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Abstract—Container technologies such as Docker [1] are trans-
forming the way distributed systems are deployed onto cloud
platforms by providing a simple mechanism for packaging and
isolating an application and its dependencies from the host
machine on which it is running. The same ideas and technologies
can be applied to computational science applications to obtain
exceptional ease of installation and reproducibility of results. In
this paper, we introduce endofday [2], a workflow engine that
orchestrates a directed acyclic graph (DAG) of computational
science apps where the nodes of the DAG are Docker containers.
The endofday engine enables users to execute entire workflows
of science applications without actually installing any of the ap-
plications themselves. As an example, we present the Validate [3]
system, a suite of software applications for testing the accuracy
and precision of Genome Wide Association methods, and illus-
trate how it can be run using endofday with zero installation. We
also show how endofday integrates with the Agave [4] platform’s
application catalog and compare running Docker containers on
cloud systems to running traditional applications on systems like
Stampede.
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I. INTRODUCTION

By leveraging features of the Linux kernel such as cgroups
and namespaces, containers enable developers to package, de-
ploy, and execute their applications with exceptional indepen-
dence and isolation from the host system as well as from other
processes running therein. The container model differs from
the traditional virtual machine model by virtualizing operating
system calls instead of hardware interfaces. Containers run as
processes in userspace and share the underlying host’s kernel,
but each container runs within a rooted file system and isolated
network stack. In particular, out of design and necessity,
containers include all file dependencies needed to execute
the application they contain. The result is an independent,
executable package that relies only on the kernel and container
“runtime.” If resource isolation is needed, the kernel can limit
the CPU, memory and network available to a given container.
The model also makes containers much more lightweight than
traditional virtual machines: modest commodity servers can
easily run hundreds of containers simultaneously. In fact, a
single Raspberry Pi 2 with a HypriotOS was recently shown
to be able to run over 2,300 web server containers at once [5].

While the first container technologies were notoriously diffi-
cult to work with, the Docker platform [1] has revolutionized

distributed systems and cloud computing over the last two
years by providing a system that greatly simplifies container
creation, execution, and management. In the same way, Docker
containers can be used to simplify installation, deployment,
and execution of scientific applications, leading to greater
reproducibility of the scientific computations themselves.

Typically, computational experiments involve multiple steps
with different scientific applications at each step working
together to perform some larger task. Often times there are
dependencies between steps implying a certain order of exe-
cution. Workflow engines accommodate such needs: given a
definition of tasks, their inputs, and their outputs, a workflow
engine executes the tasks in the correct order, scheduling appli-
cations and data dependencies as needed to ensure correctness
while additionally providing some level of re-runnability. A
given workflow can be associated with a directed acyclic graph
(DAG) where the nodes on the graph correspond to steps
(or application invocations) in the workflow and the edges
correspond to dependencies between the steps. It is common
for inputs and outputs to be defined in terms of files or
directories on a file system, but some workflow engines enable
more general notions such as records in a database.

In this paper we introduce endofday [2], a workflow engine
designed to accommodate workflows of Docker containers,
and examine its use with the Validate [3] system, a set
of applications for genome wide association studies. Using
endofday, we show how users can execute entire workflows of
Validate applications on any Linux machine that has Docker
installed. No additional software is required, including the
Validate applications themselves.

Dependencies and outputs in endofday workflows are de-
fined in terms of files or directories and are managed between
steps by the engine through the use of Docker volume mounts.
An endofday workflow is described using YAML [6] syntax,
a human readability data serialization standard. Thus, an
endofday workflow definition file doubles as documentation
of the experiment itself and can include arbitrary comments
to that end.

In addition to running arbitrary Docker containers, end-
ofday also has support for executing applications defined
in the Agave [4] platform’s application catalog. Agave is a
hosted science-as-a-service platform developed at the Texas
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Advanced Computing Center for hybrid-cloud, HPC and HTC
computing. Agave provides backend services for several sci-
ence gateways including the iPlant collaborative [7], a large
NSF project to develop cyberinfrastructure for life sciences
research. Agave provides a set of restful APIs for registering
and leveraging storage and execution servers available on the
public internet. Once systems are registered with Agave, users
can move data, register applications and launch jobs against
remote schedulers with simple http requests. Through it’s inte-
gration with Agave, endofoday can leverage applications living
on virtually any server connected to the public internet. Thus,
workflows comprised of applications from any such server can
be built, executed and managed from any computer without
installing any software other than the endofday binary itself.
Moreover, the entire workflow can be shared and reproduced
simply by sharing the workflow definition file.

The rest of the paper is organized as follows: Section II
gives a review of container technology and how it helps solve
the reproducibility problem in computational science. It then
discusses workflow engines in general and compares some of
the more popular solutions to endofday.

In Section III we give a detailed overview of the endofday
system, its support for local, hybrid and remote executions, as
well as its support for executing Agave applications.

In Section IV, we introduce the Validate software system for
testing the accuracy and precision of Genome Wide Associa-
tion Studies, and compare two approaches to using endofday
to run Validate workflows. We close the paper with some final
remarks and areas for future development in Section V.

II. BACKGROUND AND RELATED WORK

A. Containers and Reproducibility

While the surge in prominence for Docker is relatively
recent, containers trace their roots back to technologies such
as Unix chroot, first introduced in Unix 7 in 1979. More
recent technologies such as OpenVZ [8], LXC [9] and BSD
Jails [10] have been around for at least a decade and provide
more advanced container features. What seems to set Docker
apart from its predecessors is its exceptional ease of use, not
only in executing containers and managing their run time, but
also in creating, distributing and sharing Docker images, which
are a container template for the Docker ecosystem. Docker
images are described using a single text file, referred to as a
Dockerfile, which includes simple commands for adding files
and metadata to an initially empty rooted file system. A built
image is essentially just that—a tar archive representing an
independent file system for an application together with a
small amount of metadata used by the Docker runtime for
determining configuration options of the containers that are
created from it. By including all necessary dependencies in
the image, a Docker container can run an application on any
Linux host with no additional software installation.

Reproducibility in computational science has long been a
top priority for obvious reasons. Nevertheless, scientific codes
are notoriously difficult to build and maintain, and independent
users are often stymied when trying to install applications on

new systems to reproduce experiments. Different versions of
operating system distributions, libraries, packages, or com-
pilers can lead to repeating the build process from scratch.
Obtaining the original source code for the application can
also sometimes be challenging. With Docker, all of these
dependencies can be described in the Dockerfile and packaged
into an image. Often times the Dockerfile takes only a few
minutes to write, but once written, allows anyone to rebuild the
image with a single command. Additionally, using the public
Docker hub or a number of other commercial registries, the
image can be distributed to the rest of the world with ease.

B. Workflow Engines

Docker goes a long way towards solving the reproducibility
problem for single applications, however most computational
experiments are comprised of several steps involving multiple
applications. It is therefore desirable to be able to reproduce
an entire workflow of computations, where each step in the
workflow is given by the execution of a Docker container.

Like container technologies, workflow engines have been
around for decades (for background, see [11] and [12]).
Generally speaking, workflow engines give practitioners the
ability to specify and execute multiple steps comprising a
computational experiment within a collection of definition
documents. Some are command-line based, some live in a
graphical interface such as a workbench or web browser, and
others are integrated directly into a science gateway. Workflow
engines can generally be subdivided into two categories:
engines catering to specific scientific domains and engines that
are domain agnostic. Engines built for specific subdomains
of science often target the actual scientist as the end user
with abstractions that represent specific tools or notions in the
discipline. These kinds of engines are easiest for scientist to
use directly but often have the disadvantage of being difficult
to update or extend. As a result, maintenance becomes a
significant challenge over time, as new updates must be made
to the tools to keep up with advances in the domain.

On the other end of the spectrum are domain-agnostic
engines. These tools are generally more powerful and flexible
but often require significant understanding of the underly-
ing cyberinfrastructure to operate. Often times users must
be familiar with HPC clusters, grids, clouds, web service
technologies such as REST and WSDL, databases, or other
technologies from computer science. Additionally, some of the
more robust engines are difficult to install, requiring complex
configuration to enable interactions with HPC systems. These
requirements make it difficult for actual scientists to begin
using the tool.

With endofday, our goal was to develop a domain-agnostic
system that was simple enough to be used directly by scientists
possessing even a modest familiarity with Docker and the Unix
command line. The key to endofday’s approach is the Docker
container abstraction; using containers, the endofday engine is
able to manage the installation of tools and interaction with
underlying cyberinfrastructure. When traditional HPC appli-
cations are needed, endofday leverages the Agave platform to
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again keep the cyberinfrastructure details hidden from the end
user. Moreover, endofday is trivial to install and only requires
minimal configuration when interacting with Agave.

C. Existing Tools

A complete survey of workflow engines is beyond the scope
of this article, but we highlight some of the most popular
solutions in use today and compare them to endofday.

Pegasus [13] is a mature and robust workflow management
system capable of scaling executions across a distributed and
heterogeneous compute environment. Originally developed in
2001, Pegasus takes an end user-provided abstract workflow
definition, written in XML, and translates it into an executable
workflow using information about the compute resources
available in the environment. This information is configured
in Pegasus through a variety of catalogs such as the Replica
Catalog (logical file lookups), Translation Catalog (locations
of user-installed executables), and Site Catalog (computational
and storage resources). Pegasus includes advanced features
such as compile time and runtime optimization, deep prove-
nance, failed workflow recovery, and the Pegasus Dashboard,
a rich web interface for monitoring and debugging work-
flow executions. While abstract workflow definitions provide
a clean separation of concerns between the computational
science being performed and the available compute environ-
ment, the challenge comes in configuring and maintaining the
environment. Storage systems, execution systems, schedulers
and application binaries all must be installed and configured
within Pegasus before they can be utilized.

The Taverna [14] tool suite combines local executables
with remote web services calls in REST or WSDL format to
form complex workflows. Like Pegasus, Taverna workflows
are described in XML, and the execution engine can leverage
local, cloud, and traditional HPC resources. The Taverna
workbench provides a graphical user interface for building
workflows. www.myexperiment.org provides a public repos-
itory of workflows primarily for the life-sciences community.
Taverna applications (called tools) are described in XML and
must be installed on the machines where they will be executed.
Tool descriptions can be imported from remote registries using
the workbench.

Galaxy (see [15], [16] and [17]) is an open-source web-
based software platform for bioinformatics. The platform itself
can be installed and run locally, or users can take advantage of
the many hosted instances, including “Galaxy Main” hosted at
the Texas Advanced Computing Center. The platform includes
support for building and executing workflows comprised of
Galaxy “tools” as long as the software and all dependencies
have been previously installed into the given Galaxy instance
by the system administrator. Virtually any piece of software
can be used to create a Galaxy tool, but it must first be
described to Galaxy through a series of XML configuration
files. By default, Galaxy executes tools on the local system.
With additional configuration it can launch jobs on a cluster
with a scheduler such as TORQUE or PBS, though a shared
file system between the Galaxy server instance and the cluster

is required. Additionally, tools can be installed from public
Galaxy toolsheds, catalogs of bioinformatics applications to-
gether with their Galaxy configurations. While Galaxy can
automate the installation of some dependencies, others cannot
be provided and must be manually installed. By default,
Galaxy executes tools on the local system, but with additional
configuration it can launch jobs on a cluster with a scheduler
such as TORQUE or PBS, though a shared file system between
the Galaxy server instance and the cluster is required. While
the Galaxy Pulsar runner can overcome the shared file system
requirement, valid tools may not work properly if, for example,
they reference hard-coded file paths for inputs, and set-up and
installation are non-trivial.

By leveraging Docker images and Agave applications, end-
ofday minimizes the setup and installation needed to exe-
cute workflows. In the case of Docker, any image available
from the public registry [18] can be used: if the image is
already installed on the execution system, endofday will use
that, otherwise, it will be automatically downloaded before
executing the application. These executions can take place
on any host that has the Docker daemon installed on it, so
issues of porting and scaling become trivial. In the case of an
Agave application, the deployment and execution hosts have
already been registered with Agave, so no additional software
installation or configuration is needed.

III. ENDOFDAY: A WORKFLOW ENGINE FOR DOCKER
CONTAINERS

At its core, endofday is an open-source, command-line
Python application build on top of the pyyaml [19] and
pydoit [20] libraries to execute workflows of Docker containers
from a simple YAML definition file describing a DAG of tasks.
It first performs dependency analysis to build the DAG and
then schedules the execution of the containers while managing
the flow of data throughout. endofday makes use of Python’s
multiprocessing library to launch independent steps in parallel
on the host in which it is running. Additionally, it can leverage
the Agave Platform’s Docker compute cluster to launch either
individual containers or entire workflows in the cloud. This
feature enables seamless transition from executing an entire
workflow on one’s personal machine, to executing part or all
of it in a remote cloud, freeing up local resources for other
tasks.

A. Local Execution

The endofday application itself ships as a Docker container
for ease of installation: simply pull the official image from
the public hub and begin using it. Alternatively, the Docker
image can be built from source using a Dockerfile provided
in the public repository hosted on Github (https://github.com/
joestubbs/endofday/). Once the Docker image for endofday is
obtained, a single setup command is run to install a small
bash script, endofday.sh, in the current working directory. No
configuration is needed. Workflows can then be executed with
the command

endofday.sh /path/to/workflow.yml
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inputs:
  - fasta_input_1 <- /home/jstubbs/data/g001.fasta
  - fasta_input_2 <- /home/jstubbs/data/g002.fasta

Fig. 1. An Example inputs section defining two global inputs

and relative paths in the workflow definition will be resolved
against the current working directory.

Endofday workflows are defined in YAML using a syntax
that will be familiar to users of other Docker tools such as
Docker Compose [21]. A workflow definition file is made of
a name field together with three sections: inputs, outputs
and processes. The inputs section defines a list of global
inputs in a label -> source format. The label can be any
unique string and is used to refer to the input in other parts
of the definition file, while the source is a path to a file or
folder on the host. When configured with an Agave account,
the input source can be any Agave URL—essentially any file
or folder on any system registered with Agave that the user
has access to.

The files and directories defined in the input section
are namespaced within the inputs keyword and can be
referenced in subsequent sections of the workflow using
the assigned label. For example, the first input defined in
the inputs section in Figure 1 would be referenced using
inputs.fasta_input_1 while the second would be ref-
erenced with inputs.fasta_input_2.

Similarly, a section of global outputs for the workflow can
be defined. The global outputs definition is optional and pri-
marily serves as documentation of the workflow, but in a future
release, endofday will be able to compose multiple workflows,
and it will be possible to reference global outputs of one
workflow as inputs to another workflow. We plan to make an
include directive available which would allow a workflow
to reference inputs, outputs and processes from another work-
flow definition in the same working directory or specified by
an absolute path. In such a situation, the objects from a given
workflow can be referenced using the worflow’s name; for
example, myworkflow.inputs.fasta_input_1 might
refer to a global input named fasta_input_1 within a
workflow named myworkflow.

The main section of an endofday workflow definition file is
the processes section in which the actual steps of the workflow
are defined. Each process is given by a YAML mapping
under a user-defined id for the process. The id can be any
valid YAML mapping key as long as it is unique within the
processes section. The recognized keys within a given process
include image, description, inputs, outputs, and
command. The value for the image key is simply the Docker
image that should be used for the process and similarly,
command is the command string passed to the Docker daemon
when executing the container. The inputs sections is a list
of strings of the form source -> dest. Here, source is
a reference to either a global input or an output of another task
while dest is a path in the container. Similarly, the outputs

processes:
  fast_lmm:
    image: validate/fast-lmm
    description: GWAS analysis for large datasets.
    inputs:
      - inputs.fam_input -> /data/inputs/fam_input
      - inputs.ped_input -> /data/inputs/ped_input
    outputs:
      - /data/outputs/lmm.csv -> output
   
  winnow:
    image: validate/winnow
    description: Known-truth testing analysis
    inputs:
      - fast_lmm.output -> /winnow/inputs/lmm.csv
      - inputs.known_truth -> /winnow/know_truth
    outputs:
      - /winnow/results.txt -> output

Fig. 2. An Example of the processes section

section is a list of strings of the the form path -> label
where path is a file path to an output in the container and
label is a unique string used to reference the output in other
sections of the workflow.

Figure 2 provides an example processes section in which
two processes are defined. The first process runs the FaST-
LMM program for genome wide association studies, explored
further in the subsequent section. It references two inputs from
the global inputs section (not depicted) and mounts them into
the container’s /data/inputs directory. A single output is
defined for the container path /data/outputs/lmm.csv
and given the label output. It can be be referenced in
other processes by prefacing it with the process namespace,
i.e., fastlmm.output, just as it is in the definition of the
winnow process that follows.

B. Support for Agave Apps and Hybrid Execution

Just as endofday can execute a workflow of Docker con-
tainers, it also supports executing applications in the Agave
application catalog with a similar syntax. Agave applications
are launched by submitting requests to the Agave jobs service.
The applications run on the remote execution systems defined
for each application which means that endofday can be used
to launch workflows comprised of virtually any application
on any server in the world. Complete documentation of the
workflow syntax and command line arguments is available
from the endofday Read The Docs page [22]. It is possible
to mix Agave applications and Docker container applications
in the same workflow: the containers will run locally while
the Agave apps will run on their defined execution hosts. If
outputs from Agave apps are needed as inputs to tasks running
locally, endofday will download the necessary outputs to the
local file system.

When executing Agave applications, endofday uses Agave’s
OAuth2 implementation to authenticate with the jobs service.
Note that Agave’s jobs service uses a separate set of credentials
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when authenticating with the actual storage or execution
system, typically SSH keys or grid (X509) credentials, though
many different kinds of authentication are supported. These
credentials are provided to Agave when the system is regis-
tered. It is not uncommon for portal administrators to register
these systems and share them with their users, meaning that
end users may not even be aware of the system credentials
being used.

User’s supply their OAuth credentials through endofday’s
configuration file, a small text file in INI format. Users can
specify additional configurations in this file such as the Agave
storage system to use when archiving output files and an email
address for notifying users when jobs finish. We note that this
configuration file is only needed when working with the Agave
platform.

C. Remote Execution

There is also a hosted endofday service as part of the Agave
platform that can be used to execute entire workflows in the
Agave cloud. This can be accomplished by simply passing
the --agave flag when executing the workflow. When the
--agave flag is passed, the endofday engine uploads the
workflow definition file and any global input files residing on
the local file system to an Agave storage system (either the
user’s default storage system, or one configured in endofday)
and submits a single job to Agave to asynchronously execute a
version of endofday registered as an Agave application. Once
the job has been submitted, the local endofday engine exits,
freeing the local system resources. By adding an email address
to the endofday configuration file, Agave will notify the user
when the workflow execution completes via email.

IV. CASE STUDY - VALIDATE: A WORKFLOW FOR
GENOME WIDE ASSOCIATION STUDIES

A. Overview

The Validate Workflow is a series of programs designed
to test the accuracy and precision of analysis tools for either
genome wide association studies (GWAS) or quantitative trait
loci (QTL) analysis. Validate provides information on both ef-
fect sizes for single nucleotide polymorphisms (SNPs) and the
statistical significance of certain SNPs in various models, when
given known effect-size and SNP inputs from simulations. The
Validate Workflow provides a means not only to judge the
appropriateness of an analysis tool for a given data set, but
also to integrate existing tools into a pipeline or workflow for
testing. The Validate Workflow consists of four steps: Simulate
or another suitable simulation app, an analysis tool (for the
sake of this demonstration, we have used the tool FaST-LMM),
Winnow, and Demonstrate. The Validate Workflow is currently
on its fourth iteration, version 0.9, and the source code for
the workflow may be found on Github [3]. Future versions
of the software will include prediction methods for missing
phenotype data, ensemble analysis for reduced error in SNP
classification, and extended file format types such as hdf5 for
large-scale data.

B. Components

Simulate is a forward-in-time genetic individual-based sim-
ulation program written in Python. For a given population or
sub-populations, Simulate creates a quantitative trait for that
population based on an additive model [23]. Once Simulate
has established the final population state, it generates the
following outputs: a genomic information file in CSV format,
a phenotype file with the final quantitative trait value for
each individual, and a “known-truth” file detailing the original
effects and contributing SNPs or individuals for later use in
the workflow.

FaST-LMM (Factored Spectrally Transformed Linear Mixed
Models) is a genome wide association studies program from
Microsoft Research designed to handle extremely large data
sets, and provides a good example of a tool that could be
analyzed with Validate. Further information on FaST-LMM
may be found at the Microsoft Research Github page [24].

Winnow is a Python program with functions for known-
truth testing of analysis tools [25]. Given the known truth of
a data sets significant SNPs and effect sizes under GWAS
analysis, Winnow evaluates the scores from the output of
a GWAS analysis tool in comparison to that known-truth.
Then, it generates a series of fit statistic values. These fit
statistics are validations from binary classifier algorithms, and
therefore include many statistics one might find in or derive
from a confusion matrix (e.g. true/false positives, sensitivity,
precision). In addition to the results, Winnow also creates a
parameter file which details certain aspects of a run such as
the output file name, the threshold for statistical significance,
and the p-value adjustment method used, if any. Finally,
Demonstrate is an R program for producing human-readable
summary graphics from Winnow results.

docker run \
  -v fastlmm_out:/tmp/GWAS_out \
  -v known_truth.ote:/inputs/known_truth \
  taccsciapps/winnow \
  --verbose \
  --Folder tmp \
  --Class known_truth \
  --SNP SNP \
  --Score Pvalue \
  --beta SNPWeight \
  --kttype OTE \
  --seper comma \
  --kttypeseper whitespace \
  --filename YAML_Winnow_Results

Fig. 3. An example of invoking docker

C. Validate - Source Code and Docker Images

The components of the Validate system are all open source
and available from the project’s Github repository. As such,
users who are interested in using Validate are free to clone
the repository and install the applications on any system.
However, installing from source is involved and somewhat
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name: Validate_wf_docker

inputs:
  - ped_input <- data/toydata.ped
  - map_input <- data/toydata.map
  - bed_input <- data/toydata.bed
  - bim_input <- data/toydata.bim
  - fam_input <- data/toydata.fam
  - pheno_input <- data/toydata.phe
  - known_truth <- data/fakekt.ote

outputs:
  - demonstrate.comptable
  - demonstrate.TPhist
  - demonstrate.FPhist
  - demonstrate.TPvsFP
  - demonstrate.AUCvsMAE

processes:
  fastlmm:
    image: taccsciapps/fastlmm
    description: Analyzes the data to produce GWAS output
    inputs:
      - inputs.ped_input -> /tmp/test.ped
      - inputs.map_input -> /tmp/test.map
      - inputs.bed_input -> /tmp/test.bed
      - inputs.bim_input -> /tmp/test.bim
      - inputs.fam_input -> /tmp/test.fam
      - inputs.pheno_input -> /tmp/pheno.txt
    outputs:
      - /fastlmm/LMM_Docker_Results.csv -> GWAS_out
    command: 
      fastlmmc -verboseOutput -bfile /tmp/test 
      -fileSim /tmp/test -pheno /tmp/pheno.txt 
      -out LMM_Docker_Results.csv
   

  winnow:
    image: taccsciapps/winnow 
    description: 
      Produces fit statistics for determining 
      appropriateness of GWAS analysis tool
    inputs:
      - fastlmm.GWAS_out -> /samples/GWAS_out.csv
      - inputs.known_truth -> /kt.ote
    outputs:
      - /outputs/YAML_Winnow_Results.txt -> Winnow_out
    command: 
      --verbose --Folder /samples --Class /kt.ote 
      --Snp SNP --Score Pvalue --beta SNPWeight 
      --kttype OTE --seper comma --kttypeseper whitespace 
      --filename  /outputs/YAML_Winnow_Results
   

  demonstrate:
    image: taccsciapps/demonstrate
    description: 
      Produce human-readable graphics from the Winnow 
      output of the previous step
    inputs:
      - winnow.Winnow_out -> /tmp/results.txt
    outputs:
      - /tmp/ComparisonTable.csv -> comptable
      - /tmp/'TP Histograms.pdf' -> TPhist
      - /tmp/'FP Histograms.pdf' -> FPhist
      - /tmp/Test_Run_Pos_Plot.pdf -> TPvsFP
      - /tmp/Test_Run_Error_Plot.pdf -> AUCvsMAE
    command: 
      Rscript /usr/bin/DemonstrateRun.R /tmp TRUE 
      Test_Run_Pos_Plot.pdf TRUE Test_Run_Error_Plot.pdf TRUE

name: Validate_wf_Stampede

inputs:
  - ped_input <- agave://val.storage//data/toydata.ped
  - map_input <- agave://val.storage//data/toydata.map
  - bed_input <- agave://val.storage//data/toydata.bed
  - bim_input <- agave://val.storage//data/toydata.bim
  - fam_input <- agave://val.storage//data/toydata.fam
  - pheno_input <- agave://val.storage//data/toydata.phe
  - known_truth <- agave://val.storage//data/fakekt.ote

outputs:
  - ComparisonTable.csv
  - TP Histograms.pdf
  - FP Histograms.pdf
  - True Positives vs. False Positives.pdf
  - Plot of AUC by MAE.pdf

processes:
  fastlmm:
    app_id: FaST-LMM-2.07
    execution: agave_app
    description: Step 1
    inputs:
      inputFAM: [“inputs.fam_input”]
      inputPED: [“inputs.ped_input”]
      inputBED: [“inputs.bed_input”]
      inputBIM: [“inputs.bim_input”]
      inputMAP: [“inputs.map_input”]
      inputPHENO: [“inputs.pheno_input”]
    parameters:
      MainFileset: "P"
      SimFileset: "BEDBIMFAM"
      output: "YAMLTest_LMM.csv"
      verboseOutput: 0
    outputs:
      - YAMLTest_LMM.csv -> output

  winnow:
    app_id: Winnow-0.9
    execution: agave_app
    inputs:
      Folder: [“fastlmm.output”]
      Class: [“inputs.known_truth”]
    parameters:
      SNP: "SNP"
      Filename: "YAML_Winnow_Results"
      Score: "Pvalue"
      beta: "SNPWeight"
      kttype: "OTE"
      seper: "comma"
      kttypeseper: "whitespace"
    outputs:
      - YAML_Winnow_Results.txt -> output

  demonstrate:
    app_id: Demonstrate-0.9
    execution: agave_app
    inputs:
      dir: [“winnow.output”]
    parameters:
      make_pos_plot: 1
      pos_plot_title: "'Test Run - Pos Plot'"
      make_error_plot: 1
      error_plot_title: "'Test Run - Error Plot'"
      extra_plots: 1
    outputs:
      - ComparisonTable.csv -> comparison_table
      - TP Histograms.pdf -> tp_histograms
      - FP Histograms.pdf -> fp_histograms
      - True Positives vs. False Positives -> tp_vs_fp
      - Plot of AUC by MAE.pdf -> auc_by_mae

Fig. 4. Full examples of workflow definitions in YAML
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error-prone since the various components have a multitude
of dependencies including R, Python, and several scientific
libraries. Some of the libraries such as numpy are notoriously
challenging to install since they depend on C extensions and
Fortran libraries as well as linear algebra packages. Care must
be taken to ensure that the right versions of each dependency
are installed, and this entire process must be repeated on each
new system and for each separate version of Validate the user
wishes to run.

Fortunately, all the Validate applications have been pack-
aged into Docker images available on the public Docker hub.
Users can therefore run any application in the Validate suite
using their local machine or any host with the Docker daemon
installed. For example, the command in Figure 3 will run
Validate’s Winnow application against a (previously generated)
FaST-LMM output and a known-truth file.

Using endofday, users can run entire workflows of Validate
applications by defining the workflow in a YAML file. Two
examples of Validate workflow description files are included
(see 4).

Moreover, Validate Docker images are tagged with the
version of the software they represent. If no tag is sup-
plied, as in the example above, the latest image is pulled,
but by supplying different tags, users can seamlessly switch
between versions of the software without worrying about the
potential for conflicting dependencies. For instance, the image
taccsciapps/winnow:0.9 will use version 0.9 of the
Winnow software.

D. Using Validate Through Agave

The software components of Validate have been installed
on the Stampede supercomputer at the Texas Advanced Com-
puting Center and have been registered as applications within
Agave’s iPlant tenant. Any user with an iPlant account can
run these applications on Stampede using a shared community
account through a variety of methods including iPlant’s discov-
ery environment which provides a graphical web interface [7].

Therefore, users can leverage the support for Agave apps in
endofday to launch entire Validate workflows on Stampede. An
example workflow definition utilizing the Stampede versions
analogous to the previous Docker example is included in
included (see 4). The syntax for such a YAML file is
remarkably similar to that of one leveraging Validate Docker
containers making it easy to convert from one to the other.

Note that it is not nearly as easy to move the non-Docker
versions of validate from Stampede to another execution host.
In brief, the applications must be re-registered with Agave for
the new host, and this will only work once all the dependencies
have been installed on the new system.

It should be noted that developing the Docker images for the
Validate applications was in fact much easier than installing
the applications even once on Stampede, primarily because
generic images containing dependencies already existed in
most cases. For example, the Dockerfile for the Winnow image
is a trivial three lines as it descends from a generic scientific
Python image that includes numpy, scipy, matplotlib, etc.

V. CONCLUSION AND FUTURE WORK

In this paper we showed how the endofday application
leverages Docker’s powerful container abstraction to execute
and reproduce scientific workflow computations with excep-
tional ease. Additionally, by leveraging applications in the
Agave catalog, we established that endofday can execute
workflows across heterogeneous computing resources com-
prised of virtually any machine connected to the internet.
We also introduced the Validate software system for testing
the accuracy and precision of Genome Wide Association
methods and demonstrated how the endofday engine can be
used to execute Validate workflows with zero installation on
any machine running Docker as well as on the Stampede
supercomputer.

The endofday project is still very young and actively being
developed, and several areas of future work are planned. In
general, endofday will add improved provenance for all work-
flow executions, leveraging the provenance support already in
Agave for those applications. Better validation will be added to
improve user experience when initially developing workflow
definitions. The hosted offering in the Agave platform will be
expanded to include a powerful API for introspecting details
about a workflow execution.

For Docker applications, endofday plans to expand support
for executing on remote clusters so that users have a seamless
way not only of transitioning to the Agave cloud but any
cluster of Docker hosts. Initially, we plan to support clusters
running Docker Swarm [26] and Apache Mesos [27] with
support for additional cluster schedulers coming later.

For Agave applications, endofday will soon support more
flexibility in archiving intermediate results so that users can
decide which data sets should be archived.
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