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Abstract 
Land use maps are very important references for the urban planning and management. 

However, it is difficult and time-consuming to get high-resolution urban land use maps. In 

this study, we propose a new method to derive land use information at building block level 

based on machine learning and geo-tagged street-level imagery – Google Street View images. 

Several commonly used generic image features (GIST, HoG, and SIFT-Fisher) are used to 

represent street-level images of different cityscapes in a case study area of New York City. 

Machine learning is further used to categorize different images based on the calculated image 

features of different street-level images. Accuracy assessment results show that the method 

developed in this study is a promising method for land use mapping at building block level in 

future.  

 

1. Introduction 

Land use maps are very important references for urban planning and other urban practices 

in cities (Pei et al. 2014). Traditionally, overhead view remotely sensed data is widely used 

for land use/cover mapping based on different physical characteristics (spectral reflectance 

and texture) of different urban features (Pei et al. 2014). However, urban land use types are 

heterogeneous, and different land use types may have the same or similar spectral reflectance 

and spatial patterns. This makes it difficult to classify different land use types accurately 

based on remote sensing information alone. In addition, the remotely sensed imagery captures 

the roofs of buildings, which can hardly reflect the different social functions or land use types 

of buildings.  

Different from the overhead view of remotely sensed imagery, Google Street View 

(GSV) images capture the profile view of streetscapes. GSV images have already been used 

to studying human perception of physical environment on ground (Li et al. 2015; Quercia et 

al. 2014). The street-level images represent the ground truth at a very high resolution and 

have been widely used as references for validating land cover/use mapping results manually 

in previous studies. The profile view street-level images could also be used to judge the land 

use types of different building blocks. However, based on our best knowledge, there still have 

no previous study using street-level images for urban land use mapping.  

In the past decade, the advancement in the computer vision makes it possible to 

categorize and semantically classify images. In this study, we propose to bring scene 

classification algorithms in computer vision community to derive land use information of 

building blocks in cities based on geo-tagged GSV images. Multiple commonly used image 

features are calculated for representation of street-level images, which capture façades of 

different types of building blocks. Support vector machine classifier is then trained based on 

the calculated image features and ground truth land use labels and applied to predict land use 

types of different building blocks.  

 



2. Data and Methods 

2.1 Datasets 

A small case study area in Brooklyn, New York City is chosen in this study. The study area 

includes various land use types, which is very suitable for testing the method using street-

level images for land use mapping. Figure 1 shows the location and land use map of the study 

area. 

 
Figure 1. The location and land use map of the study area. 

 

 
Figure 2. GSV images collections, (a) distributions of created sample sites and GSV 

panoramas, (b) static GSV images of one site with different heading angles, (c) 

geometrical model for choosing heading and fov to represent façades of building blocks. 



2.2 GSV images collection and labelling 

Google Street View panoramas are distributed discretely along the streets. In general, about 

every 12 meters has one GSV panorama along the street. Therefore, in this study we first 

create sample sites along streets every 5 meters using ArcGIS 10.2 in order to collect all 

available GSV panoramas along streets. We then retrieval the GSV panorama ID, coordinates 

information using Google Maps JavaScript API by inputting the coordinates of those sample 

sites. In this way, we collect the metadata (panorama ID and coordinate of panorama) of all 

available GSV panoramas along streets in the study area. Figure 2(a) shows the discrepancy 

of the distributions of created sample sites and location of GSV panoramas along streets in a 

small area of study area. 

Based on the panorama ID information, we can download GSV images for different 

heading angles using Google Street View static Image API. Figure 2(b) shows four static 

GSV images of one site with panorama ID “on66Bt1B37qRlYVxiC7J9g” at different heading 

angles. By specifying appropriate fov and heading parameters, the GSV images can capture 

the façades of building blocks along streets, which makes it possible to differentiate different 

types of building blocks based on their different appearances. For each building block along a 

street, the closest GSV panorama is chosen. Based on the geometrical model between the 

location of GSV site (Gx, Gy) and the footprint of building block (see Figure 2(c)), we 

calculated the field of view (fov) angle by equation (1):  
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The vectors V1 and V2 are,  

V1 = (x1 - Gx, y1 - Gy), 

V2 = (x2 - Gx, y2 - Gy) 

Where (x1, y1) and (x2, y2) are the coordinates of two endpoints of a building façade. In order 

to decrease distortion in the static GSV images, the fov cannot be too large, therefore, for 

those building blocks with fov larger than 90, the fov is set to 90. In addition, the minimum 

fov is set to 30 empirically, although some building blocks may have their fov less than 30. 

This is because if the fov is too small, the GSV image may not capture the spatial pattern of 

building block. The heading angle heading is set to the angle between heading direction and 

the true north direction, and ranges from 0 to 360. Figure 3 shows several collected GSV 

images with their corresponding land use types in the study area.  

 

 

Figure 3. Building blocks with different land use types on street-level images. 



2.3 Image features extraction and machine learning 

The image features developed in computer vision community make it possible to represent 

and categorize street-level images of different cityscapes. Image features, which are 

calculated based on the texture and geometrical information of images, are insensitive to the 

variance of spectral information or the illumination conditions. In this study, several 

commonly used generic image features are used to indicate the characteristics of different 

street-level images. The image features used in this study include GIST, HoG, and SIFT-

Fisher. Table 1 summarizes the descriptions of these image features. These features have 

already been tested on scene classification (Xiao et al. 2010) and semantic information 

retrieval from street-level images (Ordonez and Berg 2014; Naik et al. 2014). Therefore, in 

this study these features are chosen for representation of different GSV images and scene 

classification in terms of land use types. 

 

Table 1. Image features used in this study for GSV image representation. 

Image features Descriptions 

GIST  GIST is a 512 dimensional vector. The GIST feature is 

based on low dimensional representation of scene and 

represents the dominant spatial structure of a scene (Oliva 

and Torralba 2001).  

HoG Histogram of oriented edges (HoG) decomposes an image 

into small squared cells, computes a histogram of oriented 

gradients in each cell, normalizes the result using a block-

wise pattern, and return a descriptor for each cell (Dalal 

and Triggs 2005). 

SIFT-Fisher vectors SIFT-Fisher vectors compute the SIFT features densely 

across five image resolutions, then perform spatial 

pooling by computing the Fisher vectors representations 

on a 2x2 grid over the image and for the whole image 

(Ordonez & Berg 2014; Perronnin et al. 2010). 

 

To classify those static GSV images, which capture façades of different land use types of 

buildings, we choose Support Vector Machine (SVM) classifier. The original 1048 images 

and land use labels are split into training set and testing set. Image feature vectors x and their 

corresponding land use labels y in training set are used to train a SVM classifier. The training 

process is to obtain the following optimization,  
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where W is the support vector, ξi are slack variables introduced to account for the 

nonseparability of data, N is the number of training samples, constant C represents a penalty 

parameter that allows to control the penalty assigned to errors.  

The trained SVM classifier is then applied to the testing images and compared with 

ground truth land use of these images in testing set to cross-validate the classification results.  

 



3. Results  

We collect 1048 static GSV images with different land use types in the study area. We 

randomly split these images into training set and test set 10 times to cross-validate the 

proposed method. Table 2 summarizes the cross-validation results using different image 

features. The SIFT-Fisher feature outperforms other two image features in the classification 

of residential building and non-residential building. The overall accuracy of the residential 

building vs non-residential building classification result is 91.82% using SIFT-Fisher image 

feature. The GIST and HoG features get lower classification results, with accuracy of 83.88% 

and 60.34% respectively.  

The classification accuracy of one-two family residential building vs multi-family 

residential building has lower accuracy compared with the classification result of the 

residential building vs non-residential building. This is not difficult to understand, since the 

appearance difference between the one-two family residential buildings and multi-family 

buildings is not as obvious as the difference between the residential buildings and non-

residential buildings. The selected three image features have similar performances in the 

classification of one-two family residential building vs multi-family residential building. 

SIFT-Fisher outperforms other two image features, with overall accuracy of 74%. 

 

Table 2. Overall classification accuracy of different image features 

Image features Overall accuracy 

 Residential building vs non-residential building 

GIST 83.88% 

HoG 60.34% 

SIFT-Fisher 91.82% 

 One-two family building vs multi-family building 

GIST 66.72% 

HoG 52.48% 

SIFT-Fisher 74.30% 

 

4. Conclusion and future works 

This study brings scene classification algorithms in computer vision community to 

geospatial information retrieval based on publicly accessible data on the web. Different with 

previous studies using overhead view dataset for urban land use mapping, we first use street-

level images, which capture the profile view of cityscapes, for land use classification at 

building block level. Accuracy assessment results show that using the combination of scene 

classification algorithms and street-level image is a very promising method for urban land use 

mapping. While this study demonstrates the feasibility of using GSV images for building 

block level land use information retrieval, there are still some limitations that need to be 

solved in the future studies. The basic idea of this study is to differentiate different types of 

land use types based on the different physical appearances of different types of buildings. 

However, the definition of different land use types is not based on the physical appearances 

of buildings, but the social functions of buildings. Therefore, in future studies, more attention 

need to be paid on how to make the semantic classification system to be applicable in real 

urban planning practices and theoretically recognizable at same time. Future work would 

focus on choosing better image features and combinations of image features to classify more 

land use types and get more accurate land use classification results. Human reasoning and 

new kinds of data should also been considered to get better classification results in future 

studies.  
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