Syllable-based Compression for XML Documents

Katsiaryna Chernik, Jan Lansky, and Leo Galambos

Charles University, Faculty of Mathematics and Physics
Department of Software Engineering
Malostranské nam. 25, 118 00 Praha 1, Czech Republic
kchernik@centrum.cz, zizelevakOgmail.com, leo.galambos@mff.cuni.cz

Abstract. Syllable-based compression achieves sufficiently good results
on text documents of a medium size. Since the majority of XML docu-
ments are of that size, we suppose that the syllable-based method can
give good results on XML documents, especially on documents that have
a simple structure (small amount of elements and attributes) and rela-
tively long character data content.

In this paper we propose two syllable-based compression methods for
XML documents. The first method, XMLSyl, replaces XML tokens (ele-
ment tags and attributes) by special codes in input document and then
compresses this document using a syllable-based method. The second
method, XMillSyl, incorporates syllable-based compression into the ex-
isting method for XML compression XMill. XMLSyl and XMillSyl are
compared with a non-XML syllable-based method and with other exist-
ing method for XML compression.

1 Introduction

The Extensible Markup Language (XML) [5] is a simple text format for struc-
tured text documents. XML provides flexibility in storing, processing and ex-
changing data on the Web. However, due to their verbosity, XML documents
are usually larger in size than other exchange formats containing the same data
content. One solution to this problem consists of compressing XML documents.
Because XML is a text format, it is possible to compress XML documents with
existing text compression methods. These methods are more effective, when
XML documents have simple structure and long character data content. There
are different types of text compression: text compression by characters and text
compression by words. There is also a novel method: text compression by symbols
[12]. In our work an application of this method to XML documents was devel-
oped. Since single text compression is not able to discover and utilize the redun-
dancy in the structure of XML, we modify syllable-based compression method
for XML.

At the beginning we supposed that XML syllable-based compression will
be suitable for middle-sized textual XML documents. There are many XML
documents that meet these conditions, for example any documentation written
in DocBook [16] format or news in RSS format [18]. Moreover we suppose that
our compression would be more suitable for documents in languages with rich
morphology (for example Czech or German [12]).

V. Snésel, K. Richta, J. Pokorny (Eds.): Dateso 2006, pp. 21-31, ISBN 80-248-1025-5.

22 Katsiaryna Chernik, Jan Lansky, Leo Galambo§

2 Syllable-based compression method

Syllable-based compression [12] is the method where compression is performed
at the syllable level. There are two syllable-based compressors. The first one is
syllable-based LZW, and the second one is syllable-based Huffman.

Algorithm LZW [11] is a dictionary compression character-based method.
The syllable-based version is called LZWL. In the initialization step, the syllable
dictionary is filled with empty syllable and syllables from a database of frequent
syllables. The following steps are similar with character-based version of LZW,
but LZWL works over an alphabet of syllables.

The second syllable-based compression method is called HuffSyllable. It is a
statistical compression method based on the adaptive Huffman coding. For our
purposes, we use only LZWL syllable-based compression method. Adaptation of
HuffSyllable for XML compression gave worse results than LZWL.

3 XMLSyl

Our goal was to modify the syllable-compression method to compress XML doc-
uments efficiently. We attempted to modify existing syllable-based compressor
so, that it treats XML tokens (element tags and attributes) as single syllables
instead of decomposing them into many syllables. There were two possibilities
to compel the syllable-based compressor to treat XML tokens as syllables:

1. Modify parser used in the syllable-based tool and combine it with an XML
parser, so that it can recognize XML tokens and treat them as a single
syllable.

2. Replace XML tokens with bytes in the input document and then compress
such a document with an existing syllable-based tool.

We decided to implement the second way because this implementation allows
us to make some future improvements easily. For example, we may compel the
syllable-based compressor to assign codes with minimal length to XML tokens
by adding this single bytes to the syllable dictionary[12]. This improvement
is impossible in the first variant. The encoding of XML tokens is inspired by
existing XML compression methods like XMLPPM [3], XGrind [6], XPress [9],
XMill [8].

3.1 Architecture and principles of XMLSyl

The architecture of XMLSyl is shown in Figure 1. It has four major modules: the
SAX Parser, the Structure Encoder, the Containers and the Syllable Compressor.
First, the XML document is sent to the SAX Parser. Next the parser decomposes
document into SAX events (start-tags, end-tags, data items, comments and etc.)
and forwards them to the Structure Encoder.

The Structure Encoder encodes the SAX events and routes them to the
different Containers. There are three containers in our implementation:

Syllable-based Compression for XML Documents 23

XML Document|’>| SAX Parser |
|

| Structure Encoder |

|Element Container| |Attribute Container| |Data and Structure Container |

| Syllable Compressor | | Syllable Compressor | |Sy||ab|e Compressor|

| Compressed XML document |

Fig. 1. The Architecture of XMLSylCompressor

1. Element Container: The Element Container stores the names of all ele-
ments that occur in an XML document. The Structure Encoder also uses
the Element Container as the dictionary for encoding XML structure.

2. Attribute Container: The Attribute Container stores the names of all
attributes which occur in an XML document. The Structure Encoder also
uses the Attribute Container as the dictionary for encoding XML structure.

3. Structure and Data Container: The Structure and Data Container stores
an XML document, in which all meta-data are replaced with special codes.
The encoding process is presented in section 3.2.

When a document is parsed and separated into the containers completely,
the contents of the containers are sent to the Syllable Compressor. It compresses
the content of each container separately using syllable-based compression and
sends the result to the output.

We have not written the SAX parser by ourselves, rather we have used the
Expat parser[10] which is an open-source SAX parser written in C.

3.2 Encoding the structure of XML document

The structure of XML document is encoded in XMLSyl as follows. Whenever a
new element or attribute is encountered, its name is sent to the dictionary and the
index of the element is sent to the Data and Structure Container. Two different
dictionaries are used for attributes and elements: the Element Dictionary and
the Attribute Dictionary. The Attribute Container operates as the Attribute
Dictionary and the Element Container as the Element Dictionary. Whenever
an end tag is encountered a token END_TAG is sent to the Data and Structure
container. Whenever a character sequence is encountered, it is sent to the Data
and Structure Container without changes. Start and end of character sequences
are indicated by special tokens. We distinguish four different character sequences:

24 Katsiaryna Chernik, Jan Lansky, Leo Galambo§

value of attribute, value of element, comment, and white spaces between tags, if
white spaces are preserved.

To illustrate the encoding process, consider the encoding of the following
small XML document:

<book>
<title lang="en">XML</title>
<author>Brown</author>
<author>Smith</author>
<price currency="EUR0">49</price>
</book>
<!-- Comment-->

First, the XML document is converted into a corresponding stream of SAX
events:

startElement ("book")
startElement ("title", ("lang","en"))
characters("XML")

endElement ("title")

startElement ("author")
characters("Smith")

endElement ("author")

startElement ("author")
characters("Brown")

endElement ("author")

startElement ("price","currency","EURQ")
characters("49")

endElement ("price")

endElement ("book")

comment ("Comment")

The tokens in the SAX event stream are sent to the Structure Encoder.
It encodes them and sends them to their corresponding containers. When the
book start element token is encountered, the string book is sent to the Element
Container since this element name was not encountered before. An index E0 is
assigned to this entry. This index is sent to the Data and Structure Container.
The same operation is executed for title start element. String title is sent to The
Element Container and an index E7 is assigned to it. The index E1 is sent to
the Data and Structure Container. The element title has the attribute lang. The
attribute name is sent to the Attribute Container and the index A0 is assigned
to it. The index A0 is sent to the Data and Structure Container. Then attribute
value ”en” is sent without modification to the Data and Structure Container.
The ”en” attribute is followed by the token END_ATT, that signals the end of the
attribute value. When an element value such as XML” is encountered, the token
CHAR, signaling the beginning of character sequence, the data value and then the
token END_CHAR are all sent to the Data and Structure Container. Finally, all

Syllable-based Compression for XML Documents 25

the end tags are replaced by the token END_TAG. When a comment event is
encountered, the code CMNT is put into the Data and Structure Container. The
comment is also sent to the container and is enclosed by END_CMNT code. The
final state of all containers is shown in Figure 2.

Element Container

element| index Attribute Container
book EO attribute| index
title E1l lang A0
author E2 currency Al
price E3

Data and Structure Container
<book>|<title| lang="en"> XML </title>| <author>
EO0 E1 |AO en END_ATT|CHAR XML END_CHAR| END_TAG E2
Brown </author>|<author> Smith </author>|<price

CHAR Brown END_CHAR| END_TAG E2 CHAR Smith END_CHAR| END_TAG E3

currency="EUR0"> 49 </price>| </book> <!--Comment-->
A1l Euro END_ATT |CHAR 49 END_CHAR| END_TAG | END_TAG |CMNT Comment END_CMNT

Fig. 2. Content of containers

In this example we have ignored white spaces between tags, e.g. <book> and
<title>, so the decompressor then produces a standard indentation. Optionally,
XMLSyl can preserve the white spaces. In that case, it stores the white spaces as
the sequence of characters in the Data and Structure Container between tokens
WS and END_WS.

3.3 Containers

The containers are the basic units for grouping XML data. The Attribute Con-
tainer holds attribute names and the Element Container holds element names.
As long as the number of all element and attribute names in any XML docu-
ment is not high, this two containers are kept in main memory. During parsing,
the containers size increases as the container is filled with entries. Each entry
in the Element container is assigned a byte in the range 00-A9. These bytes
are used for encoding the element names. Each entry in the Attribute container
is assigned a byte in the range AA-F9. These bytes are used for encoding the
attribute names. The residual 6 bytes are reserved for special codes like CHAR,
END_TAG etc. In most cases, 170 (or 80) bytes are enough to encode element (or
attribute) names. If the number of elements (or attributes) are greater than 170
(or 80), entries are encoded with two bytes, then tree and so on.

There is another situation with The Data and Structure Container. We do not
know the size of the input XML document. The size of XML document can be
so big, that document will not fit into memory, and it is not possible to increase

26 Katsiaryna Chernik, Jan Lansky, Leo Galambo§

the size of container endlessly. Therefore, the container consists of two memory
block of constant size. The content of the first memory block is compressed, as
soon as the container is filled. We don’t compress two blocks at once, because
the context of the second memory block is used for compression of the first one.
After the compression, the compressed content of the first block is sent to the
output and the first block swaps its purpose with the second one. Now the first
block is filled with data. When it is full, the second block is compressed, and so
on.

3.4 The Syllable Compressor

The Syllable Compressor compresses the Structure and Data Container first
and sends the output to the output file. Then the Attribute Containers are
compressed and sent to the output file and finally the same happens with the
Element Container. LZWL is used for the compression of data. HuffSyll could
be also chosen, but the performance is worse, so we decided to use only LZWL.

4 XMillSyl

This chapter introduces our second syllable-based XML compressor, XMillSyl.
This second method incorporates syllable-based compression with the existing
method for XML compression of XMill [8]. XMill has two main principles in
order to optimize XML compression:

— separating structure from data content, and
— grouping Data values with related semantics in the same ”container”.

Each data container is then compressed individually with gzip [21]. In XMillSyl,
containers are compressed with LZWL.

We do not suppose that XMillSyl method gives better results than XMill
because gzip compression performs better than LZWL. We have implemented
XMillSyl in order to compare the power of XMLSyl with the power of two main
principles of XMill.

4.1 Implementation

We did not write XMill compressor. We decided to use existing sources of XMill.

XMill operates as follows: a SAX parser parses the XML file and the SAX
events are sent to the core module of the XMill called the path processor. It
determines how to map tokens to containers: element tag names and attribute
names are encoded and sent to the structure container, while the data values
are sent to various data containers, according to their semantic. Finally, the
containers are gzipped independently and stored on disk.

We have modified compression and decompression functions (operating on
containers) in the way they compress and decompress the data containers with

Syllable-based Compression for XML Documents 27

v

| Path Processor |

———

pad Ny o

Structure Container|

Data Container ||Data Container 1 * * *| Data Container k

Small Large Large

’

i :

GZip |

Gzp | [tzwe |

l I

|\

Compressed XML file |

Fig. 3. Architecture of XMillSyl

the syllable-based method (see Figure 3). Moreover we have modified the syllable-
based method so that it can work with the containers of XMill implementation
instead of a file stream.

XMillSyl discerns the difference between small and large containers. Since
LZWL is not suitable for extremely small data, the small containers are com-
pressed with gzip. The structure container is also gzipped in XMillSyl. The large
containers are compressed with LZWL.

Table 1. The first data set.

Size Lang Description
elts 103919|English |Periodic table of the elements in XML
pcc 2600257|English |Formal proofs transformed to XML
stats 869059|English [One year statistics if baseball players
tal 1364576|English |Safe-annotated assembly language converted to XML
tpc 313193|English [The XML representation of the TPC_D benchmark database.

5 Comparison Experiments

To show the effectiveness of XMLSyll and XMillSyl, we compared the perfor-
mance of this two compressors with one representative of XML compressors
XMill and the syllable-based compressor LZWL [12].

28 Katsiaryna Chernik, Jan Lansky, Leo Galambo§

5.1 XML data sources

XMLSyl and XMillSyl were tested on two data sets that cover a wide range
of XML data formats and structures. The first data set is shown in Table 1.
It contains English XML documents with different inner structure. It includes
regular data that has regular markup and short character data content (elts,
stats, weblog, tpc). It also includes irregular data, that has irregular markup
(pce, tall).

The second data set is shown in Table 2. It contains textual XML documents
of simple structure with long character data content. It contains five stage plays
marked up as XML, four in English and one in Czech. It also contains data in
DocBook format in Czech and in English.

Some data was distributed with the XMLPPM [3] and the Exalt [4] com-
pressors while others were found on Internet [15], [16]. All Czech documents use
Windows-1250 encoding.

Table 2. The second data set.

Size Lan Description
errors 153530[|English ["The Comedy of Errors" marked up as XML
hamlet 314677|English |"The Tragedy of Hamlet, Prince of Denmark" marked up as XML
antony 289865|English [“The Tragedy of Antony and Cleopatra” marked up as XML
much_ado 220495|English ["Much Ado about Nothing" marked up as XML
ch00 13916(English |"DocBook: The Definitive Guide" in DocBook format (1)
ch01 55015(English |"DocBook: The Definitive Guide" in DocBook format (2)
ch02 160728|English |"DocBook: The Definitive Guide" in DocBook format (3)
ch03 27799|English |"DocBook: The Definitive Guide" in DocBook format (4)
ch04 137440|English |"DocBook: The Definitive Guide" in DocBook format (6)
ch05 67142|English |"DocBook: The Definitive Guide" in DocBook format (7)
glossary 24701|English |"DocBook: The Definitive Guide" in DocBook format (8)
howto 42853|English |"DocBook V5.0, Transition Guide" in DocBook format.
hledani 16429(Czech |"Inteligentni podpora navigace na WWW s vyuzitim XML" in DocBook (1)
komunikace 50881{Czech |"Inteligentni podpora navigace na WWW s vyuzitim XML" in DocBook (2)
navihace 18495(Czech |"Inteligentni podpora navigace na WWW s vyuzitim XML" in DocBook (3)
robot 25405|Czech |"Inteligentni podpora navigace na WWW s vyuzitim XML" in DocBook (4)
xml 28467|Czech |"Inteligentni podpora navigace na WWW s vyuZzitim XML" in DocBook (5)
rurl 59609|Czech |"R.U.R" marked up as XML.

5.2 Compression Performance Metrics
The compression ratio is defined as follows:

CR — sizeof(compressed file) x 8

bits /byte.
sizeof (original file) its/byte

We compare XMillSyl and XMLSyl compression ratios with those of XMill.
The compression ratio factor shows normalization of the compression ratio of

Syllable-based Compression for XML Documents 29

Table 3. The first data set.

CRizwL [CRxmin CRXMiIISyI CRFXMiIISyII CRXMLSyI CRFXMLSyI
elts 1,04 047 0,54 1,15 0,72 1,53
pcc 0,22 0,02 0,03 1,50 0,04 2,00
stats 0,67] 0,33 0,40 1,21 0,39 1,18
tal 0,36] 0,09 0,12 1,33 0,15 1,67
tpc 1,82] 1,05 1,54 1,47| 1,60 1,52
Average 0,82 0,39 0,53 1,33 0,58 1,58

XMillSyll or XMLSyl with respect to XMill. The compression ratio factor is

defined as follows:
CRx sy

CRF = —"
XS CRx arin

5.3 Experimental Results

The compression ratio statistics of two sets of XML documents are shown in
Table 3 and Table 4.

The syllable-based method performed worse on documents from the first data
set. On the other hand, both XMLSyl and XMillSyl shows great improvement
comparing to LZWL. They compressed the input to 50-60% of the size of the
compressed file with LZWL.

On XML documents of the second data set, LZWL provides a reasonably
good compression ratio - on the average, about two-thirds that of XMill. This
confirms our prediction, that syllable-based compression is effective for textual
XML documents. Moreover our compression methods show even greater im-
provement.

On the document of the second data set, XMillSyl achieves about 15% and
XMLSyl is about 20% better compression ratio than LZWL. Compared to XMill,
both methods perform slightly worse. XMillSyl compresses about 13% and XML-
Syl about 7% worse than XMIill.

Figure 4 shows the variation of the compression ratio as a function of XML
data size for "DocBook: The Definitive Guide”.The compression was run on
several subsets. On small files XMillSyl performs better than XMLSyl. The ex-
planation is, that the data are split into many small containers in XMillSyl,
which are compressed with gzip (gzip outperforms LZWL, especially on small
data). On middle-sized and large files XMLSyl outperforms XMillSyl. We can
observe that the bigger size also implies a better compression.

6 Conclusion

In this work we introduced syllable-based compression tools for XML documents
called XMLSyl and XMillSyl. We presented the architecture and implementation

30

Katsiaryna Chernik, Jan Lansky, Leo Galambo§

Table 4. The first data set.

CRuzw |CRymin [[CRxminsyt |CRFxinsyi [[CRxwisyi [CRFxusy

errors 1,98] 1,83 2,00 1,09 1,83 1,00
hamlet 1,96] 1,91 2,00 1,05 1,85 0,97
antony 1,84] 1,79 1,88 1,05 1,69 0,94
much_ado 1,88 1,80 1,89 1,05 1,77 0,98
ch00 3,28] 2,69 3,00 1,12 2,88 1,07
cho1 2,69] 2,20] 2,43 1,10 2,46 1,12
ch02 1,76] 1,43 1,70 1,19 1,57 1,10
ch03 2,90 187 2,70 1,44 2,08 1,11
ch04 2,09] 1,66 1,78 1,07 1,83 1,10
ch05 2,28 181 2,03 1,12 2,04 1,13
glossary 2,07] 164 1,84 1,12 1,89 1,15
howto 6,69] 2,30 2,50 1,09 2,59 1,13
hledani 3,79] 313 3,62 1,16] 3,40 1,09
komunikace 3,25 2,65 2,93 1,11 3,01 1,14
navihace 3,79 3,14 3,68 1,17 3,44 1,10
robot 343 2,86 3,22 1,13 3,04 1,06
xml 3,74] 3,23 3,69 1,14 3,30 1,02
rurl 2,33 2,07 2,37 1,14 2,15 1,04
Average 2,88 2722 2,51 1,13 2,38 1,07

e
T Ly
& h
S VAN
gz ¥:\\\;\ o
@ —— XMillSyl
c = k —e XMLyl
g ZTZ N\ \\\ —&= XMill
D - . RN
5 = N
s RN S = = e

o e

" \"—-_/“-\.M_.

168453 201423 217322 232569 25432 281015 01 I2BBL 3542

Fig. 4. Compression ratio under different sizes.

Syllable-based Compression for XML Documents 31

of our tools and tested their performance on a variety of XML documents. In our
experiments, XMLSyl and XMillSyl were compared with LZWL and XMill. Both
methods are more suitable for textual XML documents. XMill outperformed
our methods only marginally. XMLSyl performs better than XMillSyl. It implies
that in our case encoding of XML structure is more efficient than separating a
structure from data and grouping data values with related meaning. XMillSyl
and XMLSyl show better results for Czech language.

In the future, we want implement some modifications to enhance the com-
pression ratio. For example, the information in the DTD section can be extracted
and utilized to create a special syllable dictionary for elements and attributes.

References

1. Wilfred Ng, Lam Wai, Yeung James Cheng. Comparative Analysis of XML Com-
pression Technologies. World Wide Web Journal, 2005
2. Smitha S. Nair. XML Compression Techniques: A Survey.
WWw.cs.uiowa.edu/~rlawrenc/research/Students/SN_04_XMLCompress.pdf
3. J. Cheney. Compressing XML with Multiplexed Hierarchical PPM Models In
Proc. Data Compression Conference, 2001.
4. V. Toman. Compression of XML Data. MFF UK, 2003
5. World Wide Web Consorcium. Extensive Markup Language (XML) 1.0.
http://www.w3.org/XML/
6. P. Tolani, J. R. Haritsa. XGrind: A Query-friendly XML Compressor. In Proc.
IEEE International Conference on Data Engineering, 2002.
7. SAX: A Simple API for XML.
http://wuw.saxproject.org
8. H. Liefke, D. Suciu. XMill: an Efficient Compressor for XML Data. In Proc. ACM
SIGMOD Conference, 2000.
9. Jun-Ki Min, Myung-Jae Park, Chin-Wan Chung, XPRESS: A Queriable Com-
pression for XML Data SIGMOD 2003, June 912, 2003, San Diego, CA, 2000.
10. Expat XML Parser.
http://expat.sourceforge.net
11. T. A. Welch. A technique for high performance data compression. IEEFE Computer,
1984.
12. J. Lansky, M. Zemlicka. Text Compression: Syllables. DATESO, 2005
13. J. Lansky, Slabikovd komprese. MFF UK, 2005
14. V. Toman. Komprese XML dat.
http://kocour.ms.mff.cuni.cz/~mlynkova/prg036/
15. J. Kosek. Inteligentni podpora navigace na WWW s vyuzitim XML.
http://wuw.kosek.cz/diplomka/, 2002
16. DocBook http://www.docbook.org/
17. A Quick Introduction to XML.
http://wuw.cellml.org/tutorial/xml_guide
18. M. Pilgrim. What Is RSS.
http://wuw.xml.com/pub/a/2002/12/18/dive-into-xml.html
19. XML Processing.
http://diveintopython.org/xml_processing/
20. SAX And DOM Overview.
http://www. jezuk.co.uk/cgi-bin/view/arabica/SAXandDOMIntro
21. The gzip home page.
http://wuw.gzip.org/

