr. The trace model relates source and target models that are
usually developed independently and so the relationships from trace model to
source or target model are necessarily unidirectional. There is no navigable path
from forwardList in the source model to trace in the middle model. This

160



conflicts with the bidirectional navigability shown in Figure 3 that is necessary
to use OCL navigation effectively to define the transformation.

Fortunately, OCL ignores the accidental navigability that may be a deliberate
optimization for code generation or the unavoidable consequence of independent
model development. In OCL, all object to object properties are navigable in both
directions. Where the UML exposition is unidirectional, OCL automatically syn-
thesizes an opposite using the name of the unnavigable target class allowing the
use of forwardList.Tlist2list. If the forward name is ambiguous, the opposite
name may be used to disambiguate: forwardList.Tlist2list[forwardList].

The comprehensive opposite navigation capabilities of OCL therefore provide
the foundation for the rigorous modeling of a side effect free QVTc or QVTr
declarative transformation.

4 On The Need For OCL Benchmarks And Repository
Jordi Cabot and Martin Gogolla

A variety of OCL tools and verification/validation/testing techniques around
OCL are currently available but it is an open issue how to compare such tools
and support developers in choosing the OCL tool most appropriate for their
project. In many other areas of computer science this comparison is performed
by evaluating the tools over a set of standardized benchmark able to provide
a somewhat fair comparison environment. Unfortunately, such benchmarks are
largely missing for UML and practically nonexistent for OCL.

Therefore, we have started such benchmark initiative with an initial pro-
posal of a set of UML/OCL benchmark models [9] but they are far from being
complete. Speaking generally, for an OCL tool there are challenges in two di-
mensions: (a) challenges related to the expressiveness of OCL (i.e., the complete
and accurate handling of OCL) and (b) challenges related to the computational
complexity of the evaluating OCL for a given problem (verification, testing,
code-generation, . . . ). Additional benchmarks mixing all these dimensions are
needed.

Moreover, to be useful the benchmarks must be publicly stored for everybody
to use and see. The easiest way to share and contribute models to a common
benchmark is by storing them all in a single repository. This is not a new idea,
several initiatives like MDEForge or ReMODD have been proposed before but
with limited success, mainly due to their ambitious goal: a repository for all kinds
of models in any format, shape or size. We aim for a less ambitious but more
feasible goal, a repository for OCL-focused models. Being a textual language,
the standard infrastructure for code hosting services/version control systems like
GitHub can be largely reused. We still need to store the models accompanying
those OCL expressions but, in our scenario, they are basically only UML models
and, mostly, limited to class diagrams. We have started a OCL repository10

where the benchmarks and any OCL example can be freely added.

10 https://github.com/jcabot/ocl-repository

161



We believe advancing in such benchmark and repository is a key requirement
to mature and grow the research around OCL and other textual languages.

5 Making OCL Collection Operations More Deterministic
with Restricting Equations
Martin Gogolla and Frank Hilken

OCL provides four collection kinds [5, 15], i.e., sets, bags, ordered sets,
and sequences, and offers conversion operations between them: asBag(),
asOrderedSet(), asSequence() and asSet(). The OCL standard [15] says
nearly nothing about the relationship between these operations and leaves much
freedom to OCL implementors. According to the fact that collections without
order can be converted into collections possessing an order, non-determinism
for OCL collection conversion operations shows up. However in order to make
testing easier and more foreseeable, the desire for more deterministic operation
behavior appears. Within the testing process, one will typically evaluate a fixed
single expressions in various contexts. But if different evaluations of the same ex-
pression may yield non-deterministically different results, the behavior analysis
gets difficult.

A higher degree of determinism can be obtained by requiring that two iden-
tical calls of the same conversion convert() at different places on a fixed col-
lection COL do not show different results; this can be expressed as a (proba-
bly surprising) equation: COL->convert() = COL->convert(). For example, the
equation Set{8,9}->asSequence() = Set{8,9}->asSequence() should hold,
however this equation is not required to hold in an OCL implementation ac-
cording to the OCL standard. The OCL standard does not require that the
result of the first call of asSequence() and of the second call coincide. It
would be allowed that, e.g., the left side evaluates to Sequence{8,9} and
the right side to Sequence{9,8}. Thus an equation like SET->asSequence()
= SET->asSequence() can be required to be valid in an OCL implementation
in order to achieve a higher degree of determinism.

One step further is to consider the relationship between two different
conversions and require more determinism for succeeding conversion oper-
ation calls following the equation pattern COL->convertA()->convertB()
= COL->convertB() for particular combinations of COL, convertA and
convertB. E.g. SET->asBag()->asSequence() = SET->asSequence(). Such
equations cannot be derived from the current standard and will (currently) in
general not be valid. The purpose of such equations would be again to restrict
an OCL implementor in the decisions taken for evaluation. As an example con-
sider: Set{8,9}->asBag()->asSequence() = Set{8,9}->asSequence(). This
would lead to Bag{8,9}->asSequence() = Set{8,9}->asSequence(). In the
concrete equation it is required that there should be no difference when look-
ing at a particular collection of unique elements as a set or a bag. Please
note that this equation does not determine the element order in the re-
sulting sequence. The equation only states that the result of both conver-
sions should be identical. A number of other equations following the pattern

162



COL->convertA()->convertB() = COL->convertB() with different conversion
operations could be stated in the same manner. However, not all combina-
tions of COL, convertA and convertB will be taken into consideration. E.g.
SEQ->asOrderedSet()->asBag() = SEQ->asBag() will not be required to be
valid as the first conversion SEQ->asOrderedSet() has to remove elements from
the argument which cannot be reconstructed on the right hand side.

A further, but independent step from the above discussed equations could
be to generally require determinism for the conversions asSequence() and
asOrderedSet() on argument collections without order, i.e. on sets and bags.
Determinism requirements are not needed for asSet() and asBag() as they are
completely deterministic because they forget about the order. Deterministic be-
havior for asSequence() and asOrderedSet() would require to define a total
order on potential collection elements, i.e. a total order not only on data val-
ues but also on objects residing in classes as well as on collections and tuples
constructed from values and objects. In tools often total orders on the objects
and on the data values are available. E.g. in USE [10, 11] objects have a unique
identity represented as a string value that could serve for ordering. And, within
USE, objects are created sequentially one after the other. Thus both orderings,
the string ordering determined by object identity and the ordering determined
by ‘date of birth’, could serve as the total order.

6 Translating OCL to NoSQL Query Languages
Gwendal Daniel

The need to store and manipulate a large volume of (unstructured) data has
led to the development of several NoSQL databases for better scalability. These
databases often rely on a schemaless infrastructure, meaning that their schemas
are implicitly defined by the stored data and not formally described. While
this approach offers great flexibility, client applications still need to know how
conceptual elements are effectively persisted in order to access and manipulate
them.

Several solutions tackle this issue in the relational database ecosystem by
mapping conceptual models to relational schemas [8]. However, there are only
few solutions that target NoSQL databases [4], and none of them deal with
business rules and system’s invariants. In addition, NoSQL databases present
an additional challenge: data consistency is a big problem since the vast major-
ity of NoSQL approaches lack any advanced mechanism for integrity constraint
checking.

To overcome these limitations we introduce the UMLtoGraphDB11 frame-
work [7], that translates UML/OCL conceptual schemas into graph databases
and graph queries via an intermediate GraphDB metamodel. UMLtoGraphDB is
aligned with the OMG’s MDA standard, that promotes the separation between a
specification (PIM) and the refinement of that specification (PSM). PSM models

11 github.com/atlanmod/UML2NoSQL

163



are generated from PIMs using model-to-model transformations, and a model-to-
text transformation produces the final code from the PSM models. The different
transformations used in the approach are:
– Class2GraphDB: translates the structure of the conceptual schema (ex-

pressed using UML class diagram) to a low-level graph representation. It
creates a GraphDB model, conforming to the GraphDB metamodel which
defines the structure of a graph database in terms of vertices, edges, proper-
ties, etc.

– OCL2Gremlin: translates system’s invariants and business rules expressed
in OCL to a Gremlin model. Gremlin12 is a graph query language that allows
to navigate a graph in a traversal. We choose it as our target query language
because of its adoption in multiple graph databases.

– Graph2Code: generates a middleware that allows client applications
to access and query graph database using conceptual-level informations.
GraphDB and Gremlin models are processed to create a set of Java classes
wrapping the structure of the database, the constraints, and the business
rules.
Beyond code generation purpose, the transformations defined in UML-

toGraphDB can be reused individually for specific purposes. For example,
OCL2Gremlin translation is one of the core component of the Mogwaï frame-
work [6], an efficient model query framework that translates OCL expressions
to graph queries, and delegate the computation to the database itself, bypass-
ing modeling framework API limitations. This query approach has proven its
efficiency compared to existing state of the art query solutions.

7 Conclusion

The lively discussions both during the lighting talks as well as for each paper
that was presented showed again that the OCL community is a very active
community. Moreover, it showed that OCL, even though it is a mature language
that is widely used, has still areas in which the language can be improved. We
all will look forward to upcoming version of the OCL standard and next year’s
edition of the OCL workshop.

Acknowledgments. We would like to thank all participants of this years OCL
workshop for their active contributions to the discussions at the workshop. These
lively discussions are a significant contribution to the success of the OCL work-
shop series.

Bibliography

[1] Brucker, A.D., Tuong, F., Wolff, B.: Featherweight ocl: A proposal for a machine-
checked formal semantics for ocl 2.5. Archive of Formal Proofs (2014). http:

12 www.gremlin.tinkerpop.com

164



//www.isa-afp.org/entries/Featherweight_OCL.shtml, Formal proof develop-
ment

[2] Brucker, A.D., Wolff, B.: hol-ocl – A Formal Proof Environment for uml/ocl.
In: Fiadeiro, J., Inverardi, P. (eds.) Fundamental Approaches to Software Engi-
neering (fase08), no. 4961 in lncs, pp. 97–100. Springer (2008). doi: 10.1007/
978-3-540-78743-3_8

[3] Brucker, A.D., Wolff, B.: An extensible encoding of object-oriented data models
in hol. Journal of Automated Reasoning 41, 219–249 (2008). doi: 10.1007/
s10817-008-9108-3

[4] Bugiotti, F., Cabibbo, L., Atzeni, P., Torlone, R.: Database design for NoSQL
systems. In: Proc. of the 33rd ER Conference, pp. 223–231. Springer (2014)

[5] Büttner, F., Gogolla, M., Hamann, L., Kuhlmann, M., Lindow, A.: On Better
Understanding OCL Collections *or* An OCL Ordered Set is not an OCL Set.
In: Ghosh, S. (ed.) Workshops and Symposia 12th Int. Conf. Model Driven Engi-
neering Languages and Systems (MODELS’2009), pp. 276–290. Springer, Berlin,
LNCS 6002 (2010)

[6] Daniel, G., Sunyé, G., Cabot, J.: Mogwaï: a framework to handle complex queries
on large models. In: Proc. of the 10th RCIS Conference, pp. 225–237. IEEE (2016)

[7] Daniel, G., Sunyé, G., Cabot, J.: UMLtoGraphDB: Mapping conceptual schemas
to graph databases. In: Proc. of the 35th ER Conference [To appear]. Springer
(2016). Available Online at http://tinyurl.com/h3rmxk2

[8] Demuth, B., Hussmann, H.: Using UML/OCL constraints for relational database
design. In: «UML»’99 – The Unified Modeling Language, pp. 598–613. Springer
(1999)

[9] Gogolla, M., Büttner, F., Cabot, J.: Initiating a benchmark for UML and OCL
analysis tools. In: Veanes, M., Viganò, L. (eds.) Proc. of 7th Int. Conf. on Tests
and Proofs, Lecture Notes in Computer Science, vol. 7942, pp. 115–132. Springer
(2013). doi: 10.1007/978-3-642-38916-0_7

[10] Gogolla, M., Büttner, F., Richters, M.: USE: A UML-Based Specification Envi-
ronment for Validating UML and OCL. Science of Computer Programming 69,
27–34 (2007)

[11] Gogolla, M., Hilken, F.: Model Validation and Verification Options in a Contem-
porary UML and OCL Analysis Tool. In: Oberweis, A., Reussner, R. (eds.) Proc.
Modellierung (MODELLIERUNG’2016), pp. 203–218. GI, LNI 254 (2016)

[12] Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/hol—A Proof Assistant for
Higher-Order Logic, lncs, vol. 2283. Springer (2002). doi: 10.1007/3-540-45949-9

[13] Object Management Group: Object constraint language specification (version 1.1)
(1997). Available as omg document ad/97-08-08

[14] Object Management Group: uml 2.4 ocl specification (2014). Available as omg
document formal/2014-02-03

[15] OMG: Object Constraint Language (Version 2.4) (2014)
[16] Tuong, F.: Constructing semantically sound object-logics for UML/OCL based

domain-specific languages. Ph.D. thesis, University Paris-Sud (2016). École Doc-
torale No. 580.

165


