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1 Introduction

The goal of information gathering is to obtain data from the environment gener-
ating an accurate model for the application of interest. In many applications the
information gathering process requires to obtain measurement of the phenom-
ena of interest in harsh or dangerous conditions (e.g., environmental monitoring
applications of water in a lake or search and rescue operations in disaster re-
sponse). Moreover, in recent years, the interest towards robotic sensors such
as Unmanned Ground Vehicles (UGVs), Unmanned Aerial Vehicles (UAVs) or
Autonomous Surface Vessels (ASVs) for information gathering application is
steadily increasing.

For example, in the context of environmental monitoring a successful mon-
itoring operation must acquire large datasets to build an accurate model of
the environmental phenomena of interest. For an exhaustive overview on ad-
vancements and applications of mobile sensors for environmental monitoring
see [3]. Moreover, in the context of aerial monitoring, Unmanned Aerial Vehicles
(UAVs), which can fly autonomously at low altitude, are an emerging technology
being adapted for a wide range of applications such as remote sensing, scientific
research, and search and rescue tasks [9, 10, 15].

In general, when using mobile robotic systems, different path selection strate-
gies could be identified [12]. Offline strategies rely on a predefined path for the
agent that is independent from the data that the sensors read. Conversely, using
online strategies, the path selection procedure is dependent on the data that has
been previously collected from the sensor.

In this work we show two different applications for online path selection
procedures that rely on a common orienteering formulation. Specifically the
contribution is to highlight the formulation of the orienteering problem in the
context of information gathering through the use of mobile sensors.

2 Orienteering problem

In the Orienteering problem (OP) we have a start and an end point specified
along with a set of checkpoints each with an associated score. Moreover, we
have a given time budget and we aim at moving from the start to the end
within the budget and by maximizing the total score collected moving through
the checkpoints. More formally, the OP can be defined with a weighted graph
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G = (V,E) where V = {v1, . . . , vN} is the set of nodes (start point, end point,
and checkpoints) and E is the set of edges. In this formulation, the nonnegative
score Si of location i is associated with a vertex vi ∈ V and the travel time tij
between location i and j is associated with each edge eij ∈ E. A solution for the
orienteering problem is an Hamiltonian path over a subset of V , including the
start node (v1) and the end node (vN ), and having a length not exceeding the
bound Tmax, in order to maximize the total collected score.

The orienteering problem can also be defined as a combination of node selec-
tion and shortest path computation between the graph nodes. OP can be seen
as a combination of the Knapsack Problem (KP) and the Traveling Salesman
Problem (TSP) [2], where the KP goal is to maximize the total score collected
while the TSP aims at minimizing the travel distance. This formulation is also
referred to as a generalized travelling salesman problem (GTSP) [4]. Intuitively,
the orienteering problem is NP-hard as it contains the well known traveling
salesman problem as a special case.

This problem has been studied in routing and scheduling applications and
it is also known as the selective traveling salesperson problem ([8], [13]) or the
maximum collection problem ([7]). Numerous variants and practical applications
can be modeled as an orienteering problem. For a general review, we suggest the
surveys proposed by Vansteenwegen et al. [14] and Gunawan et al. [6].

3 Applications

In what follows, we propose two mobile sensor applications in which the ori-
enteering problem is a viable option for computing an efficient path. The key
aspect that binds the following applications to the orienteering problem is the
value of a location, which is related to the information that can be acquired by
the platform in that point of space.

3.1 ASV for environmental monitoring

The first application we consider is the environmental monitoring and, specifi-
cally, the Level Set Estimation (LSE) problem. In LSE we have to classify regions
of the space where the analyzed phenomena is above or below a given threshold
value. For example, when analyzing the PH value of waters in a lake, the goal
of the level set estimation is to identify the locations where the value exceeds a
dangerous threshold level.

In [1] we proposed an orienteering formulation of the level set estimation
problem to compute informative paths for a mobile sensor such as the boat in
Figure 1. The described technique is specifically designed for continuous measur-
ing sensors where we aim at obtaining a near optimal classification while taking
the path length into account to meet the typical energy constraint we must con-
sider when operating with mobile sensors. Specifically, the SBOLSE algorithm
[1] can be summarized as follow:

1. The environmental phenomena is modeled using a Gaussian Process [11].
2. Following the approach of [5] the algorithm classifies the locations that can

be classified with the current information acquired.
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3. For the points that still cannot be classified, the algorithm defines an am-
biguity measure that identifies the uncertainty about the classification of
the point. This value represents the informativeness that we can obtain by
taking a measurement in that location.

4. We build an orienteering instance, which is a graph where the nodes represent
the unclassified locations and the ambiguity measure represents the score.

5. Using an orienteering heuristic, we obtain an informative path for the mobile
sensor and we analyze all the data along that path.

6. We update the Gaussian Process with the newly acquired information and
iterate the process until everything is classified.

Table 1. Results of F1-score of the classification accuracy and total path length. On
the left using the real world PH dataset (see Figure 1) extracted from waters of the
Persian Gulf near Doha (Qatar). On the right using a synthetic CO2 dataset. x is the
average of all experiments and SEx is the standard error of the mean.

F1-score Path Length
x SEx x SEx

SBOLSE 97.23 0.066 473.6 6.203
CS 98.22 0.039 1560.8 18.582
CSb30 97.54 0.061 687.9 14.296

F1-score Path Length
x SEx x SEx

SBOLSE 97.99 0.100 1355.6 26.156
CS 98.66 0.071 5588.1 136.864
CSb30 98.25 0.089 1782.7 34.052

The SBOLSE algorithm we proposed in [1] has been compared with the
state of the art techniques for the level set estimation problem on two differ-
ent datasets, namely a real-world dataset of water’s PH value and a synthetic
dataset. The results in Table 1 show that the proposed algorithm significantly
outperforms other techniques in terms of total path length required to obtain a
near optimal classification.

Fig. 1. (left) Platypus Lutra equipped with PH, Dissolved Oxygen, temperature and
electrical conductivity sensors. (middle) Scalar field of the real-world PH dataset.
(right) ROS & V-REP UAV simulation.

3.2 UAV for livestock monitoring

The second application we propose is a UAV system for livestock monitoring
applications. UAVs can be equipped with many sensors such as gps, laser scanner
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and digital camera. With those sensors, one of the main advantages of monitoring
systems based on the UAV is to quickly obtain high-resolution sensory data on
a selected area. For this reason many studies using UAV systems have been
conducted in various fields such as environmental, agricultural and pollution
monitoring, forest fire detection and disaster applications [9, 10, 15]. Here we
focus on a system that for a given selected area can detect and track livestocks.
The framework we developed can be summarized as follows:

– We trained a real-time object detection system based on OpenCV 1 to detect
our target. A drone with an equipped camera can now detect targets while
scanning the selected area.

– Using the detector, locations where the targets are discovered becomes high-
lighted by rectangles.

– We consider an “accuracy” value, that is the number of rectangles that
overlaps in a small portion of the image. This value identifies the confidence
about the detection of the target.

– After the initial scan of the area, we can use this accuracy level for the ori-
enteering instance to compute a path that moves the UAV over the locations
where it is most likely to find the livestock.

We performed some preliminary tests by comparing the use of an orienteering
heuristic against a greedy approach. To run these tests we performed a simulation
using ROS and V-REP (see Figure 1) and the results are shown in Table 2. With
this framework we would be able to detect targets in a selected area and then
to use the remaining energy of the autonomous UAV to keep track of the most
interesting locations where targets have been identified.

Table 2. Greedy and Orienteering results of simulations

Score Distance
x SEx x SEx

Greedy 129.08 11.72 18.55 0.22
Orienteering 196.28 5.74 19.68 0.12

4 Conclusions

In this work we showed how the orienteering problem relates to information
gathering for mobile sensors. We described two different applications where an
orienteering problem formulation allows computing efficient paths for the agents.
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