
Models for Metamath

Mario Carneiro

The Ohio State University, Columbus OH, USA

Abstract. Although some work has been done on the metamathematics
of Metamath, there has not been a clear definition of a model for a Meta-
math formal system. We define the collection of models of an arbitrary
Metamath formal system, both for tree-based and string-based represen-
tations. This definition is demonstrated with examples for propositional
calculus, ZFC set theory with classes, and Hofstadter’s MIU system, with
applications for proving that statements are not provable, showing con-
sistency of the main Metamath database (assuming ZFC has a model),
developing new independence proofs, and proving a form of Gödel’s com-
pleteness theorem.

Keywords: Metamath ·Model theory · formal proof · consistency · ZFC
· Mathematical logic

1 Introduction

Metamath is a proof language, developed in 1992, on the principle of minimizing
the foundational logic to as little as possible [1]. An expression in Metamath is
a string of constants and variables headed by a constant called the expression’s
“typecode”. The variables are typed and can be substituted for expressions with
the same typecode. See § 2.1 for a precise definition of a formal system, which
mirrors the specification of the .mm file format itself.

The logic on which Metamath is based was originally defined by Tarski in [2].
Notably, this involves a notion of “direct” or “non-capturing” substitution, which
means that no α-renaming occurs during a substitution for a variable. Instead,
this is replaced by a “distinct variable” condition saying that certain substitu-
tions are not valid if they contain a certain variable (regardless of whether the
variable is free or not—Metamath doesn’t know what a free variable is). For
instance, the expression ∀xϕ contains a variable ϕ inside a binding expression
“∀x�”. (Metamath also does not have a concept of “binding expression”, but it
is safe to say that under a usual interpretation this would be considered a bind-
ing expression.) If there is a distinct variable condition between x and ϕ, then
the substitution ϕ 7→ x = y is invalid, because x is present in the substitution
to ϕ. This is stricter than the usual first-order logic statement “x is not free in
ϕ”, because ϕ 7→ ∀xx = y is also invalid. If there is no such distinct variable
condition between x and ϕ, these substitutions would be allowed, and applying
them to ∀xϕ would result in ∀xx = y and ∀x∀xx = y, respectively.

In this paper, we will develop a definition for models of Metamath-style
formal systems, which will operate by associating a function to each syntactical

2 Mario Carneiro

construct according to its type. For example, the forall symbol is defined by
the axiom “wff ∀xϕ”, which is to say it takes as input a set variable and a
wff variable, and produces a wff expression. This construct is associated to an
interpretation function π∀ : Uset × Uwff → Uwff, where Uset is the universe of set
variables and Uwff is the universe of wff variables, which are each provided as
part of the definition of a model.

Note the difference from the usual signature of the forall, π′∀ : (M → Bool)→
Bool, which maps functions from the model universe M to boolean values, to
a boolean value. In order to make our definition work, we need the set Uwff to
be more complicated than just Bool. Instead, it is effectively (V →M)→ Bool,
that is, a function from assignments of variables to elements of the model, to
a boolean value. In other words, a wff can be thought of as an infinite-place
predicate ϕ(v0, v1, v2, . . .) (although the value can only depend on finitely many
of the provided variables).

1.1 Grammars and trees

Unfortunately, although it is possible to define what it means to be a model
for any Metamath formal system, we can’t quite reduce it to a collection of
interpretation functions, like it is normally done, without a way to parse the
strings which are used in the proof. This leads to the idea of grammatical parsing,
which we take up in earnest in § 2.3. By separating all axioms into “syntax
axioms” and “logical axioms”, we can find an isomorphism to a representation
of statements as trees, with syntax axioms forming the nodes of the tree. Most
interesting Metamath systems are grammatical, but for example Hofstadter’s
MIU system [3], formalized in Metamath as miu.mm, is a valid formal system
which is not grammatical (see § 3.2).

The main work is presented in § 2. A short recap of Metamath’s formalism
as it will be used in this work is in § 2.1, followed by the definition of a model
in § 2.2. Then we define the subset of “grammatical” formal systems, which
are those for which parsing is possible, in § 2.3, and rebuild the theory for a
tree representation of formal systems in § 2.4. The model theory of tree formal
systems is developed in § 2.5. A selection of examples is provided in § 3, and in
particular we prove that Metamath’s ZFC formalization, set.mm, has a model
in Theorem 4. Some applications of model theory are developed in § 4, finishing
with a proof of Gödel’s completeness theorem in § 4.2.

2 Formal definition

2.1 Metamath recap

We recall the definitions from Appendix C of the Metamath book [1], but with
a slight modification for a global type function.

1. Let CN,VR be disjoint sets, called the set of constants and variables respec-
tively.

Models for Metamath 3

CN constants § 2.1 VR variables § 2.1 Type type of expr § 2.1

EX expressions § 2.1 DV distinct variables § 2.1 V variables in expr § 2.1

σ substitution § 2.1 VH variable hypotheses § 2.1 TC typecodes § 2.1

VT variable typecodes § 2.1 U universe § 2.2 VL, µ valuations § 2.2

freshness relation § 2.2 η interpretation § 2.2 SA syntax axioms § 2.3

Syn syntax for expr § 2.4 ST syntax trees § 2.4 π interpretation (tree) § 2.5

Table 1. Definition cheat sheet

2. Let Type : VR → CN be a function, understood to map a variable to its
typecode constant.

3. Let VT = {Type(v) | v ∈ VR} be the set of typecodes of variables.
4. EX = {e ∈

⋃
n∈ω

n(CN ∪ VR) | (|e| > 0 ∧ e0 ∈ CN)} (the set of expressions),
5. DV = {x ⊆ VR | |x| = 2} (the set of distinct variable specifications), and
6. V(e) = VR ∩ {en | 0 ≤ n < |e|} (the set of variables in an expression).
7. We also write Type(e) = e0 for e ∈ EX.
8. A substitution is a function σ : EX → EX such that σ(〈c〉) = 〈c〉 for c ∈ CN

and σ(gh) = σ(g)σ(h), where adjacency denotes concatenation of sequences.
(Such a function is determined by its values on {〈v〉 | v ∈ VR}.)

9. Define VHv = 〈Type(v), v〉, for v ∈ VR (a variable hypothesis).
10. A pre-statement is a tuple 〈D,H,A〉 where D ⊆ DV, H ⊆ EX is finite, and

A ∈ EX.
11. The reduct of 〈D,H,A〉 is 〈DM , H,A〉 where DM = D ∩P(V(H ∪ {A})),

and a statement is defined as the reduct of some pre-statement.
12. A formal system is a tuple 〈CN,VR,Type, Γ 〉 where CN,VR,Type are as

above and Γ is a set of statements.
13. The closure of a set H ⊆ EX relative to D is the smallest set C such that:

– H ∪ {VHv | v ∈ VR} ⊆ C
– For every 〈D′, H ′, A′〉 ∈ Γ and every substitution σ, if
• For all e ∈ H ′ ∪ {VHv | v ∈ VR}, σ(e) ∈ C, and
• For all {α, β} ∈ D′, if γ ∈ V(σ(VHα)) and δ ∈ V(σ(VHβ)), then
{γ, δ} ∈ D,

then σ(A′) ∈ C.
14. A pre-statement 〈D,H,A〉 is provable if A is in the closure of H relative to D,

and a theorem is a statement that is the reduct of a provable pre-statement.
15. Let TC be the set of typecodes of theorems. (Explicitly, this is TC = VT ∪
{Type(A) | 〈D,H,A〉 ∈ Γ}.)

16. Two formal systems 〈CN,VR,Type, Γ 〉 and 〈CN,VR,Type, Γ ′〉 are equivalent
if they generate the same set of theorems (or equivalently, if every axiom in
one is a theorem of the other).

Why a global type function? A careful comparison with Appendix C of the
Metamath book [1] shows that in the original definition a variable only has a
type locally (inside a statement), while we require all variables to have a unique
and globally defined type, provided by the Type function. In practice, variables
are never reintroduced with a different type, so this is not a strong requirement.

4 Mario Carneiro

Additionally, there is some ongoing work to amend the specification to disallow
such multi-typed variables.

Nevertheless, it is a simple fix to convert a formal system with multi-typed
variables to one with a global type function: Take the set of variables to be
VT × VR, and define Type(c, v) = c. Then whenever a variable v appears in a
statement with type c, use the variable 〈c, v〉 instead. This is equivalent to just
prepending the type of the variable to its name, so that uses of the same variable
with a different type are distinguished.

2.2 Models of formal systems

Fix a collection of sets Uc for c ∈ TC, which will represent the “universe” of
objects of each typecode.

Definition 1. A valuation is a function µ on VR such that µ(v) ∈ UType(v) for
all v ∈ VR. The set of all valuations is denoted by VL.

Definition 2. A freshness relation # is a symmetric relation on the disjoint
union

⊔
U =

⊔
c∈TC Uc such that for any c ∈ VT and any finite set W ⊆

⊔
U,

there is a v ∈ Uc with v # w for all w ∈W .

Definition 3. A model of the formal system 〈CN,VR,Type, Γ 〉 is a tuple 〈U,#,
η〉 where U is a function on TC and # is a freshness relation, and for each
µ ∈ VL, ηµ is a partial function on EX such that:

– (Type correctness) For all e ∈ EX, if ηµ(e) is defined then ηµ(e) ∈ UType(e).
– (Variable application) For all v ∈ VR, ηµ(VHv) = µ(v).
– (Axiom application) For each 〈D,H,A〉 ∈ Γ , if

• µ(α) # µ(β) for all {α, β} ∈ D, and
• ηµ(h) is defined for all h ∈ H,

then ηµ(A) is defined.
– (Substitution property) For each substitution σ and e ∈ EX, ηµ(σ(e)) =
ησ(µ)(e), where σ(µ) ∈ VL is defined by σ(µ)(v) = ηµ(σ(VHv)).

– (Dependence on present variables) For all ν ∈ VL, e ∈ EX, If µ(v) = ν(v)
for all v ∈ V(e), then ηµ(e) = ην(e).

– (Freshness substitution) For all v ∈
⊔

U, e ∈ EX, if ηµ(e) is defined and
v # µ(w) for all w ∈ V(e), then v # ηµ(e).

Here equality means that one side is defined iff the other is and they have the
same value. We say that e ∈ EX is true in the model if ηµ(e) is defined for all
µ ∈ VL.

The key property of a model is soundness, the fact that the axiom application
law applies also to theorems.

Theorem 1. For any theorem 〈D,H,A〉, if µ(α) #µ(β) for all {α, β} ∈ D and
ηµ(h) is defined for all h ∈ H, then ηµ(A) is defined.

Models for Metamath 5

Proof. By dependence on present variables, we may replace µ by any other µ′

such that µ(v) = µ′(v) for all v ∈ V(H ∪ {A}) without affecting the truth of the
hypotheses or conclusion. If 〈D,H,A〉 is the reduct of 〈D′, H,A〉 where D′ refers
to finitely many additional variables (i.e. D′ ⊆ P(V) for some finite set V ⊇
V(H ∪ {A})), order these as V = {v1, . . . , vn} with V(H ∪ {A}) = {v1, . . . , vk}
for some k ≤ n. Then use the freshness constraint to recursively select values
µ′(vi) for each k < i ≤ n such that µ′(vi) # µ′(vj) for all j < i. Then this new
µ′ will satisfy the hypothesis µ′(α) #µ′(β) for all {α, β} ∈ D′, so that it suffices
to prove the theorem for provable pre-statements.

We prove by induction that whenever A is in the closure of H relative to D,
ηµ(A) is defined. If A ∈ H, it is true by assumption, and if A = VHv for some
v ∈ VR, then it is true by the variable application law. Otherwise we are given
〈D′, H ′, A′〉 ∈ Γ and a substitution σ, such that for all e ∈ H ′∪{VHv | v ∈ VR},
ηµ(σ(e)) is defined (by the induction hypothesis), and for all {α, β} ∈ D′, if
γ ∈ V(σ(VHα)) and δ ∈ V(σ(VHβ)), then {γ, δ} ∈ D, and we wish to show that
ηµ(A), with A = σ(A′), is defined.

For each γ ∈ V(σ(VHα)) and δ ∈ V(σ(VHβ)), {γ, δ} ∈ D implies µ(γ) # µ(δ)
from the theorem hypothesis, hence by freshness substitution on the left and the
right, µ(γ) # ηµ(σ(VHβ)), and then ηµ(σ(VHα)) # ηµ(σ(VHβ)), or equivalently,
σ(µ)(α) # σ(µ)(β) for each {α, β} ∈ D′.

Apply the axiom application law to σ(µ) and 〈D′, H ′, A′〉. The substitu-
tion property reduces ηµ(σ(e)) to ησ(µ)(e) in the hypotheses, and ησ(µ)(A

′) to
ηµ(σ(A′)) in the conclusion, hence ηµ(σ(A′)) is defined, as we wished to show.

ut

In particular, if 〈∅, ∅, A〉 is provable, then ηµ(A) is defined for all µ ∈ VL,
which makes it a useful technique for showing that certain strings are not prov-
able (see § 4.1).

For any formal system, there is a model, where Uc = {∗} for each c, ∗ # ∗
is true, and ηµ(e) = ∗ for all µ, e. Thus statements like “formal system X has
a model” are not as useful here as they are in first-order logic. To marginalize
this kind of model, we will call a model where each ηµ is a total function trivial.
(We will have a slightly wider definition of trivial model given grammatical
information, cf. Definition 6.)

Although this defines the property of being a model under the full generality
of Metamath formal systems, the process simplifies considerably when expres-
sions can be parsed according to a grammar.

2.3 Grammatical parsing

Definition 4. A formal system is said to be weakly grammatical if for every
〈D,H,A〉 ∈ Γ , if Type(A) ∈ VT, then there is some axiom 〈∅, ∅, A′〉 ∈ Γ such
that σ(A′) = A for some substitution σ and no variable occurs more than once
in A′.

For these systems we will define

SA = {A | 〈∅, ∅, A〉 ∈ Γ ∧ Type(A) ∈ VT ∧ ∀mn, (Am = An ∈ VR→ m = n)},

6 Mario Carneiro

the set of syntax axioms. (We will identify the expression A with its statement
〈∅, ∅, A〉 when discussing syntax axioms.)

For example, any context-free grammar is a weakly grammatical formal sys-
tem, where each production translates to a syntax axiom, and each nonterminal
translates to a variable typecode. Most recursive definitions of a well-formed for-
mula will fit this bill, although we can’t capture the notion of bound variables
with this alone.

Conversely, a weakly grammatical formal system yields a context-free gram-
mar, where the terminals are CN \ VT, the non-terminals are VT, and for each
A ∈ SA there is a production Type(A) → α, where αn = An+1 ∈ CN if
An+1 ∈ CN or αn = Type(An+1) ∈ VT if An+1 ∈ VR. (This assumes that
An+1 ∈ VT is always false, but the two sets can be disjointified if this is not the
case.)

Definition 5. A grammatical formal system is a weakly grammatical formal
system augmented with a function Syn : TC → VT such that Syn(c) = c for
all c ∈ VT and, defining Syn(e) for e ∈ EX such that Syn(e)0 = Syn(e0) and
Syn(e)n = en for n > 0, 〈∅, ∅,Syn(e)〉 is a provable statement for all 〈D,H,A〉 ∈
Γ and e ∈ H ∪ {A}.

Remark 1. Of course, this notion is of interest primarily because it is satisfied
by all major Metamath databases; in particular, set.mm is a grammatical formal
system, with VT = {set, class,wff}, TC = VT ∪ {`}, and Syn(`) = wff.

Definition 6. A model of a grammatical formal system is a model in the sense
of Definition 3 which additionally satisfies Uc ⊆ USyn(c), v # wc ↔ v # wSyn(c)

when w ∈ Uc (and wc, wSyn(c) are its copies in the disjoint union), and
ηµ(e) = ηµ(Syn(e)) if the latter is in Uc, otherwise undefined. Such a model is
trivial if Uc = USyn(c) for all c ∈ TC.

2.4 Tree representation of formal systems

The inductive definition of the closure of a set of statements immediately leads
to a tree representation of proofs. A proof tree is a tree with nodes labeled by
statements and edges labeled by expressions.

Definition 7. We inductively define the statement “T is a proof tree for A”
(relative to D,H) as follows:

– For each e ∈ H ∪ {VHv | v ∈ VR}, the single-node tree labeled by the reduct
of 〈D,H, e〉 is a proof tree for e.

– For every 〈D′, H ′, A′〉 ∈ Γ and every substitution σ satisfying the conditions
for σ(A′) ∈ C in § 2.1.13, the tree labeled by 〈D′, H ′, A′〉 with edges for each
e ∈ H ′∪V(H∪{A}) leading to a proof tree for σ(e), is a proof tree for σ(A′).

Models for Metamath 7

The definition of closure ensures that there is a proof tree for A relative to
D,H iff 〈D,H,A〉 is provable pre-statement. (The branches for variables outside
V(H ∪ {A}) are discarded because they can always be replaced by the trivial
substitution σ(〈v〉) = 〈v〉 without affecting the closure deduction.) Additionally,
we can prove by induction that every proof tree T encodes a unique expression
Expr(T).

Definition 8. An unambiguous formal system is a grammatical formal system
whose associated context-free grammar is unambiguous.

Remark 2. Note that for this to make sense we need SA to contain only axioms
and not theorems, i.e. this property is not preserved by equivalence of formal
systems. For such systems every Expr is an injection when restricted to the set
ST of syntax trees, trees T relative to ∅, ∅ such that Type(T) := Type(Expr(T)) ∈
VT (or equivalently, Type(T) = Type(A) ∈ VT where 〈D,H,A〉 is the root of
T). The subtrees of a syntax tree are also syntax trees, and the nodes are syntax
axioms, with variables (of the form VHv) at the leaves.

With this, we can “rebuild” the whole theory using trees instead of strings,
because the all valid substitutions have unique proof tree representations. The
expressions in this new language will be trees, whose nodes are syntax axioms
such as wa = “wff (ϕ ∧ ψ)”, representing the “and” function, with variables at
the leaves. However, we no longer need to know that wa has any structure of its
own, besides the fact that it takes two wff variables and produces a wff. Thus
we can discard the set CN entirely. (That is, the constant “(” has no meaning of
its own here.)

Instead, we take as inputs to the construction the set TC′ of typecodes, a
set VR′ of variables, a set SA′ of things we call syntax axioms, although they
have no internal structure, the function Type′ : VR′ ∪ SA′ → VT′, as well as
Syn′ : TC′ → VT′. A tree T ∈ ST′ is either a variable from VR′ or a syntax
axiom a ∈ SA′ connecting to more subtrees; each syntax axiom has a set vai of
variables labeling the edges, and a type Type′(a); Type′(T) is defined as the
type of the root of T .

We replace EX in the string representation with EX′, which consists of tuples
〈c, T 〉 where c ∈ TC′, T ∈ ST′, and Syn′(c) = Type′(T). We extend Type′ to EX′

by Type′(〈c, T 〉) = c. V ′(T) is defined by induction such that V ′(v) = {v} and
V ′(T) at a syntax axiom is the union of V ′(Ti) over the child subtrees Ti. A substi-
tution σ is a function ST′ → ST′ such that σ(a[T1, . . . , Tn]) = a[σ(T1), . . . , σ(Tn)]
for each syntax axiom a, with the value at variables left undetermined, extended
to EX′ → EX′ by σ(〈c, T 〉) = 〈c, σ(T)〉.

Pre-statements and statements are defined exactly as before: A pre-statement
is a tuple 〈D,H,A〉 where D ⊆ DV′, H ⊆ EX′ is finite, and A ∈ EX′. The reduct
of 〈D,H,A〉 is 〈DM , H,A〉 where DM = D∩P(V ′(H∪{A})). A tree formal sys-
tem (this time unambiguous by definition) is a tuple 〈TC′,VR′,SA′,Type′,Syn′, Γ ′〉
where Γ ′ is a set of statements. The closure of a set H ⊆ EX′ relative to D
is defined as in the string case, but the base case instead takes H ⊆ C and
〈Type′(T), T 〉 ∈ C for every T ∈ ST′.

8 Mario Carneiro

To map an unambiguous formal system 〈CN,VR,Type, Γ, Syn〉 to a tree
formal system 〈TC′,VR′,SA′,Type′,Syn′, Γ ′〉, one takes TC′ = TC, VR′ to be
the set of VHv singleton trees for v ∈ VR, SA′ = SA, Type′(T) = Type(T),
Syn′ = Syn, and Γ ′ = {〈D, {t(h) | h ∈ H}, t(A)〉 | 〈D,H,A〉 ∈ Γ \ ST}, where
t(e) = {Type(e),Expr−1(Syn(e))}.

These two formal systems are isomorphic, in the sense that expressions and
statements can be mapped freely, respecting the definitions of theorems and
axioms, variables and typecodes.

2.5 Models of tree formal systems

Given the isomorphism of the previous section, the model theory of unambiguous
formal systems can be mapped to models of tree formal systems, with 〈U,#, η〉
satisfying an exactly equivalent set of properties. But the major advantage of the
tree formulation is that the substitution property implies that η is completely
determined except at syntax axioms, so for trees we will replace η with a new
function π.

Definition 9. Given a function U on TC′ satisfying Uc ⊆ USyn(c), and π a SA-
indexed family of functions, where πa :

∏
i UType(vai) → UType(a) for each a ∈ SA,

define ηµ for µ ∈ VL recursively such that:

– For all v ∈ VR, ηµ(v) = µ(v).
– For each T ∈ ST with a ∈ SA at the root, ηµ(T) = πa({ηµ(Ti)}i)
– For e = 〈c, T 〉 ∈ EX′, ηµ(e) = ηµ(T) if ηµ(T) ∈ Uc, otherwise undefined.

Definition 10. A model of a tree formal system is a tuple 〈U,#, π〉 where U is
a function on TC′ satisfying Uc ⊆ USyn(c), and # is a freshness relation (which
is extended from

⊔
v∈VT Uc to

⊔
v∈TC Uc by setting v #wc iff v #wSyn(c) for the

copies of w in the disjoint union), and π is a SA-indexed family of functions,
where πa :

∏
i UType(vai) → UType(a) for each a ∈ SA, such that for each µ ∈ VL,

and defining η as above:

– For each 〈D,H,A〉 ∈ Γ ′, if
• µ(α) # µ(β) for all {α, β} ∈ D, and
• ηµ(h) is defined for all h ∈ H,

then ηµ(A) is defined.
– For all v ∈

⊔
U, a ∈ SA, and f ∈

∏
i UType(vai), if v # fi for all i, then

v # πa(f).

Theorem 2. Let 〈U,#, π〉 be a model for the tree formal system. Then the as-
sociated 〈U,#, η〉 is a model in the sense of Definition 6.

Proof.

– The variable application law is true by definition of η, and the axiom appli-
cation law is true by assumption.

Models for Metamath 9

– For the substitution law, suppose σ and e ∈ EX′ are given. We want to show
that ηµ(σ(e)) = ησ(µ)(e), where σ(µ) ∈ VL is defined by σ(µ)(v) = ηµ(σ(v)).
We show this for Syn(e) = 〈Type(T), T 〉 by induction on T . In the base case,
T = v for v ∈ VT, so ησ(µ)(v) = σ(µ)(v) = ηµ(σ(v)). Otherwise let a ∈ SA
be the root of T , so

ησ(µ)(T) = πa({ησ(µ)(Ti)}i) = πa({ηµ(σ(Ti))}i) = ηµ(σ(T)).

Then for e = 〈c, T 〉, if ησ(µ)(T) = ηµ(σ(T)) is in Uc, then both are defined
and equal, otherwise both are undefined.

– Dependence on present variables is also provable by induction; in the base
case ηµ(v) = µ(v) only depends on V(v) = {v}; and for a tree with a ∈ SA
at the root, ηµ(T) = πa({ηµ(Ti)}i) only depends on V(T) =

⋃
i V(Ti). For

e = 〈c, T 〉 this property is maintained since V(e) = V(T) and ηµ(e) = ηµ(T)
or undefined.

– For the freshness substitution law, in the base case v#µ(v) = ηµ(v); and for
a tree with a ∈ SA at the root, if v # V(T) then v # V(Ti) so v # ηµ(Ti) for
each i, and then by definition v#πa({ηµ(Ti)}i) = ηµ(T). For e = 〈c, T 〉 this
property is maintained since V(e) = V(T) and ηµ(e) = ηµ(T) or undefined.

ut

By the isomorphism this approach also transfers to models of unambiguous
formal systems. So we are left with the conclusion that a model can be specified
by its functions πa, for each a ∈ SA; this is known in conventional model theory
as the interpretation function.

3 Examples of models

3.1 Propositional logic

We start with a model for classical propositional logic. We define:

CN = {(,),→,¬,wff,`}

VR = {ϕ,ψ, χ, . . . }

Γ = {wn, wi, ax-1, ax-2, ax-3, ax-mp},

where the axioms are

– wn: wff ¬ϕ
– wi: wff (ϕ→ ψ)
– ax-1: ` (ϕ→ (ψ → ϕ))
– ax-2: ` ((ϕ→ (ψ → χ))→ ((ϕ→ ψ)→ (ϕ→ χ)))
– ax-3: ` ((¬ϕ→ ¬ψ)→ (ψ → ϕ))
– ax-mp: {` ϕ,` (ϕ→ ψ)} implies ` ψ

10 Mario Carneiro

Additionally, TC = {wff,`} and VT = {wff} are implied by the preceding
definition.

Although the axiom strings appear structured with infix notation, this is not
required; we could just as easily have an axiom with string `)ϕ(→. That this is
not the case is what makes this a grammatical formal system, with Syn(wff) =
Syn(`) = wff. The syntax axioms are SA = {wn, wi}. In fact this formal system
is unambiguous, but we will not prove this here.

This formal system has a nontrivial model:

Uwff = Bool := {T, F} U` = {T}

x# y is always true

π¬(F) = T, π¬(T) = F

π→(F, F) = T, π→(F, T) = T, π→(T, F) = F, π→(T, T) = T

We will write “α = T” simply as “α is true” or “α”, treating the elements
of Bool as actual truth values in the metalogic. The πa functions generate η
as previously described, so that, for example, if µ(ϕ) = T, µ(ψ) = F, then
ηµ(wff (¬ϕ→ (ϕ→ ψ))) = π→(π¬(T), π→(T, F)) = π→(F, F) = T.

In order to verify that this indeed yields a model, we must check the axiom
application law for each non-syntax axiom (usually called “logical axioms” in this
context). By our definition of η given π, ηµ(〈c, T 〉) is defined iff ηµ(〈Syn(c), T 〉) ∈
USyn(c) (where Syn(c) = Type(T)); in this case this translates to ηµ(T) = T since
Syn(c) = {`}.

– ax-1: ηµ(` (ϕ→ (ψ → ϕ))) = π→(µϕ, π→(µψ, µϕ)) = T

– ax-2: π→(π→(µϕ, π→(µψ, µχ)), π→(π→(µϕ, µψ), π→(µϕ, µχ))) = T

– ax-3: π→(π→(π¬(µϕ), π¬(µψ)), π→(µψ, µϕ)) = T

– ax-mp: If µϕ and π→(µϕ, µψ) are true, then µψ = T.

In each case, there are a finite number of variables that range over {T, F} (such
as µϕ, µψ, µχ in the case of ax-3), so it suffices to verify that they are true under
all combinations of assignments to the variables, i.e. truth table verification.

3.2 MIU system

Let us solve the MU puzzle by using a model. Hofstadter’s MIU system [3] is
defined in Appendix D of the Metamath book [1], so we will just define the
model itself. We have TC = {wff,`} and VT = {wff}, and let Syn(`) = wff with
x, y variables of type wff. The axioms are:

– we: wff
– wM: wff xM
– wI: wff xI
– wU: wff xU
– ax: ` MI

https://en.wikipedia.org/wiki/MU_puzzle

Models for Metamath 11

– I : ` xI implies ` xIU
– II: ` Mx implies ` Mxx
– III: ` xIIIy implies ` xUy
– IV: ` xUUy implies ` xy

The syntax axioms are {we, wM, wI, wU}. Note that in we, there are no symbols
after the typecode, so this says that the empty string is a valid wff. This formal
system is weakly grammatical, but not grammatical, because wffs are built from
the right, while axiom II contains the string ` Mx, which cannot be parsed as
a wff. If there was a syntax axiom “wff xy”, then it would be grammatical, but
not unambiguous.

In order to solve the MU puzzle, we build the relevant invariant, which is
the number of I’s modulo 3, into the model. Let Uwff = {0, 1, 2}, U` = {1, 2},
let x # y be always true, and define ηµ(wff e) to be

∑
i f(ei) mod 3, where

f(v) = µ(v) if v is a variable, f(I) = 1, and f(c) = 0 for other constants. Let
ηµ(` e) = ηµ(wff e) when ηµ(wff e) ∈ {1, 2}.

Verifying that this yields a model is then equivalent to verifying that the
axioms preserve the invariant, and we can deduce that MU is not provable because
ηµ(` MU) is not defined for any µ.

3.3 Set theory

Of course, the more interesting case is the verification that the full structure of
set.mm has a nontrivial model. As the background, we need a model of ZFC set
theory; let this be 〈M, ε〉.

The typecodes are TC = {set, class,wff,`}, with the only non-variable type-
code being ` and Syn(`) = wff. With these definitions set.mm becomes an
unambiguous formal system. (Again, the proof of unambiguity is complex and
not undertaken here.) Let V =: Uset be any infinite set. This is the set of vari-
ables of the “object language” over which Metamath is understood to sit; they
are customarily labeled V = {v0, v1, v2, . . . }. Note that these are not actually
variables in our sense, they are constants, elements of the set V . Set variables
such as x in Metamath range over elements of V .

We will need a few preliminary sets before properly defining Uwff and Uclass.
Take U′wff = (V → M) → Bool, that is, the set of functions from V → M to
Bool. The subset of Uwff corresponding to true formulas, U`, is the singleton
{λf T} (i.e. the constant function true). Similarly, U′class = (V →M)→P(M).

Definition 11. Given A : (V → M) → B (A is a wff or class variable) and
W ⊆ V , we say A is constant outside W if for all f, g : V →M , if f(v) = g(v)
for all v ∈W , then A(f) = A(g).

We define a relation # on the disjoint union V t U′wff t U′class:

– If x, y ∈ V , then define x# y iff x 6= y.
– If x ∈ V and A ∈ U′class t U′wff , then define x # A if A is constant outside
V \ {x}.

12 Mario Carneiro

– The case A# x when x ∈ V and A ∈ Uclass t Uwff is covered by symmetry;
x# y is true for any other combination.

To define the real set Uwff , we take the set of A ∈ U′wff such that A is
“effectively finite-dimensional”, that is, A is constant outside some finite V ′ ⊆ V .
Similarly, Uclass is the set of effectively finite-dimensional A ∈ U′class. There is
a minimal set V ′ outside which A is constant; this set is called Free(A). It
immediately follows from the definition that A # x for x /∈ Free(A). We can
extend the definition slightly to set variables by taking Free(x) = {x} when
x ∈ V .

Theorem 3. # as defined above is a freshness relation.

Proof. Clearly # is a symmetric relation, so we need only verify that for every
c ∈ {set,wff, class} and every finite set W ⊆ VR, there is a v ∈ Uc with v #W .
If c = wff then take v = λf T, and if c = class then take v = λf M ; in each case
v # w for any w ∈

⊔
U, so the condition is satisfied.

If c = set, then for each w ∈ Uc the set Free(w) is finite, as is the union⋃
w∈W Free(w). Since V is infinite by assumption, choose some v ∈

V \
⋃
w∈W Free(w); then for w ∈W , v /∈ Free(w) implies v # w. ut

Definition 12. For f : V → M , x ∈ V and m ∈ M , the function f [x → m] :
V →M is defined by f [x→ m](y) = f(y) for y 6= x and f [x→ m](x) = m.

Finally, we define the πa functions. By definitional elimination, we can ignore
definitional syntax axioms without loss of generality.

– Take π¬(f) = f ◦π′¬, where π′¬ is the function called π¬ in § 3.1, and similarly
for π→(f) = f ◦ π′→.

– π∀(x, ϕ) is the wff corresponding to ∀x, ϕ and is defined so that π∀(x, ϕ)(f)
iff ϕ(f [x → m]) for all m ∈ M . (Since it comes up often, the restricted
quantifier ∀m ∈M will be abbreviated ∀Mm.)

– The class abstraction, cab: class {x | ϕ}, is defined so that πcab(x, ϕ)(f) =
{m ∈M | ϕ(f [x→ m])}.

– The set-to-class type conversion is a syntax axiom called cv: class x. The
function for this is defined so that πcv(x)(f) = {m ∈M | m ε f(x)}.

– Equality of classes is defined by wceq: wff A = B, and is defined so that
π=(A,B)(f) is true iff A(f) = B(f).

– We define π∈(A,B)(f) true if ∃Mm(A(f) = {n ∈M | n ε m} ∧m ∈ B(f)).

For the common case where one or both of the arguments to =,∈ are sets,
we note that π∈(πcv(x), A)(f) iff f(x) ∈ A(f), π∈(πcv(x), πcv(y))(f) iff f(x) ε
f(y), and π=(πcv(x), πcv(y))(f) iff f(x) = f(y). We need 〈M, ε〉 to satisfy the
extensionality axiom for this to work.

Lemma 1 (The deduction theorem). π→(ϕ,ψ)(f) if and only if ϕ(f) im-
plies ψ(f).

Models for Metamath 13

Proof. Suppose not. Then π→(ϕ,ψ)(f) = F, which by definition implies ϕ(f) = T

and ψ(f) = F, a contradiction. The converse is just ax-mp (verified by truth
tables). ut

Lemma 2 (The non-free predicate). x # ϕ iff π→(ϕ, π∀(x, ϕ))(f) is true
for all f (which is also equivalent to ηµ(` (ϕ′ → ∀x′ϕ′)) being defined, where
µ(ϕ′) = ϕ and µ(x′) = x).

Proof. By definition, x # ϕ iff for all f, g : V → M , f(v) = g(v) for all v 6= x
implies ϕ(f) = ϕ(g). In this case, given f , and using the deduction theorem, if
ϕ(f), then since f [x→ m] differs from f only at x, ϕ(f [x→ m]) = ϕ(f) is true
for each m, so π∀(x, ϕ)(f). Thus π→(ϕ, π∀(x, ϕ))(f) by Lemma 1. Conversely, if
f, g differ only for v = x, either ϕ(f) = ϕ(g) = F, or one of them (say ϕ(f)) is
true. Then by ax-mp, π∀(x, ϕ)(f), so taking m = g(x), ϕ(f [x → g(x)]) = ϕ(g)
is true. Hence ϕ(f) = ϕ(g), so x# ϕ. ut

Theorem 4. The tuple 〈U,#, η〉 defined via the above construction is a model
for the set.mm formal system.

Proof. As in the baby example for propositional calculus, we must verify that η
honors all the logical axioms. The tricky ones are the predicate calculus axioms:

– ax-1,ax-2,ax-3,ax-mp: Verification by truth tables, as in the propositional
calculus example

– ax-5: ` (∀x(ϕ→ ψ)→ (∀xϕ→ ∀xψ))
Assume π∀(x, π→(ϕ,ψ))(f) and π∀(x, ϕ)(f); then ϕ(f [x→ m]) and
π→(ϕ,ψ)(f [x→ m]), so by ax-mp, ψ(f [x→ m]). Conclude by Lemma 1.

– ax-6: ` (¬∀xϕ→ ∀x¬∀xϕ)
By Lemma 2, this is equivalent to x # π¬(π∀(x, ϕ)). If f, g differ only at x,
then π∀(x, ϕ)(f) if ϕ(f [x → m]) for all m; but f [x → m] = g[x → m], so
π∀(x, ϕ)(f) = π∀(x, ϕ)(g) and π¬(π∀(x, ϕ)(f)) = π¬(π∀(x, ϕ)(g)).

– ax-7: ` (∀x∀yϕ→ ∀y∀xϕ)
By Lemma 1, assume π∀(x, π∀(y, ϕ))(f). If x = y then this is the same
as π∀(y, π∀(x, ϕ))(f), otherwise it reduces to ϕ(f [x → m][y → n]) for all
m,n ∈M , and note that f [x→ m][y → n] = f [y → n][x→ m].

– ax-gen: ` ϕ implies ` ∀xϕ
If ϕ(f) for all f , then set f := g[x → m] to deduce ϕ(g[x → m]) for all m,
hence π∀(x, ϕ)(g).

– ax-8: ` (x = y → (x = z → y = z))
By Lemma 1, assume π=(x, y) and π=(y, z). Then f(x) = f(y) = f(z), so
π=(x, z).

– ax-9: ` ¬∀x¬x = y
This is equivalent to ∃m ∈M , π=(x, y)(f [x→ m]), or ∃m ∈M, m = f [x→
m](y). If x = y, then any m ∈M will do (M is assumed nonempty because
it is a model of ZFC), and if x 6= y then take m = f(y).

– ax-11: ` (x = y → (∀yϕ→ ∀x(x = y → ϕ)))
Assume f(x) = f(y) and ∀Mn, ϕ(f [y → n]), take some m ∈M , and assume

14 Mario Carneiro

f [x → m](x) = f [x → m](y). We want to show ϕ(f [x → m]). If x = y,
then the second hypothesis implies ϕ(f [y → m]) = ϕ(f [x→ m]). Otherwise,
m = f(y) = f(x), so ϕ(f [x→ m]) = ϕ(f) = ϕ(f [y → m]).

– ax-12: ` (¬x = y → (y = z → ∀x y = z))
Assume f(x) 6= f(y) = f(z), and take m ∈ M . We want to show f [x →
m](y) = f [x→ m](z). If x = y or x = z then f(x) = f(y) or f(x) = f(z), a
contradiction, so f [x→ m](y) = f(y) = f(z) = f [x→ m](z).

– ax-13: ` (x = y → (x ∈ z → y ∈ z))
Assume f(x) = f(y) and f(x) ε f(z); then f(y) ε f(z).

– ax-14: ` (x = y → (z ∈ x→ z ∈ y))
Assume f(x) = f(y) and f(z) ε f(x); then f(z) ε f(y).

– ax-17: x, ϕ distinct implies ` (ϕ→ ∀xϕ)
This is just the forward direction of Lemma 2.

We can also verify the class axioms:

– df-clab: The left hand expression x ∈ {y | ϕ} expands to f(x) ∈ {m ∈
M | ϕ(f [y → m])}, that is, ϕ(f [y → f(x)]), while the right side says f(y) =
f(x) → ϕ(f) and ∃Mm, (f [y → m](x) = m ∧ ϕ(f [y → m])). If x = y,
the left conjunct becomes ϕ(f) and the right becomes ∃Mm,ϕ(f [x → m]),
which is provable from the other conjunct by setting m = f(x) so that
f [x→ m] = f . At the same time the left expression also reduces to ϕ(f [x→
f(x)]) = ϕ(f). If x 6= y, then f [y → m](x) = f(x) and the right conjunct
becomes ϕ(f [y → f(x)]), and the left conjunct is provable from this since
f(y) = f(x) implies f [y → f(x)] = f [y → f(y)] = f , so both sides are
equivalent to ϕ(f [y → f(x)]).

– df-clel: We want to show that π∈(A,B)(f) iff there is an m such that
{n | n ε m} = A(f [x → m]) and m ∈ B(f [x → m]), which matches our
definition after replacing A(f [x → m]) = A(f) and B(f [x → m]) = B(f),
since x#A and x#B.

– df-cleq: (This has an extra hypothesis ax-ext which is already built into
our model.) We want to show that π=(A,B)(f) iff for all m, m ∈ A(f [x →
m]) ↔ m ∈ B(f [x → m]). We are also assuming x # A and x # B in this
axiom, so this reduces to m ∈ A(f) ↔ m ∈ B(f), or (using extensionality
in the metalanguage) A(f) = B(f), which is the definition of π=(A,B)(f).

The “true” axioms of set theory are all phrased in terms of only =,∈, and
so factor straight through to axioms in 〈M, ε〉:

– ax-ext (Axiom of Extensionality): The original expression is

π→(π∀(z, πwb(π∈(z, x), π∈(z, y))), π=(x, y))(f),

which simplifies, according to the definitions, to ∀Mm(mεf(x)↔ mεf(y))→
f(x) = f(y), for all f . With a change of variables this is equivalent to

∀Mx∀My∀Mz(z ε x↔ z ε y)→ x = y,

Models for Metamath 15

exactly the same as the original universally quantified Metamath formula,
but with ε in place of ∈ and ∀M instead of ∀. Since the other axiom expres-
sions are long and the process is similar, I will only quote the final equivalent
form after reduction.

– ax-pow (Axiom of Power sets): Equivalent to:

∀Mx∃My∀Mz(∀Mw(w ε z → w ε x)→ z ε y)

– ax-un (Axiom of Union): Equivalent to:

∀Mx∃My∀Mz(∃Mw(z ε w ∧ w ε x)→ z ε y)

– ax-reg (Axiom of Regularity): Equivalent to:

∀Mx(∃My, y ε x→ ∃My(y ε x ∧ ∀Mz(z ε y → ¬z ε x)))

– ax-inf (Axiom of Infinity): Equivalent to:

∀Mx∃My(x ε y ∧ ∀Mz(z ε y → ∃Mw(z ε w ∧ w ε y)))

– ax-ac (Axiom of Choice): Equivalent to:

∀Mx∃My∀Mz∀Mw((z ε w ∧ w ε x)→
∃Mv∀Mu(∃M t(u ε w ∧ w ε t ∧ u ε t ∧ t ε y)↔ u = v))

– ax-rep: This one is more complicated than the others because it contains a
wff metavariable. It is equivalent to: for all binary relations ϕ ⊆M2:

∀Mw∃My∀Mz(ϕ(w, z)→ z = y)→ ∃My∀Mz(z ε y ↔ ∃Mw(w εx∧ϕ(w, z))).

To show the Metamath form of the axiom from this one, given ϕ′ ∈ Uwff

and f : V → M , define ϕ(w, z) ↔ ∀M t, ϕ′(f [w′ → w][y′ → t][z′ → z]), and
apply the stated form of the axiom.

ut

Thus if ZFC has a model, so does set.mm.

4 Applications of Metamath models

4.1 Independence proofs

We conclude with a few applications of the “model” concept. The primary ap-
plication of a model is for showing that statements are not provable, because
any provable statement must be true in the model. (The converse is not usually
true.) This extends to showing that a system is consistent, because any nontriv-
ial model has unprovable statements (and in a logic containing the principle of
explosion ` (ϕ → (¬ϕ → ψ)), this implies that there is no provable statement
whose negation is also provable). But it can also be applied for independence

16 Mario Carneiro

proofs, by constructing a (necessarily nonstandard) model of all statements ex-
cept the target statement.

For an easy example, if we change the definition of our model of propositional
calculus so that instead π¬(T) = π¬(F) = T, we would have a new model that
still satisfies ax-1, ax-2, and ax-mp (because they do not involve ¬), but violates
ax-3. If we take µϕ = F and µψ = T, we get

ηµ(wff ((¬ϕ→ ¬ψ)→ (ψ → φ))) = π→(π→(π¬(µϕ), π¬(µψ)), π→(µψ, µϕ))

= π→(π→(T, T), π→(T, F))

= π→(T, F) = F,

so ηµ(` ((¬ϕ → ¬ψ) → (ψ → φ))) is not defined. Thus this shows that ax-3 is
not provable from ax-1, ax-2, ax-mp and the syntax axioms alone (although this
should not come as a surprise since none of the other axioms use the ¬ symbol).

4.2 Gödel’s completeness theorem

One important construction that can be done for any arbitrary (string-based)
model is to use a formal system as a model of itself. This model will have the
property that the theorems (with no hypotheses) are the only statements that
are true in the model, leading to an analogue of Gödel’s completeness theorem for
statements with no hypotheses and all variables distinct. It is also the “original”
model of Metamath, from which the terminology “disjoint variable condition”
and the “meta” in Metamath are derived.

Given a formal system 〈CN,VR,Type, Γ 〉, choose some set VR′, with types for
each variable, such that {v ∈ VR′ | Type(v) = c} is infinite for each c ∈ VT. (It
is possible to use VR′ = VR here, provided that VR satisfies this condition, but
it is also helpful to distinguish the two “levels” of variable in the contruction.)
Using CN′ = CN, define EX′ analogously with the new sets. We will call formulas
in EX′ the “object level” and those in EX the “meta level”.

We also define a substitution σ : EX→ EX′ in the same way as § 2.1.8. Here
variables of the meta level are substituted with expressions in the object level.

We can build another formal system at the object level, where 〈D′, H ′, A′〉 ∈
Γ ′ if there is some 〈D,H,A〉 ∈ Γ and a substitution σ : EX → EX′ such that
∀v ∈ VR, σ(v) ∈ VR′ (σ substitutes variables for variables) and σ(v) 6= σ(w)
for each {v, w} ∈ D, and D′ = DV′ (all variables are distinct), H ′ = σ(H) and
A′ = σ(A). This new formal system differs from the original one only in having
a different set of variables.

Theorem 5. Let A ∈ Uc if there is some theorem 〈D, ∅, A〉 in the object level
formal system with Type(A) = c, define e # e′ when V(e) ∩ V(e′) = ∅, and let
ηµ be the unique substitution EX→ EX′ satisfying ηµ(VHv) = µ(v), restricted to
the e such that ηµ(e) ∈ UType(e). Then 〈U,#, η〉 is a model for the meta level
formal system 〈CN,VR,Type, Γ 〉.

Proof.

Models for Metamath 17

– The type correctness and variable application laws are true by definition,
and substitution and dependence on present variables are a consequence of
properties of substitutions.

– The relation # is a freshness relation because the finite set
⋃
e∈W V(e) misses

some variable in each type.
– The freshness substitution rule says that if V(w) ∩ V(µ(w)) = ∅ for all w ∈
V(e), then V(w)∩V(ηµ(e)) = ∅, which follows from V(ηµ(e)) ⊆

⋃
w∈V(e) V(µ(w))

which is a basic property of variables in a substitution.
– The axiom application law translates directly to the induction step of closure

in § 2.1.13 for the object level formal system.
ut

Corollary 1 (Gödel’s completeness theorem). A statement 〈DV, ∅, A〉 of a
formal system is a theorem iff it is true in every model.

Proof. The forward direction is trivial by the definition of a model. For the
converse, a statement true in the model of Theorem 5, with VR′ ⊇ VR extended
to contain infinitely many variables of each type, is derivable by definition. ut

Acknowledgments. The author wishes to thank Norman Megill and the anony-
mous reviewers for pointing out some minor and major omissions in early drafts
of this work.

References

1. Megill, N.: Metamath: A Computer Language for Pure Mathematics. Lulu Pub-
lishing, Morrisville, North Carolina (2007), http://us.metamath.org/downloads/
metamath.pdf

2. Tarski, A.: “A Simplified Formalization of Predicate Logic with Identity,” Archiv
für Mathematische Logik und Grundlagenforschung, 7:61-79 (1965).

3. Hofstadter, D.: Gödel, Escher, Bach. Basic Books, Inc., New York (1979).

http://us.metamath.org/downloads/metamath.pdf
http://us.metamath.org/downloads/metamath.pdf

	Models for Metamath
	Introduction
	Grammars and trees

	Formal definition
	Metamath recap
	Why a global type function?

	Models of formal systems
	Grammatical parsing
	Tree representation of formal systems
	Models of tree formal systems

	Examples of models
	Propositional logic
	MIU system
	Set theory

	Applications of Metamath models
	Independence proofs
	Gödel's completeness theorem

