
Mining with Eve -
Process Discovery and Event Structures

Robin Bergenthum, Benjamin Meis

Department of Software Engineering,
FernUniversität in Hagen

{firstname.lastname}@fernuni-hagen.de

Abstract. This short-paper introduces our new process discovery plug-in Eve.
Eve is part of the ProM Tool framework and based on event structures. Eve folds
an event log to an event structure, before synthesizing a workflow model. The
idea to recast process mining operations based on event structures as a behavioral
model was suggested by Marlon Dumas and Luciano Garcı́a-Bañuelos two years
ago. This short paper is a sneak-preview to Eve sharing insight to its features.

1 Introduction

Process mining [1, 2] is to analyze recorded behavior of a business process to gain
knowledge about performance and conformance of the process at hand. In the past
decade, a high variety of process mining algorithms and methods have been introduced.
Furthermore, there is a big number of academic and commercial tools, contests, and
case studies. The homepage http://www.win.tue.nl/ieeetfpm of the IEEE Task Force on
Process Mining provides a well-sorted introduction.

Process mining is mainly based on two formalisms: event logs and workflow models.
An event log is a set of sequences of tasks recording behavior of a business process. A
workflow model is an executable, often Petri net-like, model of a business process.
Specifying workflow models we can consider different workflow modeling languages
like workflow nets [3], BPMN, EPC, and Activity diagrams.

The four main operations of process mining are (i) conformance checking, (ii) model
comparison, (iii) deviance mining, and (iv) process discovery. Every process mining
operation can be defined as some transformation or comparison between event logs and
workflow models. For example, process discovery [4, 5] is to transform an event log to
a workflow model, so that it is ‘likely’ that the event log was produced by the generated
model.

Two years ago, Marlon Dumas and Luciano Garcı́a-Bañuelos suggested to base the
fast growing field of process mining to a uniform representation of behavior [15]. They
suggested to use event structures [18] to recast all process mining operations. An event
structure is a set of partially ordered events together with an additional conflict relation.
Thus, we are able to explicitly express concurrency, causality, and conflicts between
events. Roughly speaking, paper [15] suggests that event structures serve as a perfect
link between event logs and workflow models.

Figure 1 (adapted from [15]) depicts how Dumas and Garcı́a-Bañuelos recast pro-
cess mining operations based on events structures: (i) conformance checking is to unfold

71



workflow
model

workflow
model

event log event log

event
structure

event
structure

event
structure

event
structure

model
comparison

deviance
mining

conformance
checking

process
discovery

Fig. 1. Process mining operations based on event structures [15].

the workflow model to an event structure and merge the event log into a second event
structure. Now, it is easy to compare both generated structures. (ii) model comparison
is to compare the related event structures of two workflow models instead of compar-
ing the models itself. Likewise, (iii) deviance mining is to compare two event structures
related to two different event logs. Finally, (iv) process discovery is to synthesis a work-
flow model from an event structure related to an event log.

Event structures seem to be a fitting basis for process mining operations. The main
benefit is that we can formalize the operations in a more explicit manner. To justify
this claim, in this short-paper, we implement a process discovery algorithm called Eve
following the suggested approach. We first, fold an event log into an event structure,
before synthesizing a workflow model. We implement Eve as a plug-in for the most
prominent process mining tool ProM [16] and share first insights of its features.

2 Process Discovery with Event Structures

Primus inter pares of all process mining operations is process discovery. The goal of
process discovery is to generate a workflow model ‘fitting’ a recorded event log. In the
literature, we find different discovery algorithms based on various representations of
behavior. Some of the outstanding candidates, each representing a class of algorithms
based on the same representation, are the famous α-algorithm [5], the heuristics-miner
[19], discovery using state-based regions [14], discovery with regions of languages [8,
7] and folding of partial orders [17, 9]. For an introduction to process discovery we
refer the reader to [1, 2]. Here, we assume the reader is familiar with the basic ideas and
concepts.

In this paper, we introduce our ProM tool process discovery plug-in Eve. We do not
claim that Eve is faster, prettier, or leads to better results, than all its predecessors, but
Eve is based on the ideas presented in paper [15]. Our goal is to prove ‘by example’ that
the idea of using event structures as a link between event logs and workflow models is
indeed very valuable - not only for a theoretical point of view.

72



2.1 From an Event Log to an Event Structure

The input to every process discovery algorithm is an event log.

Definition 1 (Event Log). Let T be a finite set of actions and let C be a finite set of
cases. We call an element e ∈ (T ×C) a task and call a sequence of tasks σ ∈ (T ×C)∗
an event log. Fix a case c ∈ C, we denote pc ∶ (T ×C)→ T as pc(t, c′) = t if c = c′ and
pc(t, c′) = λ else (λ the empty word). Let σ = e1, . . . , en be an event log, we define the
language of σ as L(σ) = {pc(e1) . . . pc(ei)∣i ≤ n, c ∈ C} ⊆ T ∗.

The first step of our discovery algorithm is to deduce a concurrency relation from
an event log to merge the language of the log to a set of partial orders. Thus, we need an
appropriate so-called concurrency oracle. At this point, we either consider concurrency
at the level of tasks or concurrency at the level of actions. Most discovery algorithms
consider concurrent actions, i.e. if two actions are concurrent, the related tasks are con-
current in every case. Using event structures it is possible to also specify concurrency at
the level of tasks. For most practical examples this may be an overkill and often leads
to models that are very precise but lack generalization and readability. However, a con-
currency oracle can discover concurrent tasks if the log contains appropriate additional
data like e.g. life-cycles, localities, or flow of resources. We refer the reader to [6] for a
more detailed discussion.

To tackle different levels of concurrency, we implement three different concurrency
oracles in Eve. The ‘later than’-oracle of Eve requires additional data. Eve applies this
oracle as soon as the tasks of an event log have a set of predecessors defining a ‘later
than’-relation on the level of task. In that case, Eve deduces a related concurrency rela-
tion. The life-cycle oracle requires additional information about life-cycles of tasks. If
the lifespans of two tasks intersect, Eve deduces a concurrency relation for both related
actions. The α-oracle requires no additional data. Like suggested in paper [15], the
conflict and concurrency matrix of the α-algorithm [5] is used to define a concurrency
relation on the level of actions.

Eve choses the most precise oracle if the required data is recorded in the event log,
i.e. we prefer the ‘later than’-oracle to the life-cycle oracle and the life-cycle oracle to
the α-oracle. In any case, we apply one of these oracles to transform the log into a set
of partial orders.

Definition 2 (Labeled Partial Order). Let T be a set of labels. A labeled partial order
(lpo) is a triple lpo = (V,<, l) where V is a finite set of events, < ⊆ V ×V is a transitive
and irreflexive relation, and the labeling function l ∶ V → T assigns a label to every
event.

The second step of our discovery algorithm is to add the set of labeled partial orders
to one and initially empty event structure. We replay all partial orders in the event
structure, adding new events, conflicts, and dependencies as we go. Roughly speaking,
we merge similar prefixes of partial orders and extend the conflict relation whenever
needed.

Definition 3 (Labeled Prime Event Structure). Let T be a set of labels. A labeled
prime event structure (event structure) is a tuple (V,<,#, l) where (V,<, l) is an lpo
and # ⊆ V × V is an irreflexive, symmetric relation satisfying e#e′ ∧ e′ < e′′ ⇒ e#e′′.

73



Just like a partial order, an event structure is able to explicitly express concurrency
between events. Two events occur concurrently if they are neither ordered by the <-
relation nor ordered by the #-relation. Maximal sets of events so that no pair is in the
#-relation are so-called consistency-sets. After the folding procedure of Eve, the set of
all consistency-sets is the set of partial orders of the language of the event log. Yet, the
event structure is a much more compact representation.

2.2 From an Event Structure to a Workflow Model

The third step of Eve is to clean the produced event structure before we translate this
structure into a workflow model. At this point, for most examples, the event structure
already generalizes the event log. Still, the event structure may contain noise and may be
incomplete. Paper [15] suggests to fold the event structure. Roughly speaking, to merge
events carrying the same label. This is a very brute force generalization of the recorded
behavior, but after such folding the event structure can be easily be transformed into a
workflow model.

After some testing, we implement a more flexible approach based on frequencies in
Eve. We count the number of cases of the event log relating to each consistency-set of
the event structure. Starting by the consistency-set with the highest frequency we use
a region based approach to synthesize a related workflow model. We use the theory of
compact regions [10, 11] based on compact tokenflows [13, 12], but restrict the more
general approach to workflow nets. More precisely, we synthesize a Petri net without
arc weights, we only allow one input place if possible, for every transition there is a
path from an input place to this transition, and every transition of the set of considered
consistency-set can fire at least once. We add consistency-sets, ordered by their fre-
quencies, as long as we can synthesize such a workflow model. If the model ‘breaks’,
we stop adding consistency-sets and take the last valid model as an approximation to
the initial event structure. The output of Eve is the generated workflow model, as well
as the percentage of cases considered.

3 Conclusion and Future Work

Our ProM plug-in Eve is based on event structures as a formal model for process discov-
ery. The generated workflow model ‘fits’ the recorded event log. On the one hand, the
three different concurrency oracles and the considered restricted net class lead to sim-
ple models slightly generalizing the recorded behavior. Using compact regions together
with frequencies we get a model with a high fitness because all considered consistency-
sets are executable in the generated workflow net.

Eve is part of the ‘nightly build’ of ProM Tools at www.promtools.org. We encour-
age the reader to download ProM and try Eve. Please find links, additional examples,
and a short description at www.fernuni-hagen.de/sttp/forschung/eve.

After a first round of testing, we are very happy with the produced results. First
experiments are promising and suggest that it is beneficial to perform more specific
experiments comparing Eve to other process discovery approaches in the near future.
There is a lot of potential for fine tuning the four different steps (i.e. oracle, merge,

74



clean, synthesis) performed by Eve. This short-paper is more like a sneak-preview in-
troducing Eve as a promising concept for further research.

References

[1] van der Aalst, W. M. P.: Process Mining: Discovery, Conformance and Enhancement of
Business Processes. Springer, 2011.

[2] IEEE Task Force on Process Mining: Process Mining Manifesto. Business Process Manage-
ment Workshops, LNBIP 99, Springer, 2012, 169–194.

[3] van der Aalst, W. M. P.: The Application of Petri Nets to Workflow Management. Journal of
Circuits, Systems, and Computers 8(1), 1998, 21–66.

[4] van der Aalst, W. M. P.; van Dongen, B. F.: Discovering Petri Nets from Event Logs. ToPNoC
VII, LNCS 7480, Springer, 2013, 372–422.

[5] van der Aalst, W. M. P.; Weijters, T.; Maruster, L.: Workflow Mining: Discovering Process
Models from Event Logs. IEEE Trans. Knowl. Data Eng. 16(9), 2004, 1128–1142.

[6] Armas-Cervantes, A.; La Rosa, M. ;Dumas M.: Local Concurrency Detection in Business
Process Event Logs. QUT ePrints 102438, 2016.

[7] Bergenthum, R.; Desel, J.; Mauser, S.: Comparison of Different Algorithms to Synthesize a
Petri Net from a Partial Language. ToPNoC III, LNCS 5800, Springer, 2009, 216–243.

[8] Bergenthum, R.; Desel, J.; Lorenz, R.; Mauser, S.: Process Mining Based on Regions of
Languages. Business Process Management 2007, LNCS 4714, Springer, 2007, 375–383.

[9] Bergenthum, R.; Mauser, S.: Folding partially ordered runs. Workshop ART 2011, CEUR
725, 2011, 52–62.

[10] Bergenthum, R.: Compact Regions for Place/Transition Nets. Workshop ATAED 2015,
CEUR 1371, 2015, 112–116.

[11] Bergenthum, R.: Synthesizing Petri Nets from Hasse Diagrams. submitted to BPM 2017.
[12] Bergenthum, R.; Lorenz, R.: Verification of Scenarios in Petri Nets Using Compact Token-

flows. Fundamenta Informaticae 137, IOS Press, 2015, 117–142.
[13] Bergenthum, R.: Faster Verification of Partially Ordered Runs in Petri Nets Using Compact

Tokenflows. Petri Nets 2013, LNCS 7927, Springer, 2013, 330–348.
[14] Carmona, J.; Cortadella, J.; Kishinevsky, M.: New Region-Based Algorithms for Deriving

Bounded Petri Nets. IEEE Trans. Computers 59(3), 2010, 371–384.
[15] Dumas, M.; Garcı́a-Bañuelos, L.: Process Mining Reloaded: Event Structures as a Unified

Representation of Process Models and Event Logs. Petri Nets 2015, LNCS 9115, Springer,
2015, 33–48.

[16] van Dongen, B.; Alves de Medeiros, A. K.; Verbeek, H. M. W.; Weijters, A. J. M. M.; van
der Aalst, W.M.P.: The ProM framework: A New Era in Process Mining Tool Support. Petri
Nets 2005, LNCS 3536, Springer, 2015, 444–454.

[17] van Dongen, B.; van der Aalst, W. M. P.: Multi-Phase Process Mining: Aggregating In-
stance Graphs into EPCs and Petri Nets. Applications of Petri Nets to Coordination, Work-
flow and Business Process Management 2005, 2015, 35–58.

[18] Nielsen, M.; Plotkin, G.; Winskel, G.: Petri Nets, Event Structures and Domains, Part I.
Theoretical Computer Science 13, Elsevier, 1981, 85-108.

[19] Weijters, A. J. M. M.; Ribeiro, J. T. S.: Flexible Heuristics Miner (FHM). CIDM, IEEE
2011, 310-317.

75


