
Does Continuous Requirements Engineering need

Continuous Software Engineering?

Peter Forbrig

University of Rostock, Chair in Software Engineering,

Albert-Einstein-Str. 22, 18055 Rostock

Peter.forbrig@uni-rostock.de

Abstract. Agile development methods allow rapid adaptations of requirements

to fast changing needs in businesses and society. Their combination with Contin-

uous Requirements Engineering seems to be very effective. However, agile meth-

ods are applied to the development process only. Maintenance is often not orga-

nized in the same way. Continuous Delivers might be a solution for that.

Additionally, the focus on users is important. Currently, often customers are men-

tioned only.

The paper discusses aspect of Continuous business process modeling, Continu-

ous Requirements Engineering, and Human-Centred Design in relation to Con-

tinuous Software Engineering. It especially focusses on the problem whether

Continuous Requirements Engineering without Continuous Software Engineer-

ing makes sense.

Keywords: Continuous Requirements Engineering, Continuous Software Engi-

neering, Continuous Human-Centered Design, Continuous Business-Process

Modeling, Agile Software Development.

1 Introduction

Originally, software was developed according to the waterfall life cycle model. The

spiral model changed this approach dramatically. However, the two process phases of

development and application were still distinguished. From the software engineering

point of view application of software goes together with maintenance. Maintenance

begins when software development ends. A lot of attention has been paid to develop-

ment methods and related life cycle models. However, the maintenance activities stayed

unstructured at the same time. Because of their advantages for rapid changing applica-

tion domains, agile software development methods became more and more popular.

There have been nearly no discussions about agile methods for maintenance. In [19]

the question of never ending projects was discussed. It was stimulated by ideas of Con-

tinuous Requirements Engineering [22] and Continuous Software Engineering [11]. In

this paper details of both approaches are discussed and it will be discussed whether

Continuous Requirements Engineering and Continuous Software Engineering are de-

pended of each other. In other words, Continuous Requirements Engineering does not

make much sense without Continuous Delivery. However, Continuous Delivery might

be necessary for improving problems in the implemented software that are not related

to changing requirements. Therefore, Continuous Requirements Engineering might not

always be necessary. The idea of integrating CRE into Continuous Software Engineer-

ing will be presented. Some arguments will be presented to support this ideas and some

further ideas.

2 Continuous Software Engineering

2.1 Related Work

Recently, Fitzgerald and Stol [12] updated their model of Continuous Software Engi-

neering [11]. It contains now Continuous Budgeting. Additionally, Continuous Innova-

tion had been extended to Continuous experimentation and innovation. Fig. 1 provides

an overview of the identified activities.

The term Continuous Software Engineering can be traced back to 1998. During that

time, it was called “Continuous Engineering for Industrial Scale Software Systems” by

Weber and Müller [10]. A collection of different approaches to Continuous Software

Engineering are contained in [6] edited by Bosch. Some ideas can be found in the work-

shop paper by Lichter et al. [21].

Fig. 1. Continuous∗: a holistic view on activities from business, development, operations, and

innovation (from [12]).

Fitzgerald and Stol use the term BizDev (business development) for a continuous in-

fluence between business strategy and development. The more often used term DevOps

(development and operations) refers to a “set of practices that emphasizes the collabo-

ration and communication of both software developers and other information-technol-

ogy (IT) professionals while automating the process of software delivery and infra-

structure changes”1. It relates development of software to operations in the sense of

Continuous Monitoring the way the software interacts with by the users.

For DevOps the quality assurance plays an important role. This is reflected by Fig. 2.

It represents DevOps as intersection of software development, quality assurance, and

operations.

Fig. 2. Venn diagram describing DevOps1

It can be considered to start with a plan and create the software afterwards. After veri-

fying the quality of the software it can be packaged and release. After configuring (de-

ploying) the software its usage can be monitored. Based on the monitoring a new plan

for creating software can be specified. The interconnection of development and opera-

tions of DevOps is visualized by Fig. 3.

Fig. 3. Stages in a DevOps tool chain1

1 https://en.wikipedia.org/wiki/DevOps

There are several attempts to provide such a pipeline of a tool chain. Such a tool

chain can provide an immediate feedback from users to developers. However, there is

no need to have always automatic feedback. Observation by humans can help as well.

In some way, the monitoring activity can be considered as some kind of requirements

elicitation. From this point of view, DevOps can be considered as part of the require-

ments engineering activities. However, those activities are part of the Business Strategy

as well. We will come back to this aspect in the discussions.

2.2 Continuous Human-Centred Design

During the last two decades, agile development methods have been used in a lot of

successful projects. They became more and more popular. Nevertheless, most of the

time those methods are focused on customers and not on users.

In the first agility principle of [1] it is e.g. mentioned: “Our highest priority is to satisfy

the customer through early and Continuous Delivery of valuable software.”

From the business perspective, it makes sense to focus on the customer because the

customer will pay the bill. However, to produce quality software it is very important to

serve the needs of the users as well. In the same way as agile development methods are

popular for software engineering experts Human-Centred Design (HCD) is popular for

usability and user experience experts. HCD focusses on tasks users have to perform,

usability and user experience. Unfortunately, these aspects do not play their important

role for software engineering in general. In software engineering the focus is currently

often on the technical aspects of an application only.

ISO 9241-210 is the standard for the HCD process that consists of a planning phase

and four phases that are performed in an iterative way.

A visual impression of the HCD process model is provided by Fig. 4.

Fig. 4. Human-Centred Design process model 2

2 https: //thestandardinteractiondesignprocess.wordpress.com/

Plan the human-centred

design process

Understand & specify

context of use

Specify requirements

Produce design

solutions

Evaluate design

against requirements

Design solution

Iterate where

appropriate

The context of use is tried to be understood in the first phase. Stakeholders are iden-

tified. Their roles and tasks are analyzed and typical application scenarios are specified.

They include artefacts and tools from the domain. Additionally, surrounding people,

services, and objects together with their location are identified.

This analysis allows the specification of requirements. Additionally to the goals of

users, functional and nonfunctional requirements are identified.

Based on the requirements, first design solutions are produced. They include first

ideas of user interfaces.

The design solutions are evaluated against the requirements. If they are met, the de-

velopment process comes to an end and the implementation of the application core can

be performed.

Otherwise, three possible continuations exist. In case of serious problems, one has

to analyze the context of use again and has to proceed with the first phase. This can be

considered as the worst case. If the context of use was understood correctly but some

requirements were specified in the wrong way, one has to rewrite them or identify some

new ones. Finally, it can be possible that only new design solutions are necessary.

Unfortunately, the process model of Fig. 4 does not consider the integration of HCD

into a development process. We do not want to focus on this aspect here. The interested

reader is referred to the following papers [18], [24], [25], [27], [28], and [29].

From our point of view Human-Centred Design hast to be a prominent part of Contin-

uous Software Engineering.

2.3 Continuous Requirements Engineering

Currently engineering-based approaches for software development are mainly applied

to large enterprises that have relatively long change cycles. Much higher flexibility is

required if modifications are necessary more frequently. The engineering processes

grow in such cases into continuous engineering that requires Continuous Requirements

Engineering. This can only be successful if rigid engineering principles are combined

with agility, emergence, and spontaneity to support sustainability and viability of the

systems under development.

Innovative enterprises need new approaches, methods, and tools to be capable

to embrace the growing variety of opportunities and challenges offered by fast changing

and hardly predictable environment. For this type of companies, Continuous Require-

ments Engineering seems to be very supportive. However, it has to be integrated with

management and design approaches.

It is common ground that wrong requirements cause a lot of problems. Many projects

totally fail because of wrong specified requirements. Others waste a lot of money be-

cause the correction of resulted errors in the implementation is very time consuming

and labor intensive.

Therefore, new ideas in identifying continuously the correct requirements are very

important.

This was the reason for organizing workshops with this topic. The first one was or-

ganized in 2015 at REFSQ in Essen [22] and the second one in Gothenburg [4]. While

discussing different aspects of requirements participants of the workshop were able to

agree that continuous elicitation and continuous specification of requirements is ex-

tremely important for successful software projects.

Leah Goldin et al. [20] discuss the question whether in the development of large

scale systems the institutionalized, proactive requirements reuse pays off. In their case

study, they found out that at least for the studied project it paid off to meet the moving

target of requirements based on existing specifications. This might be one way to reduce

the time to market. However, there are still a lot of other aspects to consider.

By Qureshi et al. [26] a framework CARE (Continuous Adaptive Requirements En-

gineering) was provided. The framework is as well goal- as user-oriented. It is designed

for self-adapting systems. The authors distinguish requirements engineering during de-

sign-time and run-time.

Indeed, monitoring of running systems might be very useful. However, this is not

specific to adaptive systems. It seems to be useful for any kind of application. In this

way, Continuous Requirements Engineering has to find its way to general software sys-

tems. Its important role should be reflected in the model of CSE.

2.4 Continuous Business Process Modeling

The term Continuous Business Process Modeling is not used so very often. However,

the idea of Continuous Business Process Improvement (CPI) has been discussed for

several years. The book from Harrington [9] might be an example for that. It is from

1991

The term CPI is perfectly defined by Professional Business Solutions Inc. (PBSI):

“To maintain their competitive advantage organizations must streamline their opera-

tions and processes. Continuous Process Improvement (CPI) is a strategic approach for

developing a culture of Continuous Improvement in the areas of reliability, process

cycle times, costs in terms of less total resource consumption, quality, and productivity.

Deployed effectively, it increases quality and productivity, while reducing waste and

cycle time. Since many business processes rely on information and participation from

more than one department and even different organizations, CPI is designed to facilitate

these processes by integrating the various components into one streamlined system that

runs smoothly and efficiently on a partially or completely automated flow of steps.” 3

Milewski et al. [23] discuss the technological process innovation from a life cycle

perspective. They provide a framework based on case studies.

It seems to be common sense that Continuous Process Innovation is an integrated

part of companies. Bergener et al. [3] claim: “Business Process Management (BPM)

has evolved as an integrated management discipline that aims to enable organizations

to continuously innovate and improve their operations.”

It is widely accepted that models of organizations in connection with business pro-

cess models are very important for BPM and the corresponding IT support. According

to Fleischmann et al. [13] models play an increasing role in adaptive process environ-

ments.

3 http://www.epbsi.com/capabilities/bmp.html

Fitzgerald and Stol [11] argue that “Enterprise Agile and Beyond Budgeting con-

cepts have emerged as recognition that benefits of agile software development will be

sub-optimal if not complemented with by an agile approach in related organizational

functions such as finance and HR”. They additionally argue: “that the link between

business strategy and software development ought to be continuously assessed and im-

proved”.

Additionally to those aspects, the idea of modeling seems to be attractive. From our

point of view, Continuous Business Process Modeling seems to be an important activity

as well in software engineering as in business administration. It should be integrated

into the general approach of Continuous Software Engineering of business applications.

Continuous Business-Process Modeling should be part of the Business Strategy.

This idea is supported by Bukša et al. [7]. Those authors presented a method for inte-

grated semi-automated business process and regulations compliance management.

They especially referred to the changing business process models: “However, there is

a gap between continuously changing business process models that are maintained in a

specific set of tools, and continuously changing regulatory requirements that usually

are maintained outside organizations. There are tools that provide support for compli-

ance management by means of Business Rules Engine, however, in most cases business

rules must be entered manually and there is no live linkage with external legislative and

regulative sources”. Additionally, they asked for specific tool support related to Con-

tinuous Business Process Modeling.

An approach that allows the rapid execution of business-process specification was

provided by Fleischmann et al. [14]. It is called Subject-oriented Business Process

Modeling and uses the language S-BPM [13]. Processes are modelled from the per-

spective of subjects that communicate via messages. These subjects are Most of the

time these subjects are humans. This approach perfectly fits to both ideas of Continuous

Business-Process Modeling and Human-Centered Design. Users can adapt the models

that describe their activities during runtime.

2.5 Discussion

Within the previous paragraphs, the idea of Continuous Software Engineering, Contin-

uous Human-Centred Design, Continuous Requirements Engineering, and Continuous

Business Process Modeling were recapitulated. Originally, there was the suggestion in

[18] to consider Continuous Requirements Engineering as part of the Business Strategy.

However, this seems not to be true. Requirements engineering is part of development

and operations as well. Therefore, it is suggested that it plays the same role as Contin-

uous Innovation. Therefore, it is visualized in Fig. 5 accordingly.

Additionally, in [18] it was also mentioned the importance of Business Process Mod-

eling for software development.

Fleischmann, Schmidt, and Stary [14] even call their business process model as re-

quirements specification and executable software design.

Obviously, Continuous Business Process Modeling has to be combined with Con-

tinuous Requirements Engineering to become successful.

The usability of software systems will be very important in the future as well. Hu-

mans have to be supported in their daily work as good as possible. Good technical so-

lutions and good business processes are not enough. They have to be supported by good

user interfaces. Therefore, following extensions visualized in Fig. 5 are suggested for

the concept of Continuous Software Engineering.

Fig. 5. Extended view on activities of Continuous Software Engineering.

Continuous Software Engineering might make sense without Continuous Require-

ments Engineering when no further development of functionalities is planned and only

bugs have to be eliminated in a software system. However, this seems to be a very rare

situation. Changing environments in reality ask for continuous elicitation of new or

changing requirements.

On the other hand, Continuous Requirements Engineering does not make sense if no

conclusions are reached. The software has to be adapted to the new needs as soon as

possible. Therefore, Continuous Delivery is needed. This can be reached best with Con-

tinuous Software Engineering.

3 Summary

Based on references and own experiences some ideas regarding shaping the concept

of Continuous Software Engineering were presented. It was suggested to integrate Con-

tinuous Human-Centred Design, Continuous Business Process Modeling, and Contin-

uous Requirements Engineering into the approach of Fitzgerald and Stol [12]. It was

argued, that CRE is not only a part of CSE but that both concepts influence each other.

Additionally, none of both concepts makes really sense without the other one. It would

be nice, if participants of the CRE’17 workshop could discuss a model for integrating

BizDev and DevOps, A model for BizDevOps would be nice to have.

4 References

1. Agile Manifesto, http://agilemanifesto.org/, last visited January 11, 2017.

2. Baresi, L., and Ghezzi, C. C.: The disappearing boundary between development-time and

run-time. In Future of Software Engineering Research, 2010.

3. Bergener, K., vom Brocke, J., Hofmann, S., Stein, A., vom Brocke, C.: On the importance

of agile communication skills in BPM education: Design principles for international semi-

nars. KM & E-Learning: 4(4), 415-434, 2012.

4. Bjarnason, E., et al.: Joint Proceedings of REFSQ-2016 Workshops, Doctoral Symposium,

Research Method Track, and Poster Track co-located with the 22nd International Confer-

ence on Requirements Engineering: Foundation for Software Quality (REFSQ 2016),

Gothenburg, Sweden, March 14, 2016. CEUR Workshop Proceedings 1564, CEUR-WS.org

2016

5. Bogsnes, B.: Implementing Beyond Budgeting: Unlocking the Performance Potential, Wiley

2008.

6. Bosch, J. (Ed.): Continuous Software Engineering, Springer Verlag, 2014.

7. Claes, J. , Vanderfeesten, I. Reijers, H. A., Pinggera, J., Weidlich, M., Zugal, St., Fahland,

D., Weber, B., Mendling, J., and Poels, G.: Tying process model quality to the modeling

process: the impact of structuring, movement, and speed, in Business Process Management,

Springer, Berlin, pp. 33-48, 2012.

8. Bukša, I., Darģis, M., and Penicina, L.: Towards a Method for Integrated Semi -Automated

Business Process and Regulations Compliance Management for Continuous Requirements

Engineering, in 22 p. 25 – 33.

9. Harrington, H. J.: Business Process Improvement: The Breakthrough Strategy for Total

Quality, Productivity, and Competitiveness, McGraw Hill Inc. 1991.

10. Fichtenbauer, Ch., and Fleischmann, A.: Three Dimensions of Process Models Regarding

their Execution. In Proceedings of the 8th International Conference on Subject-oriented

Business Process Management (S-BPM '16). ACM, New York, NY, USA, Article 7, 8

pages. DOI=http://dx.doi.org/10.1145/2882879.2882892

11. Fitzgerald, B. and Stol, K.-J.: Continuous software engineering and beyond: trends and chal-

lenges. In Proc. 1st International Workshop on Rapid Continuous Software Engineering –

RcoSE 2014, ACM, New York, NY, USA, pp. 1-9.

12. Fitzgerald, B. and Stol, K.-J.: Continuous software engineering: A roadmap and agenda,

Journal of Systems and Software, Volume 25, July 2015, Pages 1–14.

13. Fleischmann, A., Schmidt, W., and Stary, C.: Open S-BPM= open innovation. In S-BPM

ONE-Running Processes, pp. 295-320. Springer Berlin Heidelberg, 2013.

14. Fleischmann, A., Schmidt, W., and Stary, C.: Requirements Specification as Executable

Software Design – A Behavior Perspective, in 22 p. 9-18, 2015.

15. Forbrig, P.: Generic Components for BPMN Specifications Perspectives in Business Infor-

matics Research - 13th International Conference, BIR 2014, Lund, Sweden, September 22-

24, 2014. Proceedings , pp. 202—216, 2014.

16. Forbrig, P.: Reuse of models in S-BPM process specifications, Proceedings of the 7th Inter-

national Conference on Subject-Oriented Business Process Management, S-BPM ONE

2015, Kiel, Germany, April 23-24, 2015 , pp. 6-16. 2015.

17. Forbrig, P. and Herczeg M.: Managing the Agile Process of Human-Centred Design and

Software Development, In: Beckmann Ch. and Gross T. (Eds) INTERACT 2015 Adjunct

Proceedings, pp. 223 -232, 2015.

18. Forbrig, P.: Continuous Software Engineering with Special Emphasis on Continuous Busi-

ness-Process Modeling and Human-Centered Design, In Proc. S-BPM ONE 2016.

19. Forbrig, P.: When Do Projects End? - The Role of Continuous Software Engineering. BIR

2016: 107-121.

20. Goldin, L.,.and Berry, D. M.: Reuse of requirements reduced time to market at one industrial

shop: a case study, Requirements Engineering, Springer, vol. 20, Issue 1, pp. 23-44, 2015.

21. Lichter, H.; Brügge, B.; and Riehle, D.: Workshop on Continuous Software Engineering,

http://ceur-ws.org/Vol-1559/paper15.pdf

22. Matulevičius, R. et al. (Eds.): REFSQ Workshop proceedings, http://ceur-ws.org/Vol-1342/,

2015.

23. Milewski, S. K., Kiran Jude Fernandes, K.J., and Matthew Paul Mount, M. P.: Exploring

technological process innovation from a lifecycle perspective, International Journal of Op-

erations & Production Management, Vol. 35 Iss: 9, pp.1312 - 1331, 2015.

24. Paelke, V. and Nebe, K.: Integrating Agile Methods for Mixed Reality Design Space Explo-

ration. In Proceedings of the 7th ACM conference on Designing interactive systems (DIS

'08). ACM, New York, NY, USA, 240-249.

25. Paul, M. Systemgestützte Integration des Usability-Engineerings in den Software-Entwick-

lungsprozess, PhD Thesis, University of Lübeck, 2015.

26. Qureshi, N. A., Perini, A., Ernst, N.A., and Mylopoulos, J: Towards a Continuous Re-

quirements Engineering Framework for Self-Adaptive Systems, In First International Work-

shop on RE @ Runtime at 18th IEEE International Requirements Engineering Conference

(RE ’10), pp.9-16 ,Sydney, September 2010.

27. Salah, D., Paige, R. and Cairns, P.: A Practitioner Perspective on Integrating Agile and User

Centred Design, Proceedings of the 28th International BCS Human Computer Interaction

Conference (HCI 2014), pp. 100–109, 2014.

28. Singh, M.: U-SCRUM: An agile methodology for promoting usability, Integrating usability

engineering and agile software development: A literature review. In Proc. AGILE 2009,

IEEE Press, pp. 555-560, 2009.

29. Sy, D.: Adapting usability investigations for agile user-centered design. J. Usability Stud. 2

(3), pp. 112–132, 2007.

30. Weber, H., and Mueller, H. (Eds.): Continuous Engineering for Industrial Scale Software

Systems, Dagstuhl Seminar 98092, 1998, http://www.dagstuhl.de/de/programm/kalen-

der/semhp/?semnr=98092

