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Abstract. FCA-Map is an automatic ontology matching system based on For-
mal Concept Analysis (FCA), which is a well developed mathematical model
for analyzing individuals and structuring concepts. More precisely, we construct
three types of formal contexts and extracts mappings from the lattices derived.
Firstly, token-based formal context describes how class names, labels and syn-
onyms share lexical tokens, leading to lexical mappings (anchors) across ontolo-
gies. Secondly, relation-based formal context describes how classes are in taxo-
nomic or disjoint relationships with the anchors, leading to positive and negative
structural evidence for validating the lexical matching. Lastly, after incoherence
repair, positive relation-based context can be used to discover additional structural
mappings. In this paper, we briefly introduce FCA-Map and its results of three
tracks (i.e., Anatomy, Large Biomedical Ontologies, Disease and Phenotype) on
OAEI 2016.

1 Presentation of the system

Among the first batch of OM algorithms and tools proposed in the early 2000s, FCA-
Merge [4] distinguished in using Formal Concept Analysis (FCA) formalism to de-
rive mappings from classes sharing textual documents as their individuals. Proposed by
Wille [5], FCA is a well developed mathematical model for analyzing individuals and
structuring concepts. FCA starts with a formal context consisting of a set of objects,
a set of attributes, and their binary relations. Concept lattice, or Galois lattice, can be
computed based on formal context, where each node represents a formal concept com-
posed of a subset of objects (extent) with their common attributes (intent). The extent
and the intent of a formal concept uniquely determine each other in the lattice. Further,
a concept hierarchy can be derived where one formal concept becomes sub-concept of
the other if its objects are contained in the latter. FCA can be naturally applied to on-
tology construction [3], and is also widely used in data analysis, information retrieval,
and knowledge discovery.

Following the steps of FCA-Merge, several OM systems continued to use FCA as
well as its alternative formalisms, exploiting different entities as the sets of objects and
attributes for constructing formal contexts [1, 2, 6]. Different types of formal contexts
decide the information used for ontology matching, and we observed that some intrinsic
and essential knowledge of ontology has not been involved yet, including both textual
information within classes (e.g., class names, labels, and synonyms) and relationships
among classes (e.g., ISA, sibling, and disjointedness relations). In order to empower



FCA with as much as ontological information as possible, we proposed FCA-Map,
which generates three types of formal contexts and extracts mappings from the lattices
derived. The next sub-sections provide more details about FCA-Map and then discuss
our results of OAEI.

1.1 State, purpose, general statement

Given two ontologies, FCA-Map builds formal contexts and uses the derived concept
lattices to cluster the commonalities among ontology classes, at lexical level and struc-
tural level, respectively. Concretely, FCA-Map performs step-by-step as follows.

1. Acquiring anchors lexically. The token-based formal context is constructed, and
from its derived concept lattice, a group of lexical anchors A across ontologies can
be extracted.

2. Validating anchors structurally. Based on A , the relation-based formal context
is constructed, and from its derived concept lattice, positive and negative structural
evidence of anchors can be extracted. Moreover, an enhanced alignment A′ without
incoherences among anchors is obtained.

3. Discovering additional matches. Based on A′, the positive relation-based for-
mal context is constructed, and from its derived concept lattice, additional matches
across ontologies can be identified.

1.2 Specific techniques used

The process of our system consists of the following successive steps.

Step 1: Constructing the token-based formal context to acquire lexical anchors.
The token-based formal context Klex := (Glex,Mlex, Ilex) is described as follows.
Names of ontology classes as well as their labels and synonyms, when available, are
exploited after normalization that includes inflection, tokenization, stop word elimina-
tion, and punctuation elimination. In Klex, Glex is the set of strings each corresponding
to a name, label, or synonym of classes in two ontologies, Mlex is the set of tokens in
these strings, and binary relation (g,m) ∈ Ilex holds when string g contains token m,
or a synonym or lexical variation of m. For the derived formal concepts, we restrict our
attention to formal concepts whose simplified extent or class-origin extent contains ex-
actly two strings or classes across ontologies, and extract two types of lexical anchors,
namely Type I anchor for the exact match, and Type II anchor for the partial match,
respectively.

Sept 2: Constructing the relation-based formal context to validate lexical an-
chors. Structural relationships of ontologies are exploited to validate the matches ob-
tained at the lexical level. [7] proposed using positive and negative structural evidence
among anchors for the purpose of validation. In this step, we build the relation-based
formal context to obtain both positive and negative structural evidence for lexical an-
chors. The relation-based formal context Krel := (Grel,Mrel, Irel) is described as



follows. Classes in two source ontologies are taken as object set Grel, and lexical an-
chors prefixed with different relational labels are taken as attribute set Mrel. For exam-
ple, relationships ISA, SIBLING-WITH, PART-OF, and DISJOINT-WITH are labeled
by “(ISA)”, “(SIB)”, “(PAT)”, and “(I-D)” (or “(D-I)”), respectively. Binary relation
(g,m) ∈ Irel holds if g has the corresponding relationship (as in the prefix of m) with
the class from the same source ontology as g in the anchor of m. Formal concepts
whose extents include both classes in some anchors indicate structural evidence. Such
anchors are positive evidence to anchors with label“(ISA)”, “(SIB)” or “(PAT)” in the
intent, and vice versa. On the other hand, they are negative evidence to anchors with
label “(I-D)” or “(D-I)” in the intent, and vice versa. In this way, positive and negative
structural evidence set of each anchor a can be obtained, denoted by P (a) and N(a),
respectively. Then we utilize all the positive evidence sets P and negative evidence sets
N to eliminate incorrect lexical anchors and retain the correct ones.

Setp 3: Constructing the positive relation-based formal context to discover ad-
ditional matches. After incoherence repair and screening, anchors retained are those
supported both lexically and structurally. Based on the enhanced alignment, FCA-Map
goes further to build the positive relation-based formal context aiming to identify new,
structural mappings. The way positive relation-based formal context K′

rel constructed
is similar to Krel, i,e., using classes in two source ontologies as object set and anchors
prefixed with relationship labels as attribute set, where disjointedness relationship is no
longer necessary. For the derived formal concepts, we restrict our attention to those with
exactly two classes across ontologies in the simplified extent.

1.3 Link to the system and parameters file

SEALS wrapped version of FCA-Map for OAEI 2016 is available at https://drive.google.
com/open?id=0B810qAwN1CIoM0NMV3ZJMzVsTlk.

1.4 Link to the set of provided alignments

The results obtained by FCA-Map during OAEI 2016 are available at https://drive.google.
com/open?id=0B810qAwN1CIodGdPUjVWY0M3U0U.

2 Results

In this section, we present the results of FCA-Map achieved on OAEI 2016. Our system
mainly focuses on Anatomy, Large Biomedical Ontologies, Disease and Phenotype.

2.1 Anatomy Track

The Anatomy track consists of finding an alignment between the Adult Mouse Anato-
myand a part of the NCI Thesaurus describing the human anatomy. The results are
shown in Table 1. The evaluation was run on a server with 3.46 GHz (6 cores) and 8GB
RAM allocated. FCA-Map ranked fifth in Anatomy track.

https://drive.google.com/open?id=0B810qAwN1CIoM0NMV3ZJMzVsTlk
https://drive.google.com/open?id=0B810qAwN1CIoM0NMV3ZJMzVsTlk
https://drive.google.com/open?id=0B810qAwN1CIodGdPUjVWY0M3U0U
https://drive.google.com/open?id=0B810qAwN1CIodGdPUjVWY0M3U0U


Matcher Precision Recall F-Measure Runtime (s)
AML 0.95 0.936 0.943 47

CroMatcher 0.949 0.902 0.925 573
XMAP 0.929 0.865 0.896 45

LogMapBio 0.888 0.896 0.892 758
FCA-Map 0.932 0.837 0.882 117

Table 1: Results for Anatomy track

2.2 Large BioMed Track

The Large BioMed track consists of finding alignments between the Foundational Mod-
el of Anatomy (FMA), SNOMED CT, and the National Cancer Institute Thesaurus (N-
CI). The results obtained by FCA-Map for the small fragments of the FMA, NCI and
SNOMED CT ontologies are summarize in Table 2. The evaluation of first two tasks
was run on a Ubuntu Laptop with an Intel Core i7-4600U CPU @ 2.10GHz x 4 and
15Gb RAM allocated with 2 hours timeout. And the last task was run on a PC with
Intel i7-4790 CPU @ 3.60GHz and 8GB RAM allocated. FCA-Map ranks second in
the first two tasks.

Task Precision Recall F-Measure Runtime (s)
FMA-NCI (small) 0.954 0.917 0.935 236

FMA-SNOMED (small) 0.936 0.803 0.865 1,865
SNOMED-NCI (small) 0.914 0.666 0.771 13,542

Table 2: Results of FCA-Map for the Large BioMed Track

2.3 Disease and Phenotype Track

The Pistoia Alliance Ontologies Mapping project team organises this track based on
a real use case where it is required to find alignments between disease and phenotype
ontologies. Specifically, the selected ontologies are the Human Phenotype Ontology (H-
PO), the Mammalian Phenotype Ontology (MP), the Human Disease Ontology (DOID),
and the Orphanet and Rare Diseases Ontology (ORDO). The evaluation was run on a
Ubuntu Laptop with an Intel Core i7-4600U CPU @ 2.10GHz x 4 and 15Gb RAM
allocated.

Matcher Task Precision
Silver 2

Recall
Silver 2

F-Measure
Silver 2

Sum F-Measure
Silver 2

Precision
Silver 3

Recall
Silver 3

F-Measure
Silver 3

Sum F-Measure
Silver 3

LogMap HP-MP 0.9354 0.9125 0.9238 1.8372 0.7732 0.9729 0.8617 1.7828DOID-ORDO 0.9520 0.8779 0.9134 0.9052 0.9375 0.9211

FCA-Map HP-MP 0.9836 0.7543 0.8539 1.8162 0.9421 0.9244 0.9332 1.8706DOID-ORDO 0.9662 0.9586 0.9624 0.8880 0.9926 0.9374

AML HP-MP 0.9305 0.7998 0.8602 1.7684 0.8536 0.9446 0.8968 1.7714DOID-ORDO 0.8532 0.9708 0.9082 0.7784 0.9981 0.8747

PhenoMF HP-MP 0.7568 0.9164 0.8290 1.7149 0.6292 0.9452 0.7555 1.6905DOID-ORDO 0.9498 0.8301 0.8859 0.9472 0.9233 0.9351

Table 3: Results against silver standard with vote 2 and 3



Table 3 shows the results against the silver standard which is automatically built
by voting the outputs of the participating systems. LogMap is the system closer to the
mappings voted by at least 2 systems, and FCA-MAP produces results very close to the
silver standard with vote 3.

3 General comments

This is the first time FCA-Map system participates in the OAEI campaign. It is compet-
itive with other systems in some tracks such as Anatomy, Large Biomedical Ontologies,
Disease and Phenotype. Three types of formal contexts are constructed one-by-one, and
their derived concept lattices are used to cluster the commonalities among classes at lex-
ical and structural level, respectively. The tokens shared by two classes in these map-
pings are unique to their names. The lexical matching method of FCA-Map is suitable
for domain ontologies having class names, labels, or synonyms from domain-specific
vocabulary.

4 Conclusions

In this paper, we have presented FCA-Map and its results of three tracks (i.e.,Anatomy,
Large Biomedical Ontologies, Disease and Phenotype) on OAEI 2016. The evaluation
results show the good performance of FCA-Map. Future work would introduce more
elements of ontology into FCA-Map including properties, individuals, and logical con-
structors and axioms. Optimization techniques for handling large-scale FCA contexts
will also be worth exploring.
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