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ABSTRACT
Scientific discoveries are increasingly dependent upon the
analysis of large volumes of data from observations and sim-
ulations of complex phenomena. Scientists compose the
complex analyses as workflows and execute them on large-
scale HPC systems. The workflow structures are in contrast
with monolithic single simulations that have often been the
primary use case on HPC systems. Simultaneously, new
storage paradigms such as Burst Buffers are also becoming
available on HPC platforms. In order to maximize the per-
formance of data analyses workflows today it is critical to
determine the characteristics of the workflows. Obtaining a
deeper understanding of the workflows helps us identify op-
portunities to leverage the capabilities of the Burst Buffer.
In this paper, we analyze the performance characteristics
of the Burst Buffer and two representative scientific work-
flows. We measure the performance of these workflows using
the Burst Buffer, allowing us to make recommendations for
future optimal usage of workflows using Burst Buffer.
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1. INTRODUCTION
The science drivers for high-performance computing (HP-

C) are broadening with the proliferation of high-resolution
observational instruments and emergence of completely new
data-intensive scientific domains. Scientific workflows that
chain the processing and data are becoming critical to man-
age these on HPC systems. Thus, while providers of su-
percomputing resources must continue to support the ex-
treme bandwidth requirements of traditional supercomput-
ing applications, centers must now also deploy resources
that are capable of supporting the requirements of these
emerging data-intensive workflows. In sharp contrast to
the highly coherent, sequential, large-transaction reads and
writes that are characteristic of traditional HPC checkpoint-
restart workloads [11], data-intensive workflows have been
shown to often utilize non-sequential, metadata-intensive,
and small-transaction reads and writes [13, 23]. Parallel file
systems in today’s supercomputers have been optimized for
more traditional HPC workloads [12]. The rapid growth in
I/O demands coming from data-intensive workflows are de-
manding new performance and optimization requirements
of future HPC I/O subsystems [13]. It is therefore essen-
tial to develop methods to quantitatively characterize the

I/O needs of data-intensive workflows to ensure that cor-
rect resources can be deployed with the correct balance of
performance characteristics.

The emergence of data-intensive workflows has coincided
with the emergence of flash devices being integrated into
the HPC I/O subsystem as a “Burst Buffer”, a performance-
optimized storage tier that resides between compute nodes
and the high-capacity parallel file system (PFS). The Burst
Buffer was originally conceived for massive bandwidth re-
quirements of checkpoint-restart workloads for extreme-scale
simulation [19]. The tier buffers bursts of I/O traffic to en-
able the PFS to service a lower bandwidth load spread over a
longer time period. However, the flash-based storage media
underlying Burst Buffers are also substantially faster than
spinning disk for the non-sequential and small-transaction
I/O workloads of data-intensive workflows. This motivates
using the media for use cases beyond buffering of I/O re-
quests, such as providing a temporary scratch space, cou-
pling workflow stages, and in-transit processing [4].

Today’s commercially available Burst Buffer solutions [17]
expose their flash through the POSIX API which enables
workflows to easily leverage the technology’s capabilities.
We need to understand and optimize the use of Burst Buffers
to serve the needs of data-intensive workflows. Thus, it is
essential to understand workflows’ specific I/O requirements
in the context of both flash-based storage media and the I/O
stack through which applications utilize the Burst Buffer.

In this paper, we characterize two of the production data
analytics workflows used at the National Energy Research
Scientific Computing Center (NERSC) at Lawrence Berke-
ley National Laboratory, and we present an analysis of their
performance on the production Burst Buffer resource de-
ployed as a part of NERSC’s Cori system. The paper is
organized as follows. Section 2 presents the background for
the paper - related work and the details of the NERSC Burst
Buffer Architecture. Section 3 details our approach to scal-
able I/O characterization for both workflows and Section 4
presents a detailed analysis of the I/O requirements of these
workflows. We discuss efficient use of Burst Buffers in Sec-
tion 5 and provide conclusions in Section 6.

2. BACKGROUND
In this section we describe related work and the NERSC

Burst Buffer architecture.

2.1 Related Work
Scientific Workflows. Data-intensive scientific workflows

Copyright held by the author(s).

69



WORKS 2016 Workshop, Workflows in Support of Large-Scale Science, November 2016, Salt Lake City, Utah

have been shown to process large amounts of data with var-
ied I/O characteristics [16, 21, 9, 7]. Deelman et al. [14]
highlights several challenges in data management for data-
intensive scientific workflows. Several strategies have been
proposed to optimize data management for scientific work-
flows in HPC environments [28, 20, 8]. However, Burst
Buffers add another layer in the storage hierarchy, adding
to the data management challenges for scientific workflows.
Hence, it is important to characterize scientific workflows to
optimally use Burst Buffers based on their I/O character-
istics. In this paper, we evaluate and characterize multiple
workflows with different I/O profiles to understand the op-
timal use of Burst Buffers.
Burst Buffers. Several uses of Burst Buffers have been
shown in order to mitigate the I/O bottlenecks of data-
intensive workloads [19, 6, 22, 25]. Most studies surrounding
the design and use of Burst Buffers have so far focused on the
I/O characteristics of individual applications [26] or small
components within workflows [23]. However, research into
optimizing scientific workflows with diverse I/O and storage
requirements for Burst Buffers is still in its infancy, and a
limited body of work presently exists [13, 5]. Beyond sin-
gle applications and workflows, researchers are investigating
I/O-aware scheduling on systems with a Burst Buffer. Her-
bein et al. [18] demonstrate that system utilization can be
improved by using application drain bandwidth between the
Burst Buffer and PFS as a scheduling constraint. Thapaliya
et al. [24] show how different Burst Buffer allocation policies
and the order of servicing I/O requests affects total applica-
tion throughput on a system with a shared Burst Buffer.
DataWarp. DataWarp is Cray’s implementation of a Burst
Buffer, and few guidelines exist for how to use it optimally
for scientific workflows. Bhimji et. al show performance
results for a collection of applications selected as part of
NERSC’s Early User Program [10]. The results focus on
application I/O bandwidth on DataWarp and the PFS. The
NERSC website provides a list of known issues and over-
all guidelines for achieving high performance, but does not
show when, why and how to use DataWarp for specific work-
flow use cases [1]. Our work has analyzed two data analytics
workflows and identified I/O signatures along with the spe-
cific workflow requirements to advise how to use DataWarp.

2.2 The NERSC Burst Buffer Architecture
NERSC’s Cori system features a Burst Buffer based on

Cray DataWarp [17]. This architecture is built upon discrete
Burst Buffer nodes (BB nodes), each containing two Intel
P3608 SSDs that deliver 6.4 TiB of usable capacity and 5.7
GiB/s of bandwidth. Currently, Cori has a total of 144 BB
nodes, over 900 TiB of usable capacity, and over 800 GiB/sec
of peak performance.

Cray’s DataWarp middleware aggregates the SSDs on each
of the BB nodes and provides user jobs with dynamically
provisioned private parallel file systems. Users can request
a certain capacity of Burst Buffer in 200 GiB increments
(which we call fragments) when submitting jobs. Each frag-
ment is allocated on a different BB node to allow the ag-
gregate performance of the BB allocation to scale with the
requested capacity. DataWarp also designates one of the BB
nodes as the metadata server for the allocation. This alloca-
tion is mounted on the job nodes when the job is launched,
and it is typically torn down upon job completion. However,
users may also request a persistent mode allocation, which

allows a BB allocation to persist across multiple jobs.
DataWarp also offers private mode reservations where each

compute node gets its own metadata server within the Burst
Buffer allocation and, by extension, its own private names-
pace. This enables higher aggregate metadata performance
since each compute node’s metadata is serviced by a unique
BB node.

3. METHODOLOGY
In this section, we detail our performance analysis method-

ology and workloads used for our analyses.

3.1 Workflows
The two workflows studied in the paper were selected be-

cause they stress the I/O subsystem in very different ways:
CAMP is limited by metadata performance and SWarp is
limited by data transfer performance. When discussing the
workflows, we use the term “workflow pipeline” to refer to a
single unit of the larger workflow.

3.1.1 CAMP

Figure 1: CAMP workflow: i) staging operations move the
data from the parallel file system to the Burst Buffer and
vice-versa, ii) builddb and reproject transform the swath
products to a sinusoidal tiling system.

The CAMP (Community Access MODIS Pipeline) work-
flow processes Earth’s land and atmospheric data obtained
from MODIS satellite data [3, 27, 16]. It transforms the
MODIS data from a swath space and time coordinate system
(latitude and longitude) into a sinusoidal tiling system (tiles
using sinusoidal projection). The MODIS data for CAMP
consists of small geometa files in plain text format and swath
products as Hierarchical Data Format (HDF) files. Each ge-
ometa file is only a few KBs and is used by all the swath
products from a particular satellite. Each swath product
has several files per day, each of which is approx. 1.1 MB in
size and contains the product data in swath space and time
coordinate system.

The CAMP workflow consists of two processing steps –
a) builddb, that assembles and maps swaths to their cor-
responding sinusoidal tiles and b) reproject, that converts
the MODIS products from a swath coordinate system to a
sinusoidal tiling system. Figure 1 shows the high-level rep-
resentation of the CAMP workflow that includes the data
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staging operations to and from the Burst Buffer. The work-
flow pipeline in this paper transforms one MODIS product’s
swath coordinates for one day into one specific tile. CAMP
is written in Python and generates an intermediate SQLite
database to provide the mapping for the reproject stage. We
use Conda, which uses the Anaconda Python distribution,
to install CAMP on DataWarp.

3.1.2 SWarp
The SWarp workflow combines overlapping raw images of

the night sky into high quality reference images. It is used in
the Dark Energy Camera Legacy Survey (DECaLS) to pro-
duce high quality images of 14,000 deg2 of northern hemi-
sphere sky. In this survey, each SWarp workflow pipeline
produces an image for a 0.25 deg2 “brick” of sky. The av-
erage input to each workflow pipeline is 16 × 32 MiB input
images and 16 × 16 MiB input weight maps.

The SWarp workflow pipeline consists of a data resam-
pling stage and a data combination stage. The data resam-
pling stage interpolates the raw images and creates resam-
pled images which can be trivially stacked. The data com-
bination stage reads back the resampled images and then
performs a reduction over the pixels to produce a single
stacked image. The raw, resampled and stacked images are
all in Flexible Image Transport System (FITS) file format.
The DAG when using a Burst Buffer is similar to CAMP:
input images and weight map files are staged-in prior to the
data resampling stage and the combined image is staged-out
after the data combination stage. SWarp is written in C and
multithreaded with POSIX threads.

3.2 Workload Configuration
The workflow pipelines are run in their production config-

uration on Cori and all I/O is directed to DataWarp mount
points. The DataWarp reservation is configured to use a
shared namespace and one fragment of capacity. A job reser-
vation is used for SWarp and a persistent reservation is used
for CAMP (in order to retain the CAMP Python software
environment between jobs). The Integrated Performance
Monitoring (IPM) profiling tool [2] is used to collect run
time, memory usage and time in different I/O calls for each
workflow stage. The workflow pipelines are then replicated
on 1 to 64 compute nodes (with 1 workflow pipeline per com-
pute node) and I/O is directed to a fixed storage reservation
of 1 DataWarp fragment. This allows us to study how run
time is affected by the saturation of the storage resource.

4. RESULTS
The high-level characteristics of the stages in a single

workflow pipeline are shown in Table 1. The workflow stages
are found to spend 10 - 30 % of time in I/O. This is the best
achievable I/O time and can only get worse as more work-
flow pipelines contend for the same storage resource.

Figures 2 and 3 show how I/O time changes with concur-
rency for the most time-consuming stage of each workflow.
I/O time is divided into time spent in metadata operations
and data operations. The experiments are repeated three
times at each node count and the plots show the mean time
per workflow pipeline stage. The error bars simply show the
range of mean times over the three experiments.

Figure 2 shows the scaling of SWarp-resample. The re-
sults show that wall clock time remains relatively constant
until about 16 workflow pipelines and that I/O time is dom-

SWarp
rsmpl

SWarp
coadd

CAMP
db

CAMP
reprj

Compute threads 16 16 1 1

I/O threads 1 1 1 1

Wall time (s) 10.7 4.7 15.3 9.2

I/O time (s) 2.2 1.2 2.1 1.5

I/O time (%) 20.3 26.0 13.5 16.6

Peak mem. (MiB) 108.8 1064.7 96.1 93.0

Total file size (MiB) 1686.5 1016.8 74.1 77.5

Table 1: Time and memory measurements achieved with 1
compute node and 1 DataWarp fragment

inated by data rather than metadata operations. Figure 3
shows the scaling of CAMP-builddb is limited by metadata
performance. One source of these metadata operations is
from the startup of Python applications, which is known to
be a scalability issue in Python HPC applications [15]. It
happens because Python searches for files providing a pack-
age in every directory in the Python path. In spite of this,
the dominant source of metadata load in CAMP-builddb are
the transactions to the SQLite database.

Figure 2: Scaling of SWarp-resample with number of work-
flow pipelines

5. DISCUSSION
In this section, a) we discuss the key characteristics of the

workflows analyzed and use the information to highlight the
effective use of Burst Buffers and, b) we apply this knowl-
edge to explain how to achieve the optimum performance
with the DataWarp implementation of a Burst Buffer.

5.1 Efficient use of Burst Buffers
The key findings from our experimental analyses are:
1. A single workflow pipeline does not provide

the I/O parallelism needed to make efficient
use of Burst Buffers. The data analytics workflows
studied in this paper consist of single-process applica-
tions which perform I/O with a single thread of exe-
cution. This is poorly matched with the need to have
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Figure 3: Scaling of CAMP-builddb with number of work-
flow pipelines

multiple I/O streams to obtain the peak performance
from Burst Buffer Flash storage. Unfortunately, sin-
gle I/O stream workflow pipelines are a common fea-
ture of high throughput data analytics workflows. We
show that better utilization of Burst Buffer resources
is possible by executing multiple concurrent workflow
pipelines against the same unit of Burst Buffer storage.
Our results indicate that a single unit of DataWarp
storage on Cori can sustain the I/O requests from ap-
proximately 16 concurrent workflow pipelines before
there is any slow down.

2. A scaled out workflow pipeline is often limited
by metadata performance. Our analysis has found
significant metadata costs originating from database
transactions, Python initialization and opening many
small files. The aggregated metadata operations from
multiple workflow pipelines can easily saturate a sin-
gle metadata server, as shown in the CAMP-builddb
workflow stage.

3. It is valuable to explicitly control the data in
the Burst Buffer tier. The workflows read input
data sets and produce a number of intermediate files
which can be discarded once there are final results,
e.g. the resampled images in SWarp and the SQLite
database in CAMP. Therefore, we do not expect au-
tomatic file movement between the Burst Buffer and
the PFS to benefit these two data analytics workflows.
This is because the one-time cost of staging the input
data at access time may not be hidden by significant
data reuse. Automatic file movement would also trans-
fer the intermediate files to the PFS unnecessarily.

4. It is valuable to leave data in the Burst Buffer
tier for longer than a single batch job. We have
found that input files and software environments are
reused across workflow pipelines.

• The input data for data analytics workflows are
generally Write Once Read Many times (WORM).
In the SWarp workflow a single input image often
contributes to multiple regions of the sky. There-
fore it is wasteful to re-stage the same input file
multiple times for each workflow pipeline.

• The software environment is reused in every sin-
gle workflow pipeline. In the CAMP workflow the
Python environment is responsible for some of the
I/O. The role of“support I/O”(e.g. Python pack-
ages) is rarely mentioned in the context of Burst
Buffers. It is useful to stage the software envi-
ronment once to avoid the overhead and wear of
repeatedly staging the software environment.

Long-term data residency is not a good fit for today’s
Burst Buffers because they do not provide data redun-
dancy. This imposes a data management burden upon
the developer.

5.2 Efficient use of DataWarp
DataWarp storage reservations on Cori consist of multi-

ple storage fragments of size 200 GiB. The scaling studies
show that both SWarp and CAMP are limited by DataWarp
performance rather than capacity. SWarp and CAMP have
an aggregate capacity requirement of up to 2.6 GiB and 150
MiB per workflow pipeline, respectively (Table 1). However,
the performance saturates before fully utilizing the 200 GiB
of capacity at approximately 16 workflow pipelines per Data-
Warp fragment. This means that excess capacity must be
reserved to sustain performance in a scaled out workflow.
Metadata bottlenecks, such as seen in CAMP-builddb, can
be addressed by combining the reservation of excess capacity
with the private mode feature of DataWarp.

6. CONCLUSION
In this paper we analyzed the performance of two sci-

entific workflows running on the Cori supercomputer with
the DataWarp Burst Buffer. We show that a single work-
flow pipeline does not have the parallelism to utilize the
capabilities of the Flash storage hardware. We also show
that the workflows have different I/O performance charac-
teristics: SWarp is bound by data transfer performance and
CAMP (specifically CAMP-builddb) is bound by metadata
performance as the workflows are scaled out. The results are
used to give general advice about using Burst Buffers more
efficiently and to provide specific advice for DataWarp.
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