Are Graph Query Languages Applicable for
Requirements Traceability Analysis?

Michael Rath!, David Akehurst?, Christoph Borowski?, and Patrick Mader!

! Technische Universitit Ilmenau, Ilmenau, Germany
michael.rath@tu-ilmenau.de, patrick.maeder@tu-ilmenau.de
2 jtemis AG, Liinen, Germany
david.akehurst@itemis.de, christoph.borowskiQitemis.de

Abstract. [Context & motivation] Maintaining traceability in de-
velopment projects is a costly and resource expensive task. Once es-
tablished, it can be used to answer questions about the product and
its development process. [Question/problem] Typically, generic query
languages for relational databases are used to formulate these questions.
Additionally, specific traceability query languages have been proposed,
but they are not widely adopted and show other weaknesses. [Princi-
pal ideas/results] Relationships among development artifacts span a
rich traceability graph. Directly operating on this data structure rather
than on a relational representation by using a graph query language may
overcome the limitations of the current workflow. [Contribution] In this
paper, typical traceability questions from a user survey were extracted.
Using these, the resulting query expression for four different languages
are briefly compared.

1 Introduction

Requirements traceability plays an important role in software development pro-
cesses. Traceability analysis aids stakeholders in satisfying information needs
such as requirements validation, coverage analysis, impact analysis, and compli-
ance verification. Considerable effort needs to be invested to establish traceabil-
ity [1]. However, the captured information is only of limited use without being
able to effectively query and analyze it. Today’s developments tools, like IBM
Rational DOORS™, Enterprise Architect, HP Quality Center™, and Atlas-
sian Jira? typically allow users to write queries in SQL-like languages. These
languages require in depth knowledge of the underlying relational data schema
[5]. Though, the nature of data, i.e., the artifacts and their relations, inher-
ently span a graph data structure. This concept is not only difficult to model in
traditional table oriented databases, but its complexity also propagates to the
formulation of queries (e.g., multiple joins). NoSQL approaches gained a lot of
attraction in the database world. One approach, graph databases [9], efficiently

3 JQL query, https://confluence.atlassian.com /jiracore/blog/2015/07 /search-jira-like-
a-boss-with-jql

Copyright 2017 for this paper by its authors. Copying permitted for private
and academic purposes.

manages information in nodes and edges between them. Graph query languages
were designed to traverse such graphs and to gather requested information.

In this paper, we initially investigate whether graph query languages are ap-
plicable for traceability analysis. We conducted a user survey with stakeholders
of software projects and collected queries common to their daily work. These
queries were systematically analyzed to extract basic features to be provided
by a suitable query language. We selected two graph query languages and for-
mulated concrete queries based on participants’ replies and compare them with
those written in SQL and VTML, a visual language specifically designed for
traceability related information retrieval.

2 Query languages selection

The Structured Query Language (SQL) was introduced in the 1970s for
managing data in relational database management systems (RDBMS). SQL ma-
tured over the last decades, has a large base of users familiar with its syntax, and
is widely used in industry today. We selected SQL for our study as an industrial
baseline for analyzing traceability information.

The visual query language (VTML) [4, 5] was explicitly designed to in-
tuitively query traceability information. Users model queries without explicit
knowledge of the data’s schema and its distribution. The visual representation
of a query closely resembles UML class diagrams enhanced by specific anno-
tations for selecting and filtering data. VIML behaves like a meta-language,
unbound to a specific underlying query language. Their inventors demonstrated
a transformation from VTML to SQL. We selected VIML for our study as a
scientific baseline for how traceability information can be analyzed today.

Cypher? is a declarative graph query language accompanying the Neo4j
graph database. Cypher’s syntax is inspired by SQL. Most keywords, their se-
mantics, and the resulting query structure are borrowed making it intuitive to
SQL users and easing the transition. We selected Cypher for that reason.

Gremlin refers to a graph traversal machine and language designed and
developed by the Apache TinkerPop project [8]. The graph traversal machine
can run on different graph databases, including Neo4j. As a query language,
gremlin is a domain-specific language (DSL) built on Groovy targeting the Java
Virtual Machine. In Gremlin, queries can be expressed either in an imperative
or declarative way. We selected Gremlin because of its turing completeness.

3 User Survey

In September and October 2016 we conducted a user survey with engineers
working in different industrial domains. Participants covered the areas automo-
tive electronics and mechanics; embedded and distributed systems; logistics; and
telecommunications. In particular, we interviewed nine participants employed as

* https://neodj.com/docs/developer-manual /current/cypher/

Use Case
c=id
name
I

Component Method
[e=id e=id

name LoC

:E Traceable !

H tifact ty '

: artifacttype | o
I Permitted | | |
i tracetype | [€=id

1€ Key property

'
............ K

(a) TIM (b) Example graph according to TIM
Fig. 1: TIM extracted from a participant’s traceability queries (left) and example
traceability graph complying to the TIM (right).

result

software developers (4), requirements engineers (3), and software architects (2).
Out of the 35 asked questions about sociodemographic, development process,
and reporting, we were interested in information like

What is the role of requirements traceability during your daily work?
What relevant information do you use for analyses, including data and metrics?

Given answers were systematically analyzed. At first, we derived an example
set of queries to answer typical traceability questions, e.g. existing link patterns
among artifacts and traceability metrics. Using these, a traceability information
model (TIM) per participant was extracted. Additionally, we determined basis
operations (e.g. artifact selection, filtering) that are to be supported by a query
language expressing the queries.

3.1 Traceability Information Model (TIM)

A traceability information model is a meta-model defining prescribed traceability
for a project and providing the context in which queries can be specified and
executed [7]. We applied a two step approach to extract a TIM per participant of
our study. In Step 1, we asked users to formulate trace queries, which would help
them in their daily business. In Step 2, we annotated development artifacts and
prescribed relationships involved in these queries. One example of an extracted
TIM is shown in Figure 1a. The TIM consists of five development artifacts and
five traceability relations. Features belong to architectural components, can be
refined into more fine-grained features, and can eventually be decomposed into
use cases. A method implements one or more use cases and is tested by one or
more tests. Figure 1b exemplifies a possible traceability graph complying to this
TIM. The nodes represent artifacts with their type coded in color. The edges
refer to trace links. To illustrate queries, which include ones checking consistency,
this graph is on purpose not complete with respect to the TIM.

3.2 Basic query language operations

We identified five operations that a query language must at least support to be
applicable for the gathered queries: @ selecting artifacts with a specific type,

SELECT ‘'UseCase’.name FROM ‘UseCase’ AS uc
INNER JOIN ‘Link—UseCase —Method* AS I1 G\

ON uc.id = I1.UseCaselD i
INNER JOIN ‘Method' ON ‘Method".id = I1.MethodID seiCase Metoo llost
INNER JOIN ‘Link—Method — Test* AS 12 4 name ¥ LoC > 50

ON ‘Method".id = 12.MethodID
INNER JOIN ‘Test' ON ‘Test".id = 12.TestID
WHERE ‘Method‘.LoC > 50 AND ‘Test".result = "failed”

(a) SQL (b) VIML
MATCH (uc:UseCase) < —[:IMPLEMENTS] — (m:Method), g.V().hasLabel('UseCase’).as("uc’)
(m)< —[:TESTS] — (t:Test) Jin('IMPLEMENTS').as('m’).in(TESTS").as(’t")

WHERE m.LoC > 50 AND t.result = "failed” select ("t’,'m’,"uc’).by(" result ").by('LoC').by('name’)
RETURN uc.name . filter {it.get()['t'] == 'failed’ && it.get()['m’] > 50} select('uc’)

(c¢) Cypher (d) Gremlin
Fig. 2: Example query: ”Find all uses cases implemented by a method with > 50
lines of code that have failed test cases” using the four selected query languages.

e.g., use cases or tests; @ retrieving relations between artifacts, e.g., methods
implementing use cases; © selecting artifact and trace properties to be part of
a query’s result, e.g., the name of a component; @ filtering artifacts based on
their properties satisfying a predicate, e. g., methods with more than 50 lines of
code; and @ applying aggregation functions, e.g., counting artifacts.

3.3 Example trace queries

We populated sqlite® as well as matching Neo4j databases with example artifacts
and trace links according to the TIMs extracted per participant. We used these
to manually execute all queries formulated by our participants, the written SQL
statements and the ones generated from the VITML representation on the sqglite
database; and the Cypher and Gremlin statements on the Neo4j database. Be-
low, we discuss two trace queries selected from the set gained in the user survey.

Query 1: Which use cases implemented by method(s) with more than 50 lines of
source code have failed test cases.

Finding use cases with failed tests is an important operation. Additionally, a fil-
ter is applied selecting only methods that are considered complex based on the
lines of code as basic measure. The resulting queries for all selected languages
are shown in Figure 2. The query involves multiple artifacts (use case, method,
and test) as well as traces. In fact, traceability queries deal to a large extent with
the existence of traces between artifacts [4]. In SQL, querying relations requires
multiple join statements and in depth knowledge about the data’s schema. Since
the syntax of SQL aims to resemble natural English language, the remaining
part of query is obvious. VITML’s graphical notation is comprehensible to ev-
erybody with a basic knowledge of UML. Artifacts and traces are easy to spot,
because of its declarative, query by example approach. Cypher is very similar to
SQL, because of the borrowed keywords and syntax. The major difference being
the powerful MATCH clause, used to describe paths in the graph, in our context

® https://sqlite.org/

WITH RECURSIVE child(ID, depth) AS (MATCH p = (f:Feature) — [:REFINEx] — > (:Feature)
SELECT ID, 0 AS depth FROM ‘Feature’ WITH f, length(p) AS depth WHERE depth > 1
UNION RETURN f.name, depth
SELECT link.SourcelD, depth + 1

FROM child, ‘Link — Feature—Feature' AS link, ‘Feature*

WHERE child.ID = link.TargetID (b) Cypher

AND ‘Feature'.ID = link.SourcelD

)
SELECT ‘Feature’.Name, MAX(depth) AS max.depth g.V().hasLabel(’ feature ')

FROM ‘Feature’ .repeat(out('REFINE')).emit().path().as('s", 'p")
INNER JOIN child ON child.ID = ‘Feature’.ID .map{it.get().size () }.as('depth’). filter {it.get() > 2}
GROUP BY 'Feature'.ID HAVING max.depth > 1 _select ('s’, 'p’, depth’). by{it. get(0) } by (). by()

(a) SQL (¢) Gremlin

Fig. 3: Example query ”Which features have a refinement depth larger than one
and what is their depth?” using three out of the four query languages. Currently
it is not possible to formulate this query with VTML.

traces between artifacts. It substitutes the complicated INNER JOIN clauses used
in SQL. Contrasting all other languages, the Gremlin query uses an imperative
style, i. e., navigating the underlying graph data structure step by step®. It starts
at graph nodes representing use cases (g.V() .hasLabel ()) and explicitly follows
specific edges (e.g.,in(’ IMPLEMENTS’)). However, a Gremlin query is actually a
set of Groovy statements, which might be an obstacle for users.

Query 2: Which features have an refinement depth > 1 and what is their depth?

The second query implements the traceability metric depth counting layers that
traceability extends up- and downwards from a given layer [2]. For our example,
a feature can be refined multiple times (see self-relation in TIM), which requires
recursive querying to follow a relation arbitrarily often (see Figure 3). With com-
mon table expressions (CTE), a rather recent concept of SQL [6], the query is
possible but quite complex with SQL. Currently, it is impossible to formulate
Query 2 with VITML due to its missing notion of recursion. Advanced pattern
matching and variable length relations make it easy to formulate this query in
Cypher. Its core being expressed as (:Feature)-[:REFINE*]->(:Feature). The
partial expression repeat(out (’REFINE’)).emit().path() serves the same pur-
pose in Gremlin.

4 Evaluation and Conclusions

Overall we tried to formulate 45 trace queries from the user survey in all four
languages. With this knowledge, we conducted an early evaluation using three
evaluation criteria for query languages as defined by Jarke et al. [3] (see Table 1).

Effort measures the amount of syntactic elements (tokens) the user needs to
enter in order to pose the query. VIML and Cypher perform best in this cate-
gory, because of their versatile syntax elements and terse notation. Readability
describes the difficulty to understand a query. Being a visual language, VTML is
the clear winner. Gremlin, with its programing language syntax, is hard to read.

% Gremlin also supports declarative programming using the match() step.

Language Effort Readability Expressiveness

SQL medium medium medium
VTML low high low
Cypher low medium high
Gremlin medium low medium

Table 1: Comparison of the four query languages across all queries regarding
effort, readability, and expressiveness.

We define expressiveness as the ability to successfully state a query as well to
express complex computations in intuitive ways. Cypher with its few but pow-
erful clauses is the best and VTML the worst, because currently some essential
features are missing and therefore some queries cannot be executed.

In this paper, we studied the applicability of graph query languages for re-
quirements traceability analysis. Appropriate query languages are rare and users
are often forced to use generic ones like SQL. Based on a relational table model,
this is not a natural fit when queried data are graphs of artifacts connected
by trace links. Therefore we selected two graph query languages (Cypher and
Gremlin) and a visual language (VTML), designed for traceability analysis, and
compared them to SQL. A preliminary user survey collected queries from engi-
neers working in the field of requirements analysis. We found that graph query
languages can be successfully applied for traceability analysis. Future work will
provide a more detailed discussion and will include an in depth language com-
parison and performance analysis.

Acknowledgment We are funded by the BMBF grants: 011S14026A, 011IS16003B,
DFG grant: MA 5030/3-1 and by the EU EFRE/TAB grant: 2015FE9033.

References

1. Cleland-Huang, J., Gotel, O.C.Z., Huffman Hayes, J., Mader, P., Zisman, A.: Soft-
ware traceability: Trends and future directions. pp. 55-69. ACM Press (2014)

2. Hull, E., Jackson, K., Dick, J.: Requirements Engineering. Springer-Verlag New
York, Inc., New York, NY, USA, 3rd edn. (2010)

3. Jarke, M., Vassiliou, Y.: A framework for choosing a database query language. ACM
Computing Surveys 17(3), 313-340 (Sep 1985)

4. Méder, P., Cleland-Huang, J.: A Visual Traceability Modeling Language. In: Proc.
13th International Conference on Model Driven Engineering Languages and Sys-
tems. Springer (2010)

5. Méder, P., Cleland-Huang, J.: A visual language for modeling and executing trace-
ability queries. Software & Systems Modeling 12(3), 537-553 (Jul 2013)

6. Melton, J., Simon, A.: SQL:1999: Understanding Relational Language Components.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA (2001)

7. Ramesh, B., Jarke, M.: Toward reference models for requirements traceability. IEEE
Trans. Softw. Eng. 27(1), 58-93 (Jan 2001)

8. Rodriguez, M.A.: The Gremlin graph traversal machine and language (invited talk).
pp. 1-10. ACM Press (2015)

9. Wood, P.T.: Query languages for graph databases. SIGMOD Rec. 41(1), 50-60 (Apr
2012), http://doi.acm.org/10.1145/2206869.2206879

