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Abstract

Knowledge Base Completion (KBC), or link prediction, is the task of inferring
missing edges in an existing knowledge graph. Although a number of meth-
ods have been evaluated empirically on select datasets for KBC, much less
attention has been paid to understanding the relationship between the logical
properties encoded by a given KB and the KBC method being evaluated. In
this paper we study the effect of the logical properties of a relation on the
performance of a KBC method, and we present a theorem and empirical results
that can guide researchers in choosing the KBC algorithm for a KB.

1 Introduction
Large-scale and highly accurate knowledge bases (KB) such as Freebase and YAGO2, have been recognized as essential
for high performance on natural language processing tasks such as Relation extraction [Dalton et al., 2014], Question
Answering [Yao and Van Durme, 2014], and Entity Recognition in informal domains [Ritter et al., 2011]. Because of this
importance of large scale KBs and because the recall of even Freebase, one of the largest open source KB, is low1 a large
number of researchers have presented models for knowledge base completion (KBC).

A popular strategy for KBC is to embed the entities and relations in low dimensional continuous vector spaces and
to then use the learnt embeddings for link prediction. In other words, continuous real valued vectors and matrices are
automatically learnt that can represent the entities and edges in a knowledge base, and at the time of inference these real
valued representations are used to predict whether a particular edge exists between two entities. This general strategy can be
implemented in many different ways and we refer the reader to the survey by [Nickel et al., 2016a] for more details. Even
though the strategy of embedding the elements of a graph is popular for knowledge base completion, theoretical studies of
such methods are scarce.

In this paper we demonstrate theoretically, and experimentally, the adverse effect that asymmetric, transitive relations
can have on a KBC method that relies on a single vector embedding of a KB entity. Transitive-asymmetric relations such
as the type of relation in Freebase [Bollacker et al., 2008] and, the hyponym relation in WordNet [Miller, 1995] are
ubiquitous in KBs and therefore very important [Guha, 2015]. For our theoretical result, we analyze a widely cited KBC
algorithm called RESCAL [Nickel et al., 2011, Toutanova et al., 2015] and we prove theoretically that on large KBs that
contain a large proportion of asymmetric, transitive relations, methods such as RESCAL will wrongly predict the existence
of edges that are the reverse of edges in the training data. We also present a way to mitigate this problem, by using role
sensitive embeddings for entities and we empirically verify that our proposed solution improves performance. Through our
experiments we also discover a drawback in the prevalent evaluation methodology, of randomly sampling unseen edges, for
testing KBC models and show that random sampling can overlook errors on special types of edges.
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1It was reported by [Dong et al., 2014] in October 2013, that 71% of people in Freebase had no known place of birth and that 75% had no known
nationality.

7



2 Theoretical Analysis
Notation: A KB contains (subject, relation, object) triples. Each triple encodes the fact that a subject entity is related to an
object through a particular relation. Let V andR denote the set of entities and relationships. We use V to denote entities
to evoke the notion that an entity corresponds to a vertex in the knowledge graph. We assume that R includes a type for
the null relation or no relation. Let V = |V| and R = |R| denote the number of entities and relations. We use v and r to
denote a generic entity and relation respectively. The shorthand [n] denotes {x|1 ≤ x ≤ n, x ∈ N}. Let E denote the entire
collection of facts and let e denote a generic element of E . Each instance of e is an edge in the knowledge graph. We refer to
the subject, object and relation of e as esub, eobj ∈ V and erel ∈ R respectively. E = |E| is the number of known triples.

RESCAL: The RESCAL model associates each entity v with the vector av ∈ Rd and it represents the relation r through
the matrix Mr ∈ Rd×d. Let v and v′ denote two entities whose relationship is unknown, and let s(v, r, v′) = aTvMrav′ ,
then the RESCAL model predicts the relation between v and v′ to be: r̂ = argmaxr∈R s(v, r, v

′). Note that in general
if the matrix Mr is asymmetric then the score function s would also be asymmetric, i.e., s(v, r, v′) 6= s(v′, r, v). Let
Θ = {av|v ∈ V} ∪ {Mr|r ∈ R}.

Transitive Relations and RESCAL: In addition to relational information about the binary connections between entities,
many KBs contain information about the relations themselves. For example, consider the toy knowledge base depicted
in Figure 2a. Based on the information that Fluffy is-a Dog and that a Dog is-a Animal and that is-a is a transitive
relations we can infer missing relations such as Fluffy is-a Animal.

Let us now analyze what happens when we encode a transitive, asymmetric relation. Consider the situation where the
setR only contains two relations {r0, r1}. r1 denotes the presence of the is-a relation and r0 denotes the absence of that
relation. The embedding based model can only follow the chain of transitive relations and infer missing edges using existing
information in the graph if for all triples of vertices v, v′, v′′ in V for which we have observed (v, is-a, v′) and (v′, is-a, v′′)
the following holds true:

s(v, r1, v
′)>s(v, r0, v

′) and s(v′, r1, v
′′)>s(v′, r0, v

′′) =⇒ s(v, r1, v
′′)>s(v, r0, v

′′)

I.e. aTv (Mr1 −Mr0)av′ > 0 and aTv′(Mr1 −Mr0)av′′ > 0 =⇒ aTv (Mr1 −Mr0)av′′ > 0 (1)
We now define a transitive matrix and state a theorem that we prove in Section 6.

Definition A matrix M ∈ Rd×d is transitive if aTMb > 0 and bTMc > 0 implies aTMc > 0.

Theorem 1. Every transitive matrix is symmetric.
If we enforce the constraint in Equation 1 to hold for all possible vectors and not just a finite number of vectors then
Mr1 −Mr0 is a transitive matrix. By Theorem 1, Mr1 −Mr0 must be symmetric. This further implies that if s(v, r1, v′) >
s(v, r0, v

′) then s(v′, r1, v) > s(v′, r0, v). In terms of the toy KB shown in Figure 2a; if the RESCAL model predicts that
Fluffy is-a Animal then it will also predict that Animal is-a Fluffy.

Augmenting RESCAL to Encode Transitive Relations: The analysis above points to a simple way for improving
RESCAL’s performance on asymmetric, transitive relations. The reason that the original method fails to satisfactorily
encode transitive asymmetric relations is because if the score s(v, r1, v′) is high then s(v′, r1, v) will also be high. We
can avoid this situation by using two different embeddings for all the entities and compute the score of a relation through
those role specific embeddings; i.e. we can use the embeddings a1v, a

2
v to represent vertex v and let s(v, r1, v′) = a1vMr1a

2
v′

and s(v′, r1, v) = a1v′Mr1a
2
v. This idea of using role specific embeddings has been known for a long time starting

from [Tucker, 1966]. 2 In fact the specific method that we have just explained is generally known to KBC researchers as
the Tucker2 decomposition [Singh et al., 2015]. In order to encode more than one relations, only the matrix Mr needs to
change but the entity embeddings can be shared across all relations.

3 Related Work
Due to the large body of work that has been done for the task of KBC it is not possible to cover all of the related work on
KBC in this section. Instead, we refer the reader to the survey [Nickel et al., 2016a] for an overview of the empirical work
that has been done in the area of KBC and link prediction.

Since we focus on the analysis of RESCAL, our work is most closely related to the paper [Nickel et al., 2014]. This paper
proves an important theorem that shows that the dimensionality required by the RESCAL model3 for exactly representing
a weighted adjacency matrix of a knowledge graph must be greater than the number of strongly connected components
in the graph. In our setting where we consider data sets that contain only transitive-asymmetric relations, the number of

2Recently [Yoon et al., 2016] used this idea of using role specific embeddings to preserve the properties of symmetry and transitivity in translation
based knowledge base embeddings.

3Actually their theorem provides a lower bound for a more general model than RESCAL which automatically applies to RESCAL.
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strongly connected components in the graph equal the number of vertices in the graph. Therefore their theorem proves that
the dimensionality required for exactly representing a dataset such as WordNet using an algorithm such as RESCAL must be
greater than the number of entities in the knowledge graph. In contrast to this result, our analysis gives an explicit example
of a type of query for which the RESCAL algorithm will make wrong inferences.

Our analysis trivially extends to a few other factorization based algorithms e.g. the Holographic embedding algorithm
by [Nickel et al., 2016b]. The holographic embedding method can be rewritten as a constrained form of RESCAL with a
“holographically constrained” matrix M . Figure 1 shows an example of a 3× 3 holographically constrained matrix with the
constraint that elements with the same color must hold the same value. Since such a matrix is asymmetric by construction,
our theorem proves that there will exist vectors a, b, and c for which M will violate transitivity.

m1

m1

m1m2

m2

m2m3

m3

m3

Figure 1: An illustration of a “holographically constrained” matrix.

Recently [Bouchard et al., 2015] argued that the phenomenon of transitivity of relations between vertices in a knowledge
graph can be modeled with high accuracy if the knowledge graph is modeled as a thresholded version of a latent low rank
real matrix, and the vertex embeddings are learnt as a low rank factorization of that latent matrix. Based on this argument
they claimed that factorizing a knowledge graph with a squared loss was less appropriate in comparison to factorizing it with
a hinge loss or logistic loss. In this work we provide an argument based on the symmetry of transitive matrices to show that
the method of RESCAL which minimizes the squared reconstruction error must fail to capture phenomenon like transitivity
in large knowledge bases. In this way, our results complement the work by [Bouchard et al., 2015].

4 Experiments
Our theoretical result in Section 2 was derived under the assumption that the constraint 1 held over all vectors in Rd instead
of just the finite number of vector triples used to encode the KB triples. It is intuitive that as the number of entities inside a
KB increases our assumption will become an increasingly better approximation of reality. Therefore our theory predicts that
the performance of the RESCAL model will degrade as the number of entities inside the KB increases and the dimensionality
of the embeddings remains constant. We perform experiments to test this prediction of our theory.

4.1 Experiments On Simulated Data

We tested the applicability of our analysis by the following experiments: We started with a complete, balanced, rooted,
directed binary tree T , with edges directed from the root to its children. We then augmented T as follows: For every tuple of
distinct vertices v, v′ we added a new edge to T if there already existed a directed path starting at v and ending at v′ in
T . We stopped when we could not add any more edges without creating multi-edges. For the rest of the paper we denote
this resulting set of ordered pairs of vertices as E and those pairs of vertices that are not in E as Ec. For a tree of depth
11, V = 2047,E = 18, 434 and |Ec| = 4, 171, 775. See Figure 2b for an example of E , Ec. We trained the RESCAL
model under two settings: In the first setting, called FullSet, we used entire E and Ec for training. In the second setting,
called SubSet, we randomly sample Ec and select only E = |E| edges from Ec. All the edges in E including all the edges in
the original tree are always used during both FullSet and SubSet. For both the settings of FullSet and SubSet we trained
RESCAL 5 times and evaluated the models’ predictions on E , Ec and E(rev). E , Ec have already been defined, and E(rev) is
the set of reversed ordered pairs in E . I.e., Erev = {(u, v)|(v, u) ∈ E}

For every edge in these three subsets we evaluated the model’s performance under 0− 1 loss. Specifically, to evaluate the
performance of RESCAL on an edge (v, v′) ∈ E we checked whether the model assigns a higher score to (v, r1, v

′) than
(v, r0, v

′) and rewarded the model by 1 point if it made the right prediction and 0 otherwise. As before, r1 and r0 denote the
presence and absence of relationship respectively.

Note that low performance on Erev and high performance on E will indicate exactly the type of failure predicted from our
analysis. We vary the dimensionality of the embedding d, and the number of entities V, since they influence the performance
of the model, and present the results in Table 1a–1b. The right most column of Table 1b is the most direct empirical evidence
of our theoretical analysis. The performance of RESCAL embeddings is substantially lower on Erev in comparison to E , Ec.
The last row with d = 400 however shows a very sharp drop in the accuracy on Ec while the performance of Erev increases
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Fluffy
Dog

Animal
Organism

(a) A toy knowledge base containing only is-a relations. The
dashed edges indicate unobserved relations that can be recovered
using the observed edges and the fact that is-a is a transitive
relation.

(b) Assume that the black edges constitute E and the red dotted de-
note Ec, then Erev contains the edges (v4, v1), (v4, v2), (v2, v1),
and (v3, v1).

Figure 2: Illustrative Diagrams

slightly. We believe that this happens because of higher overfitting to the forward edges as the number of parameters
increases.

FullSet

d V = 2047 4095 8191

E Ec Erev E Ec Erev E Ec Erev

50 66 100 100 60 100 100 54 100 100
100 76 100 100 69 100 100 63 100 100
200 86 100 100 79 100 100 72 100 100
400 94 100 100 88 100 100 81 100 100

(a) Accuracy in percentage of RESCAL with all the edges as
training data (denoted as FullSet) on E , Ec, Erev .

SubSet

d V = 2047 4095 8191

E Ec Erev E Ec Erev E Ec Erev

50 100 93 52 100 91 48 100 89 44
100 100 78 58 100 92 56 100 89 52
200 100 60 72 100 71 61 100 90 59
400 100 54 67 100 57 70 100 65 62

(b) Accuracy in percentage of RESCAL trained with all pos-
itive edges and subsampled negative edges as training data
(together called SubSet).

Table 1: V denotes the number of nodes in the tree. d denotes the number of dimensions.

4.2 Experiments On WordNet

WordNet is a KB that contains vertices called synsets that are arranged in a tree like hierarchy under the hyponymy relation.
The hyponym of a synset is another synset that contains elements that have a more specific meaning. For example, the dog
synset4 is a hyponym of the animal synset and an animal is a hyponym of living thing therefore a dog is a hyponym of
living thing. We extracted all the hyponyms of the living thing.n.01 synset as the vertices of T and we used the transitive
closure of the direct hyponym relationship between two synsets as the edges of T . Quantitatively, the living thing synset
contained 16, 255 hyponyms, and 16, 489 edges. After performing the transitive closure E became 128, 241.

We performed two experiments with the WordNet graphs, using the same FullSet and SubSet protocols described earlier.
The results are in the left half of Table 2. We see that even though the accuracy on E and Ec is high, the performance on Erev
is much lower. This trend is in line with our theoretical prediction that the RESCAL model will fail on “reverse relations” as
the KB’s size increases.

d FullSet SubSet SubSet
E Ec Erev E Ec Erev E Ec Erev

50 71 100 100 100 93 58 100 55 65
100 79 100 100 100 94 60 100 56 56
200 84 100 100 100 93 63 100 56 75
400 89 100 100 100 68 69 100 97 91

Table 2: Results from experiments on WordNet. We used the subtree rooted at the living things synset from the WordNet hierarchy.
d indicates the dimensionality of the embeddings used and the triple of numbers under FullSet and SubSet indicates the accuracy of
RESCAL on E , Ec, Erev . V is 16, 255 for all columns. The right half shows results from experiments on WordNet with role dependent
embeddings for entities.

Finally we present the results of augmenting RESCAL with role specific embeddings in the right half of Table 2. The
results show that using role specific embeddings increases the performance over the performance of the RESCAL algorithm

4A synset must be qualified by the word sense and the part of speech. So a valid synset called dog.n.01. For simplicity we skip this detail in our
explanation but our implementation distinguishes between the synset dog.n.01 and dog.n.02.
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and with a high dimensionality of embeddings it is possible to encode both the forward and the reverse relations in the embed-
dings. Please note that we do not claim that our proposed augmentation for RESCAL will empirically be any better than the
much more recently proposed methods such as ARE [Nickel et al., 2014], or Poincaré embeddings [Nickel and Kiela, 2017].
We leave a careful empirical comparison of these techniques for future work.

5 Conclusions
The information present in large scale knowledge bases has helped in moving information retrieval beyond retrieval of
documents to more specific entities and objects. And in order to further improve coverage of knowledge bases it is important
to research knowledge base completion methods. Since many knowledge bases contain information about real world artifacts
that obey hierarchical relations and logical properties, it is important to keep such properties in mind while designing
knowledge base completion algorithms. In this paper we demonstrate a close connection between logical properties of
relations such as asymmetry, and transitivity, and the performance of KBC algorithms used to predict those relations.
Specifically, we theoretically analyzed a popular KBC algorithm named RESCAL, and our analysis showed that the
performance of that model in encoding transitive and asymmetric relations must degrade as the size of the KB increases.
Our experimental results in Table 1a,1b and 2 confirmed our theoretical hypothesis, and most strikingly we observed that the
accuracy of RESCAL on Erev was substantially lower than its performance on either E or Ec, even though Erev is a subset
of Ec.

In Table 3, we visualize the errors made by RESCAL by listing a few edges in Erev that were wrongly predicted as true
edges. These examples show that the trained RESCAL model can predict that fruit tree is a hyponym of mango or that every
accountant is a bean counter. Such wrong predictions can be harmful. Based on our analysis, we advocated for role specific
embeddings as a way of alleviating this shortcoming of RESCAL and we empirically showed its efficacy in Table 2.

Our results also highlight a problem with the commonly employed KBC evaluation protocol of randomly dividing the
edge set of a graph into train and test sets for measuring knowledge base completion accuracy. For example with d = 50 the
average accuracy on both E and Ec is quite high but on Erev accuracy is low even though Erev is a subset of Ec. Such a
failure will stay undetected with existing evaluation methods.

Argument 1 Argument 2
draftsman.n.02 cartoonist
fruit tree mango
taster wine taster
accountant bean counter
scholar.n.03 rhodes scholar

Table 3: Examples of wrong predictions for the hyponym relations by the RESCAL model with d = 400 when trained under the SubSet
setting. The default synset is n.01.

6 Proof of Theorem 1
We now present our novel proof of Theorem 1 beginning with a lemma. 5

Lemma 2. Every transitive matrix is PSD.
Proof. Consider the triplet of vectors c := x, b := Mc, a := Mb. Then aT (Mb) = ||Mb||2 ≥ 0 and bT (Mc) = ||b||2 ≥ 0
and aTMc = bTMb. Three cases are possible, either b = 0, or Mb = 0, or both Mb 6= 0 and b 6= 0. In the third case
transitivity applies and we conclude that bTMb > 0. In all cases bTMb ≥ 0 which implies M is PSD.

The next lemma proves that if M is transitive then xTMy and xTMT y must have the same sign.
Lemma 3. If ∃x, y xTMy > 0 but xTMT y < 0 then M is not transitive.
Proof. Let x, y be two vectors that satisfy xTMy > 0 and xTMT y < 0. Since xTMT y = yTMx therefore yTM(−x) >
0. If we assume M is transitive, then xTM(−x) > 0 by transitivity, but Lemma 2 shows such an x cannot exist.

Lemma 4 is a general statement about all matrices which states that if the two bilinear forms have the same sign for all
inputs then they have to be scalar multiples of each other. We omit its proof due to space constraint.
Lemma 4. Let M1,M2 ∈ Rd×d \ {0}. If xTM1y>0 =⇒ xTM2y>0 then M1 = λM2 for some λ > 0.

Finally we use Lemma 3–4 to prove Theorem 1.
Proof. Let M be a transitive matrix and let x, y be two vectors such that xTMy > 0. By transitivity of M and Lemma 3
xTMT y > 0. Therefore by Lemma 4 we get M = λMT for some λ > 0. Clearly λ = 1, this concludes the proof that M
is symmetric.

5Theorem 1 was first proven by [Grinberg, 2015](unpublished). Our proof is more elementary and direct.
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