
A Principled Approach to Data Integration and Reconciliation in
Data Warehousing

Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini,
Daniele Nardi, Riccardo Rosati

Dipartimento di Informatica e Sistemistica,
Università di Roma “La Sapienza”
Via Salaria 113, 00198 Roma, Italy
lastname @dis.uniroma1.it

http://www.dis.uniroma1.it/ ˜ lastname

Abstract

Integration is one of the most important aspects
of a Data Warehouse. When data passes from the
sources of the application-oriented operational en-
vironment to the Data Warehouse, possible incon-
sistencies and redundancies should be resolved, so
that the warehouse is able to provide an integrated
and reconciled view of data of the organization.
We describe a novel approach to data integration
and reconciliation, based on a conceptual repre-
sentation of the Data Warehouse application do-
main. The main idea is to declaratively specify
suitable matching, conversion, and reconciliation
operations to be used in order to solve possibile
conflicts among data in different sources. Such a
specification is provided in terms of the concep-
tual model of the application, and is effectively
used during the design of the software modules
that load the data from the sources into the Data
Warehouse.

1 Introduction

Information Integration is the problem of acquiring data
from a set of sources that are available for the application of

The copyright of this paper belongs to the paper’s authors. Permission to
copy without fee all or part of this material is granted provided that the
copies are not made or distributed for direct commercial advantage.

Proceedings of the International Workshop on Design and
Management of Data Warehouses (DMDW’99)
Heidelberg, Germany, 14. - 15.6. 1999

(S. Gatziu, M. Jeusfeld, M. Staudt, Y. Vassiliou, eds.)

http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-19/

interest. The typical architecture of an integration systems
is described in terms of two types of modules: wrappers
and mediators [Wie92, Ull97]. The goal of a wrapper is
to access a source, extract the relevant data, and present
such data in a specified format. The role of a mediator is to
merge data produced by different wrappers (or mediators),
so as to meet a specific information need of the integra-
tion system. The specification and the realization of me-
diators is the core problem in the design of an integration
system. This problem has recently become a central issue
in several contexts, including multi-database systems, Data
Warehousing and information gathering from the Web.

The constraints that are typical of Data Warehouse ap-
plications restrict the large spectrum of approaches that are
being proposed [Hul97, Inm96, JLVV99]. First, while the
sources on the Web are often external, in a Data Warehouse
they are mostly internal to the organization. Second, a Data
Warehouse should reflect the informational needs of an or-
ganization, and should therefore be defined in terms of a
global, corporate view of data. Third, such a view should
be provided in terms of conceptual representation mecha-
nism that is able to abstract from the physical and logical
organization of data in the sources. It follows that the need
and requirements for maintaining an integrated, conceptual
view of the corporate data in the organization are stronger
with respect to other contexts. A direct consequence of this
fact is that the data in the sources and in the Data Ware-
house should be defined in terms of the conceptual model,
and not the other way around. In other words, data in-
tegration in Data Warehousing should follow thelocal as
viewapproach, where each table in a source and in the Data
Warehouse is defined as a view of a global model of the cor-
porate data. On the contrary, theglobal as viewapproach
requires, for each information need, to specify the corre-
sponding query in terms of the data at the sources, and is
therefore suited when no global, integrated view of the data

D. Calvanese, G. De Giacomo, M. Lenzerini, D. Nardi, R. Rosati 16-1

of the organization is available.
The above considerations motivate the approach to in-

formation integration proposed in [CDGL+98d], whose
distinguishing feature is to exploit the possibility of rep-
resenting the conceptual level of a Data Warehouse in a
very expressive language and use reasoning tools to support
the Data Warehouse construction, maintenance and evolu-
tion. In fact, the idea is to balance the effort of building a
conceptual model of the Data Warehouse by improving the
capabilities of the system in maintaining the Data Ware-
house and support the incremental addition of information
sources. The proposed approach follows a local as view
paradigm, by explicitly requiring an enterprise conceptual
model which is therefore regarded as a unified view of the
data available within the organization.

Most of the work on integration has been concerned
with the intensional/schema level, while less attention has
been devoted to the problem of data integration at the exten-
sional level. Integration of data is, nonetheless, at the heart
of Data Warehousing [Inm96]. When data passes from the
application-oriented operational environment to the Ware-
house, possible inconsistencies and redundancies should be
resolved, so that the Warehouse is able to provide an in-
tegrated and reconciled view of data of the organization.
Thus, in the context of a Data Warehouse, data integration
and reconciliation is the process of acquiring data from the
sources and making them available within the Warehouse.

Given a request for data (e.g., for materializing a new
relation in the Data Warehouse), which is formulated in
terms of the global view of the corporate data, (i.e., not
the language of the sources, but of the enterprise), there are
several steps that enable for the acquisition of data from the
sources:

1. Identification of the sources where the relevant infor-
mation resides. Note that this task is typical of the
local-as-view approach, and requires algorithms that
are generally both sophisticated and costly [AD98,
LMSS95].

2. Decomposition of the user request into queries to in-
dividual sources that would return the data of interest.

3. Interpretation of the data provided by a source. In-
terpreting data can be regarded as the task of casting
them into a common representation, which can there-
after be used to manipulate the data.

4. Merging of the data. The data returned by various
sources need to be combined to provide the Data
Warehouse with the requested information.

In commercial environments for Data Warehouse design
and management the above tasks are taken care of through
ad-hoc components [JLVV99]. In general, such a compo-
nent provides the user with the capability of specifying the
mapping between the sources and the Data Warehouse by

browsing through a meta-level description of the relations
of the sources. In addition, it generally provides both for
automatic code generators and for the possibility of attach-
ing procedures to accomplish ad hoc transformations and
filtering of the data. Even though there are powerful and
effective environments with the above features, their nature
is inherently procedural and close to the notion of global as
view, where the task of relating the sources with the Data
Warehouse is done on a query-by-query basis.

Several recent research contributions address the same
problem from a more formal perspective [HGMW+95,
Wid95, GM95, HZ96, ZHK96, ZHKF95, PGMW95,
GMS94]. For example, a methodology for extracting, com-
paring and matching data and objects located in different
sources is described in [PGMW95]. The methodology is
based on the Object Exchange Model, which requires the
explicit semantic labeling of the objects, to support object
exchange, and emphasizes the need for a tight interaction
between the system and the user. However, the method
remains of procedural nature, since it requires the user to
build and maintain the relationship between the sources and
the Data Warehouse on a query-by-query basis.

The approach proposed in [GMS94] is more declarative
in nature. Suitable data structures for reconciling different
representations of the same data are represented in acon-
text theory, which is used by the system to transform the
queries as appropriate for gathering the data from the vari-
ous sources. In such a declarative approach, the user is not
directly concerned with the identification and resolution of
semantic conflicts when formulating the requests for data.
Rather, once the specification of the sources is available,
conflicts are detected by the system, and conversion and
filtering are automatically enforced. However, the method
still follows the global-as-view approach, and the context
theory is used as a description of reconciled data structures,
rather than as the conceptual model of the corporate data.

In this paper we present the approach to data integra-
tion and reconciliation proposed within the DWQ (Data
Warehouse Quality) project [JJQV98, JLVV99]. In DWQ,
the ultimate goal of source integration and data reconcil-
iation is to represent the migration of the data from the
sources to the Data Warehouse, in order to support the de-
sign of materialized views that meet user requirements, and
have high quality with respect to correctness, interpretabil-
ity, usefulness, believability. The method for data integra-
tion and reconciliation builds upon and extends the work
in [CDGL+98d], therefore relying on the availability of a
Conceptual Model to declaratively represent the relation-
ship between the sources and the Data Warehouse. The
declarative approach is further pursued in the task of data
integration and reconciliation, where the system is given a
declarative description of the data in the sources and pro-
vides automatic support in satisfying the data requests for
populating the Data Warehouse.

Compared with the existing proposals mentioned above,

D. Calvanese, G. De Giacomo, M. Lenzerini, D. Nardi, R. Rosati 16-2

Sources

� � �

� � �

Conceptual Model

Data Store1

Source Source
Data Storen

Mediators

conceptual/logical mapping

physical/logical mapping

data flow

Source
Schema1

Source
Scheman Wrappers

physical levellogical level

Data Warehouse
Schema Data Warehouse

Store

conceptual level

Figure 1: Architecture for Data Integration

the novelty of our approach stems from the following fea-
tures:

� It relies on the Conceptual Model of the corporate
data, which is expressed in an Entity-Relationship for-
malism.

� It follows the local-as-view paradigm.

� It allows the designer to declaratively specify sev-
eral types of correspondences between data in differ-
ent schemas (either source schemas or Data Ware-
house schema). Three types of Interschema Corre-
spondences are taken into account, namely Conver-
sion, Matching, and Reconciliation Correspondences.

� It uses such correspondences for supporting the task
of specifying the correct mediators for the loading of
the materialized views of the Data Warehouse.

Our methodology relies on a novel query rewriting algo-
rithm, whose role is to reformulate the query that defines
the view to materialize in terms of both the source relations
and the interschema correspondences.

The paper is organized as follows. In Section 2, we sum-
marize the relevant features of the proposed approach to
information integration. Section 3 illustrates the method
we use to describe the content of the sources at the logical
level. Section 4 is devoted to a discussion of the mean-
ing and the role of interschema correspondences. Section 5
describes the query rewriting algorithm at the basis of our
approach to the design of mediators. Section 6 concludes
the paper.

2 The DWQ framework

In this section we briefly describe the general framework
adopted in the DWQ project [CDGL+98d]. The proposed
framework allows one to explicitly model data and infor-
mation needs – i.e., a specification of the data that the
Data Warehouse provides to the user – at various lev-
els [CDGL+98b, CDGL+98d, CDGL+98c]:

� Theconceptual levelcontains a conceptual represen-
tation of the corporate data.

� The logical levelcontains a representation in terms of
a logical data model of the sources and of the data
materialized in the Data Warehouse.

� The physical levelcontains a store for the material-
ized data, wrappers for the sources and mediators for
loading the materialized data store.

The relationship between the conceptual and the logical,
and between the logical and the physical level is repre-
sented explicitly by specifying mappings between corre-
sponding objects of the different levels.

We briefly describe the conceptual and logical levels,
referring to the abstract architecture of DWQ as depicted
in Figure 1.

The Conceptual Model is a conceptual representation
of the data managed by the enterprise, including a con-
ceptual representation of the data residing in sources, and
of the global concepts and relationships that are of in-
terest to the Data Warehouse application. The concep-
tual model is expressed in terms of an enrichedEntity-
Relationship modelin which complex entity and relation-
ship expressions can be constructed and used, and in which
interdependencies between elements of different sources
and of the enterprise are captured usingintermodel asser-
tions[CDGL+98b, CL93]. Intermodel assertions provide a
simple and effective declarative mechanism to express the
dependencies that hold between entities (i.e. classes and re-
lationships) in different models [Hul97]. The use of inter-
model assertions allows for an incremental approach to the
integration of the conceptual models of the sources and of
the enterprise. Due to space limitations, we cannot con-
sider this aspect in further detail, and refer the interested
reader to [CDGL+98b].

The conceptual representation contains, besides entities
and relationships, also a description ofdomains, which are
used to typify the attributes of entities and relationships.

D. Calvanese, G. De Giacomo, M. Lenzerini, D. Nardi, R. Rosati 16-3

Rather than considering only concrete domains, such as
strings, integers, and reals, our approach is based on the
use ofabstract domains. An abstract domain may have
an underlying concrete domain, but allows the designer to
distinguish between the different meanings that a value of
the concrete domain may have. Additionally, also Boolean
combinations of domains and the possibility to construct an
ISA hierarchy between domains are supported.

Example 1 Consider two attributesA1 in a source and
A2 in the Data Warehouse, both representing amounts of
money. Rather than specifying that both attributes have val-
ues of typereal , the designer may specify that the domain
of attributeA1 is MoneyInLire while the domain of at-
tributeA2 is MoneyInEuro , both of which havereal
as the underlying concrete domain. In this way, it be-
comes possible to specify declaratively the difference be-
tween values of the two attributes, and take into account
such knowledge for loading data from the source to the
Data Warehouse.

We provide an example of the form of the Conceptual
Model, and refer to [CDGL+98b] for a more detailed de-
scription of the adopted formalism.

Example 2 As our running example we consider an en-
terprise and two sources containing information about con-
tracts between customers and departments for services, and
about registration of customers at departments. Source 1
contains information about customers registered at public-
relations departments. Source 2 contains information about
contracts and complete information about services. Such
situation can be represented by means of the ER diagrams
shown in Figure 2, together with the following intermodel
assertions (v represents ISA while� represents equiva-
lence):

Department 1 � PrDept 0

REG-AT1 v REG-AT0

Customer 1 � Customer 0 u
(� 1 [$1](REG-AT0 u ($2: PrDept 0)))

Customer 0 u
(� 1 [$1]CONTRACT0) v (� 1 [$1]PROMOTION1)

Customer 2 v Customer 0 u
(� 1 [$1]CONTRACT0)

Department 2 v Department 0

Service 2 � Service 0

CONTRACT2 v CONTRACT0

Customer 1 � Customer 0

Department 1 � Department 0

and the following domain hierarchy:

PersNameString v String

DeptNameString v String

SSNString v String

DeptCodeInteger v Integer

ServNoInteger v Integer

At the logical level, the logical content of each source,
called theSource Schema(see Section 3), is provided in
terms of a set of relational tables using the relational model.
The link between the logical representation and the concep-
tual representation of the source is formally defined by as-
sociating with each table a query that describes its content
in terms of a query over the Conceptual Model. In other
words, the logical content of a source table is described in
terms of a view over the Conceptual Model. To map phys-
ical structures to logical structures we make use of suit-
able wrappers, which encapsulate the sources. The wrapper
hides how the source actually stores its data, the data model
it adopts, etc., and presents the source as a set of relational
tables. In particular, we assume that all attributes in the
tables are of interest to the Data Warehouse application (at-
tributes that are not of interest are hidden by the wrapper).
The logical content of the materialized views constituting
the Data Warehouse, called theData Warehouse Schema
(see Section 4), is provided in terms of a set of relational
tables. Similarly to the case of the sources, each table of
the Data Warehouse Schema is described in terms of a view
over the Conceptual Model. As we said before, the way in
which a view is actually materialized, starting from the data
in the sources, is specified by means of mediators.

In such a framework, we have devised suitable inference
techniques, which allow for carrying out several reasoning
services on both the conceptual representation, such as in-
ferring inclusion between entities and relationships, satis-
fiability of entities, etc. [CDGL+98d], and the logical rep-
resentation, such as query containment [CDGL98a], which
is at the basis of query rewriting. The possibilities offered
by such reasoning tools are used in the accomplishment of
several activities concerning both the design and the oper-
ation of the Data Warehouse.

3 Source schema description

In this section we focus on the specification of the logical
schemas of the sources. Such schemas are intended to pro-
vide a structural description of the content of the sources,
which are encapsulated by suitable wrappers.

We describe a sourceS by associating to each relational
tableT of S anadorned querythat is constituted by a head,
a body, and an adornment:

� Theheaddefines the relational schema of the table in
terms of a name, and the number of columns.

� Thebodydescribes the content of the table in terms of
a query over the Conceptual Model.

D. Calvanese, G. De Giacomo, M. Lenzerini, D. Nardi, R. Rosati 16-4

ServNo =ServNoInteger

Name=PersNameString

SSN=SSNString

DOB=Date

Name=DeptNameString

Code=DeptCodeInteger

1

1

3

2

2

Customer 0

Service 0

CONTRACT0

Department 0

PrDept 0

REG-AT0

SSN=SSNString Name =DeptNameString

1 2
PROMOTION1

21
Customer 1 REG-AT1 Department 1

ServNo =ServNoInteger

Name=DeptNameStringName=PersNameString

DOB=Date

1
2

3
Customer 2

Service 2

CONTRACT2 Department 2

Figure 2: Conceptual model of the application of Example 2

� The adornmentdeclares the domains of the columns
of the table, and also which are the attributes of the ta-
ble that are used to identify an entity of the Conceptual
Model.

We now present in detail the notions introduced above.

3.1 Query over the Conceptual Model

Generally speaking, the connection to the Conceptual
Model is established by defining each table as a relational
query over the elements of the Conceptual Model.

A queryq for a Conceptual ModelM is a non-recursive
Datalog query, written in the form:

q(~x) conj 1(~x; ~y1) OR � � � OR conjm(~x; ~ym)

where eachconj i(~x; ~yi) is a conjunction ofatoms or
negated atoms, and~x; ~yi are all the variables appearing in
the conjunct. Each atom is either of the formsE(t) or of
the formR(~t), where~t, t, andt0 are variables in~x; ~yi or
constants, andE andR, and entities and relationships of
M respectively.

The semantics of queries is as follows. Given an inter-
pretationI of a Conceptual ModelM with interpretation
domain�I , a queryq of arity n is interpreted as the set
qI of n-tuples(d1; : : : ; dn), with eachdi 2 �I , such that,
when substituting eachdi for xi, the formula

9~y1.conj 1(~x; ~y1) OR � � � OR 9~ym.conjm(~x; ~ym)

evaluates to true inI.
The fact that a relation in a source is defined in terms

of a query over the Conceptual Model confirms that we are
following the local-as-view approach: each table is seen as
a view of the virtual database represented by the Concep-
tual Model.

3.2 Adornment

To make the connection to the Conceptual Model precise,
it is not sufficient to define each table as a relational query

over the elements of the Conceptual Model. We need to
make it explicit how the objects of the conceptual repre-
sentation are coded into values of the logical representa-
tion. The notion ofadorned queryis introduced exactly for
this purpose.

An adorned queryis an expression of the form

T (~x) q(~x; ~y) j �1; : : : ; �n

whereT is the name of the relational table,~x are its at-
tributes (observe that attributes denotevaluesand notob-
jects), q(~x; ~y) is a query as defined above, and each�i is
anannotationon variables appearing in~x. In particular:

1. For eachX 2 ~x, we have an annotation of the form

X :: V

whereV is a domain expression. Such an annotation
is used to specify how values bound toX are repre-
sented in the table at the logical level. For example,
which currency is used for a real value denoting an
amount of money.

2. For each tuple of variables~z � ~x that is used for iden-
tifying in T an objectY 2 ~y mentioned inq(~x; ~y), we
have an annotation of the form

identify([~z]; Y)

For example, the designer may assert that the
attributes first name, last name, and
date of birth in a table are used to identify
students.

We point out that our method is able to cope with
severalschematic differencesthat may be present in the
sources [SK92]. We illustrate this point with the help of
an example.

Example 3 Suppose that the Conceptual Model contains
a relationshipService with three attributes,Date ,

D. Calvanese, G. De Giacomo, M. Lenzerini, D. Nardi, R. Rosati 16-5

ServiceNo , and Price , where Service (D;S; P)
means that at the dateD the serviceS costsP Euro. Sup-
pose that SourceS1 represents the same kind of informa-
tion only on Servicesv1 andv2, by means of two tables:
v1 andv2 , wherev1 (D;P) means that servicev1 costsP
Italian Lira at dateD, andv2 (D;P) means that servicev2
costsP Italian Lira at dateD. Suppose that SourceS2 rep-
resents the same kind of information only on Servicesv3
andv4 by means of a tableServ , whereServ (X;Y;D)
means that servicesv3 andv4 costX andY Euro respec-
tively at dateD. Finally, suppose that SourceS3 represents
the information only for a certain dated by means of an-
other tableServ 3. The various tables in the three sources
can be specified by means of the following adorned queries:

v1 (D; P) Service (D;0 v1 0; P) j
P :: ItalianLira ; D :: Date

v2 (D; P) Service (D;0 v2 0; P) j
P :: ItalianLira ; D :: Date

Serv (X;Y;D) Service (D;0 v3 0; X);
Service (D;0 v4 0; Y) j
X :: Euro ; Y :: Euro ; D :: Date

Serv 3(S1; P) Service (d; S1; P);
Code(S; S1) j
P :: Euro ;
identify([S1]; S); S1 :: String

The above example illustrates a case where there are
various schematic differences, both among the sources, and
between the sources and the Conceptual Model. The mech-
anisms used in our methodology for specifying adorned
queries is able to cope with such differences.

The adorned query associated to a table in a source con-
tains a lot of information that can be profitably used in an-
alyzing the quality of the Data Warehouse design process.
Indeed, the adorned query precisely formalizes the content
of a source table in terms of a query over the Conceptual
Model, the domains of each attribute of the table, and the
attributes used to identify entities at the conceptual level.
One important check that we can carry out over the logical
specification of a source is whether the adorned query asso-
ciated with a table in a source is consistent or not. LetQ be
an adorned query and letB be its body. The queryB is said
to beinconsistentwith respect to the Conceptual ModelM,
if for every databaseDB coherent withM, the evaluation
of B with respect toDB is empty. An adorned queryQ is
inconsistent with respect to the Conceptual ModelM ei-
ther because the bodyB of Q is inconsistent with respect
toM, or because the annotations are incoherent with re-
spect to what specified inM. The inference techniques de-
scribed in [CDGL+98d] allow us to check the consistency
of the relational tables defined for describing a source.

Example 2 (cont.) Assuming that in Source 1 a customer
is actually identified by its social security number, and a
department by its name, we can specify the relational table
TABLE1 by the following adorned query:

TABLE1(S;M; P)
REG-AT1(X;D); :PROMOTION1(X;D); P = false ;

SSN(X;S); Name(D;M)
OR

PROMOTION1(X;D); P = true ; SSN(X;S);
Name1(D;M) j

identify([S]; X); S :: SSNString ;

identify([M]; D); M :: DeptNameString ;

P :: Boolean

Additionally, we assume that in Source 2 the actual data
can be described in terms of a relational tableTABLE2 with
four columns, two for the customer, one for the service the
customer has registered, and one for the department. As
in Source 1, in Source 2 departments are still identified
by their name, but, differently from Source 1, customers
are identified by their name and date of birth. Services are
identified by a unique service number. Hence the following
adorned query is used to specifyTABLE2:

TABLE2(N;B; I;M)
CONTRACT2(X;S;D); Name(X;N); ServNo (S; I);
Name(D;M) j

identify([N;B]; X); N :: PersNameString ;

B :: Date
identify([I]; S); I :: ServNoInteger ;

identify([M]; D); M :: DeptNameString

4 Interschema Correspondences

We now describe how to defineInterschema Correspon-
dences, which are used to declaratively specify the cor-
respondences between data in different schemas (either
source schemas or data warehouse schema).

In our approach, Interschema Correspondences are de-
fined in terms of relational tables, similarly to the case of
the relations describing the sources at the logical level. The
difference with source relations is that we conceive inter-
schema correspondences as non-materialized relational ta-
bles, in the sense that their extension is computed by an
associated program whenever it is needed. It follows that,
to each interschema correspondence, we associate ahead,
a body, and anadornment. Differently from the case of
a source relation, the adorment specifies which is the pro-
gram that is able to compute the extension of the virtual
table.

We distinguish among three types of correspondences,
namely Conversion, Matching, and Reconciliation Corre-
spondences.

Conversion Correspondencesare used to specify that
data in one source can be converted into data of a different

D. Calvanese, G. De Giacomo, M. Lenzerini, D. Nardi, R. Rosati 16-6

source or of the data warehouse, and how this conversion
is performed. They are used to anticipate several types of
data conflicts that may occur in loading data.

As an example, suppose that in a table of a source costs
are represented in Italian Lira, while in a table of the Data
Warehouse we want to express them in Euro. Then, in or-
der to use the source table in the rewriting of a query that
defines the Data Warehouse table, it is necessary to know
about the possibility of converting each amount in Italian
Lira into an amount in Euro.

A Conversion Correspondenceconvert has the follow-
ing form:

convert([~x]; [~y]) conj (~x; ~y;~z)
through program(~x; ~y;~z)

where conj is a conjunctive query, which specifies the
conditions under which the conversion is applicable, and
program is a predicate that we assume associated to a pro-
gram that performs the conversion. In general, the program
needs to take into account the additional parameters spec-
ified in the condition to actually perform the conversion.
The conversion has a direction. In particular, it operates
from a tuple of values satisfying the conditions specified
for ~x in conj to a tuple of values satisfying the conditions
specified for~y. This means that the conversion program
receives as input a tuple~x, and returns the corresponding
tuple~y, possibly using the additional parameter~z to per-
form the conversion.

Matching Correspondencesare used to specify how data
in different sources can match. A Matching Correspon-
dencematch has the following form:

match([~x1]; : : : ; [~xk]) conj (~x1; : : : ; ~xk;~z)
through program(~x; : : : ; ~xk;~z)

whereconj specifies the conditions under which the match-
ing is applicable, andprogram is a predicate that we as-
sume associated to a program that performs the matching.
The program receives as inputk tuples of values satisfying
the conditions (and possibly the additional parameters in
the condition) and returns whether they match or not.

Note that already specified Interschema Correspon-
dences may be used to define new ones. As an example,
the designer may want to define a Matching Correspon-
dence between two tuples by using two already defined
Conversion Correspondences, which convert to a common
representation, and then by using equality. In this case,
he could provide the following definition of the Matching
Correspondence:

match([~x]; [~y]) convert1([~x]; [~z]); convert2([~y]; [~z]);
conj (~x; ~y;~z; ~w)
through none

Observe that, in this case, the program associated to the
Matching Correspondence is empty, since the actual con-

versions are performed by the programs associated to the
Conversion Correspondences.

Reconciliation Correspondencesare used to assert how
we can reconcile data in different sources into data of
the data warehouse. A Reconciliation Correspondence
reconcile has the following form:

reconcile([~x1]; : : : ; [~xk]; [~z]) conj (~x; : : : ; ~xk;~z; ~w)
through program(~x1; : : : ; ~xk;~z; ~w)

whereconj specifies the conditions under which the recon-
ciliation is applicable, andprogram is a predicate that we
assume associated to a program that performs the reconcil-
iation. Such correspondence specifies that thek tuples of
values~x1; : : : ; ~xk coming from the sources are reconciled
to the tuple~z in the Data Warehouse. Therefore, the as-
sociated program receives as inputk tuples of values (and
possibly the additional parameters in the condition) and re-
turns a reconciled tuple.

Again, a Reconciliation Correspondence could simply
be defined as a combination of appropriate Matching and
Conversion Correspondences, e.g.,

reconcile([~x]; [~y]; [~z])
convert1([~x]; [~w1]); convert2([~y]; [~w2]);
match1([~w1]; [~w2]); convert3([~w1]; [~z]);
conj (~x; ~y; ~w1; ~w2;~z)
through none

In practice, several of the Interschema Correspondences
that must be specified will have a very simple form, since
they will correspond simply to equality in the case of a
matching and to identity in the case of a conversion. There-
fore, in order to simplify the task of the designer in speci-
fying the various interschema correspondences, we assume
that several correspondences are automatically assertedby
default by the system. In particular, for each domainD
in the conceptual model, the following Interschema Corre-
spondences are specified by default:

convert([X]; [Y]) D(X); D(Y)
through identity(X;Y)

match([X]; [Y]) D(X); D(Y); X = Y

through none

reconcile([X]; [Y]; [Z]) D(X); D(Y); D(Z);
X = Y

through identity(X;Z)

whereidentity is the program that computes the identity
function for values of domainD, and the matching corre-
spondence has no associated program.

The system allows the designer to inhibit the default
correspondences for a certain domain, simply by provid-
ing an alternative interschema correspondence referring to
that domain.

D. Calvanese, G. De Giacomo, M. Lenzerini, D. Nardi, R. Rosati 16-7

Moreover, we assume that for each Conversion Cor-
respondenceconvert i asserted by the designer, the sys-
tem automatically asserts a new Matching Correspondence
match i as follows:

match i([~x]; [~y]) convert i([~x]; [~z]); ~y = ~z

through none

Moreover, for each Conversion Correspondenceconvert i
asserted by the designer and for each Matching Correspon-
dencematchj asserted by the designer or by default, the
system automatically asserts a new Reconciliation Corre-
spondencereconcile i;j as follows:

reconcile i;j([~x]; [~y]; [~z]) match i([~x]; [~y]);
convertj([~x]; [~z])
through none

Example 2 (cont.) The following Conversion Correspon-
dence specifies that the name and date of birth of a person
can be converted into a Social Security Number through the
programname to SSN:

convert 1([N;B]; [S])
PersNameString (N); Date (B); DOB(N;B);
SSNString (S)
through name to SSN(N;B; S)

Moreover, we add the following Conversion Correspon-
dence, which represents the fact that a department name
can be converted into a department code through the pro-
gramdept name to code :

convert2([M]; [C])
DeptNameString (M); DeptCodeInteger (C)
through dept name to code (M;C)

According to the above rules, the system asserts automat-
ically (among others) the Matching Correspondence and
Conversion Correspondences

match1([N;B]; [S]) convert 1([N;B]; [S1]); S = S1
through none

match2([M]; [C]) convert 2([M]; [C1]); C = C1

through none

match3([M1]; [M2]) DeptNameString (M1);
DeptNameString (M2);
M1 =M2

through none

convert4([S1]; [S2]) SSNString (S1);
SSNString (S2)
through identity(S1; S2)

convert 5([P1]; [P2]) Boolean (P1); Boolean (P2)
through identity(P1; P2)

convert 6([I1]; [I2]) ServNoInteger (I1);
ServNoInteger (I2)
through identity(I1; I2)

and the Reconciliation Correspondences

reconcile1;1([N;D]; [S1]; [S2])
reconcile3;2([M1]; [M2]; [C])

5 Specification of mediators

As we said in the introduction, the problem of data inte-
gration and reconciliation is crucial for the task of design-
ing the mediators that load the data in the Data Warehouse.
Such a task aims at specifying, for every relation in the Data
Warehouse Schema, how the tuples of the relation should
be constructed from a suitable set of tuples extracted from
the sources.

Suppose we have decided to materialize a new relation
T in the Data Warehouse.1 Our goal is to support the de-
signer in providing a formal specification for the design
of the mediator used to extract the correct data from the
sources, and to load such data inT . The methodology we
propose is based on the following steps.

1. We apply the method described in Section 3 to provide
the specification of the relationT . In other words, we
specifyT in terms of an adorned query

q q0 j c1; : : : ; cn:

Note that the adorned query associated to a table in a
source is the result of a reverse engineering analysis of
the source, whereas in this case the adorned query is a
specification of what we want to materialize in the ta-
ble of the Data Warehouse. Note also that we express
the semantics ofT again in terms of the conceptual
model. Not only the sources, but also the relations in
the Data Warehouse are seen as views of such a con-
ceptual model.

2. We look for a rewriting ofq in terms of the queries
q1; : : : ; qs that correspond to the materialized views in
the Data Warehouse. If a complete, equivalent rewrit-
ing exists, then the new table can be derived from the
existing tables in the Data Warehouse. Otherwise, the
algorithm is able to single out the part that cannot be
derived from the Data Warehouse, and that must be
loaded from the sources. In the following,q denotes
such part.

3. We look for a rewriting ofq in terms of the queries cor-
responding to the tables in the sources. The rewriting
aims at expressing the data inT in terms of a disjunc-
tion of conjunctive queries where each atom refers to

� a table in a source, or

1To see how DWQ addresses the issue of deciding what to materialize
in the Data Warehouse, we refer to [TLS99].

D. Calvanese, G. De Giacomo, M. Lenzerini, D. Nardi, R. Rosati 16-8

� a matching, conversion, or reconciliation pred-
icate defined in the Interschema Correspon-
dences.

In other words, we are trying to reformulateq in terms
of the relations in the sources, and possibly in terms
of the matching, conversion, and reconciliation predi-
cates. If there are different rewritings, then we choose
the best rewritingr with respect to suitable quality pa-
rameters. There are several criteria to be taken into
consideration when evaluating the quality of a rewrit-
ing, such as:

� Completeness of the rewriting. Obviously, the
best situation is the one where the rewriting is
complete, in the sense that the rewritten query is
equivalent to the original query. Such a check
can be done by exploiting the algorithm for
query containment.

� Accuracy, confidence, freshness, and availability
of data in the source relations that the rewriting
requires to access.

The resulting query is the specification for the design
of the mediator associated toT . The most critical step
of the above method is the computation of the rewriting.
Our rewriting algorithm is based on the method presented
in [DL97], modified to take into account the following as-
pects:

� We deal with queries whose atoms refer to a concep-
tual model that includes ISA assertions and a limited
form of functional dependencies. Such constraints
have to be considered in the computation of the rewrit-
ing.

� We deal with queries that are disjunctions of conjunc-
tions. It follows that the rewriting itself is in general
a disjunction, and therefore, we need to deal with the
problem of merging the results of several queries. This
problem is addressed by the notion of merging clause.
In particular, if the queryr computed by the rewriting
is anor-query (i.e., it is constituted by more than one
disjunct), then the algorithm associates tor a suitable
set of so-calledmerging clauses, taking into account
that the answers to the differentor-parts of the query
may contain objects and values that represent the same
real world entity or the same value. A merging clause
is an expression of the form

merging tuple-spec1 and � � � and tuple-specn
such that matching-condition
into tuple-spect1 and � � � and tuple-spectm

where tuple-speci denotes a tuple returned by the
i-th disjunct of r, matching-condition specifies

how to merge the various tuples denoted bytuple-
spec1,. . . ,tuple-specn, and tuple-spect1 ,. . . ,tuple-
spectm denote the tuples inT resulting from the
merging.

We observe that the rewriting algorithm is able to gen-
erate one merging clause template for each pair of dis-
juncts that are not disjoint. Starting from such tem-
plates, the designer may either specify thesuch that
and theinto parts, depending on the intended seman-
tics, or change the templates in order to specify a dif-
ferent merging plan (for example for merging three
disjuncts, rather than three pairs of disjuncts).

� The algorithm computes the maximally contained
rewriting (i.e., every other rewriting is included in the
one computed by the query), but we also want to in-
form the designer whether such a rewriting is equiv-
alent or not to the original query. Indeed, we have
devised an effective method for checking equivalence
between the original query and the computed rewrit-
ing [CDGL98a].

� Besides the relational tables in the sources, our rewrit-
ing algorithm takes into account the matching, con-
version, and reconciliation predicates defined in the
interschema correspondences.

� Even when no rewriting exists for the query (i.e.,
when the maximally contained rewriting is empty), we
want to provide the designer with useful indications
on whether there is a method for enriching the Inter-
schema Correspondences to get a non-empty rewrit-
ing. Indeed, our rewriting algorithm adopts a form
of abductive reasoning that enables to single out the
specification of which matching, conversion and rec-
onciliation operations would allow to get a non-empty
rewriting. This indication can be profitably used by
the designer to check whether she/he can add new In-
terschema Correspondences in order to make the com-
puted rewriting complete.

Example 2 (cont.) Suppose we want to store in the Data
Warehouse a relation containing the information about cus-
tomers that have a contract for a certain service with a de-
partment at which they are also registered, or that are eli-
gible for a promotion. Independently from the fact that the
customer has a contract, we want to include the information
on whether he is eligible for a promotion. We can make use
of a relational tableTDWwith four components, defined by
the following adorned query, where we have assumed that
in the Data Warehouse we want to identify customers by
their SSN, services by their service number, and depart-
ments by their code:

D. Calvanese, G. De Giacomo, M. Lenzerini, D. Nardi, R. Rosati 16-9

TDW(S; I; C; P)
CONTRACT0(X;R;D); PROMOTION1(X;D);
SSN(X;S); ServNo (R; I); Code(D;C); F = true
OR

CONTRACT0(X;R;D); REG-AT1(X;D);
:PROMOTION1(X;D); SSN(X;S); ServNo (R; I);
Code(D;C); P = false
OR

PROMOTION1(X;D); SSN(X;S); Code(D;C);
P = true ; I = NULL j

identify([S]; X); S :: SSNString ;

identify([I]; R); I :: ServNoInteger ;

identify([C]; D); C :: DeptCodeInteger ;

P :: Boolean

Using the asserted and automatically derived Inter-
schema Correspondences, the system is able to rewrite the
above query in terms ofTABLE1 in Source 1 andTABLE2
in Source 2 (see Section 3) as follows:

TDW(S0; I0; C; P0)
TABLE1(S1;M1; P1); TABLE2(N2; B; I2;M2);
reconcile1;1([N2; B]; [S1]; [S0]);
reconcile3;2([M1]; [M2]; [C]);
convert5([P1]; [P0]); convert 6([I2]; [I0])
OR

TABLE1(S1;M1; P1); S1 = NULL^ P1 = true ;

convert2([M1]; [C]); convert 4([S1]; [S0]);
convert5([P1]; [P0])

In this case the merging clause simply reduces to a disjunc-
tion.

6 Conclusions

We have described a new approach to data integration and
reconciliation in Data Warehousing. The approach is based
on the availability of a Conceptual Model of the corpo-
rate data, and allows the designer to declaratively specify
several types of correspondences between data in different
sources. Such correspondences are used by a query rewrit-
ing algorithm that supports the task of specifying the cor-
rect mediators for the loading of the materialized views of
the Data Warehouse.

Based on the described methodology, we are currently
implementing a design tool within the DWQ project. The
tool is based on the Concept Base System [Jar92], and pro-
vides support for both schema and data integration in Data
Warehousing.

References

[AD98] Serge Abiteboul and Oliver Duschka. Com-
plexity of answering queries using materi-
alized views. InProc. of the 17th ACM

SIGACT SIGMOD SIGART Sym. on Prin-
ciples of Database Systems (PODS’98),
pages 254–265, 1998.

[CDGL98a] Diego Calvanese, Giuseppe De Giacomo,
and Maurizio Lenzerini. On the decidability
of query containment under constraints. In
Proc. of the 17th ACM SIGACT SIGMOD
SIGART Sym. on Principles of Database
Systems (PODS’98), pages 149–158, 1998.

[CDGL+98b] Diego Calvanese, Giuseppe De Giacomo,
Maurizio Lenzerini, Daniele Nardi, and
Riccardo Rosati. Description logic frame-
work for information integration. InProc.
of the 6th Int. Conf. on the Principles of
Knowledge Representation and Reasoning
(KR’98), pages 2–13, 1998.

[CDGL+98c] Diego Calvanese, Giuseppe De Giacomo,
Maurizio Lenzerini, Daniele Nardi, and
Riccardo Rosati. Schema and data integra-
tion methodology for dwq. Technical Re-
port DWQ-UNIROMA-004, DWQ Consor-
tium, September 1998.

[CDGL+98d] Diego Calvanese, Giuseppe De Giacomo,
Maurizio Lenzerini, Daniele Nardi, and
Riccardo Rosati. Source integration in
data warehousing. InProc. of the 9th Int.
Workshop on Database and Expert Systems
Applications (DEXA’98), pages 192–197.
IEEE Computer Society Press, 1998.

[CL93] Tiziana Catarci and Maurizio Lenzerini.
Representing and using interschema knowl-
edge in cooperative information systems.J.
of Intelligent and Cooperative Information
Systems, 2(4):375–398, 1993.

[DL97] Oliver M. Duschka and Alon Y. Levy. Re-
cursive plans for information gathering. In
Proc. of the 15th Int. Joint Conf. on Arti-
ficial Intelligence (IJCAI’97), pages 778–
784, 1997.

[GM95] A. Gupta and I. S. Mumick. Maintenance of
materialized views: Problems, techniques,
and applications. IEEE Bulletin of the
Technical Committee on Data Engineering,
18(2):3–18, 1995.

[GMS94] Cheng Hian Goh, Stuart E. Madnick, and
Michael Siegel. Context Interchange: Over-
coming the challenges of large-scale inter-
operable database systems in a dynamic en-
vironment. InProc. of the 3rd Int. Conf. on

D. Calvanese, G. De Giacomo, M. Lenzerini, D. Nardi, R. Rosati 16-10

Information and Knowledge Management
(CIKM’94), pages 337–346, 1994.

[HGMW+95] Joachim Hammer, Hector Garcia-Molina,
Jennifer Widom, Wilburt Labio, and Yue
Zhuge. The Stanford data warehousing
project. IEEE Bulletin of the Technical
Committee on Data Engineering, 18(2):41–
48, 1995.

[Hul97] Richard Hull. Managing semantic hetero-
geneity in databases: A theoretical perspec-
tive. In Proc. of the 16th ACM SIGACT
SIGMOD SIGART Sym. on Principles of
Database Systems (PODS’97), 1997.

[HZ96] Richard Hull and Gang Zhou. A frame-
work for supporting data integration us-
ing the materialized and virtual approaches.
In Proc. of the ACM SIGMOD Int. Conf.
on Management of Data, pages 481–492,
1996.

[Inm96] W. H. Inmon. Building the Data Ware-
house. John Wiley & Sons, second edition,
1996.

[Jar92] M. Jarke. Conceptbase V3.1 user man-
ual. Technical Report 92–17, Aach-
ener Informatik-Berichte, Aachen, Ger-
many, 1992.

[JJQV98] Matthias Jarke, Manfred A. Jeusfeld,
Christoph Quix, and Panos Vassiliadis.
Architecture and quality in data ware-
houses. InProc. of the 10th Conf. on
Advanced Information Systems Engineer-
ing (CAiSE’98), volume 1413 ofLecture
Notes in Computer Science, pages 93–113.
Springer-Verlag, 1998.

[JLVV99] Matthias Jarke, Maurizio Lenzerini, Yan-
nis Vassiliou, and Panos Vassiliadis.Fun-
damentals of Data Warehouses. Springer-
Verlag, 1999. In Press.

[LMSS95] Alon Y. Levy, Alberto O. Mendelzon,
Yehoshua Sagiv, and Divesh Srivastava.
Answering queries using views. InProc. of
the 14th ACM SIGACT SIGMOD SIGART
Sym. on Principles of Database Systems
(PODS’95), pages 95–104, 1995.

[PGMW95] Yannis Papakonstantinou, Hector Garcia-
Molina, and Jennifer Widom. Object ex-
change across heterogeneous information
sources. InProc. of the 11th IEEE Int. Conf.
on Data Engineering (ICDE’95), pages
251–260, 1995.

[SK92] Amit Sheth and Vipul Kashyap. So far
(schematically) yet so near (semantically).
In Proc. of the IFIP DS-5 Conf. on Seman-
tics of Interoperable Database Systems. El-
sevier Science Publishers (North-Holland),
Amsterdam, 1992.

[TLS99] Dimitri Theodoratos, Spyros Ligoudis-
tianos, and Timos Sellis. Designing the
global Data Warehouse with SPJ views. In
Proc. of the 11th Conf. on Advanced Infor-
mation Systems Engineering (CAiSE’99),
1999.

[Ull97] Jeffrey D. Ullman. Information inte-
gration using logical views. InProc.
of the 6th Int. Conf. on Database The-
ory (ICDT’97), volume 1186 ofLecture
Notes in Computer Science, pages 19–40.
Springer-Verlag, 1997.

[Wid95] Jennifer Widom. Special issue on materi-
alized views and data warehousing.IEEE
Bulletin on Data Engineering, 18(2), 1995.

[Wie92] Gio Wiederhold. Mediators in the architec-
ture of future information systems.IEEE
Computer, 25(3):38–49, 1992.

[ZHK96] Gang Zhou, Richard Hull, and Roger King.
Generating data integration mediators that
use materializations.J. of Intelligent Infor-
mation Systems, 6:199–221, 1996.

[ZHKF95] Gang Zhou, Richard Hull, Roger King,
and Jean-Claude Franchitti. Using object
matching and materialization to integrate
heterogeneous databases. InProc. of the
3rd Int. Conf. on Cooperative Information
Systems (CoopIS’95), pages 4–18, 1995.

D. Calvanese, G. De Giacomo, M. Lenzerini, D. Nardi, R. Rosati 16-11

