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ABSTRACT
We propose a new learning to rank algorithm, named Weighted

Margin-Rank Batch loss (WMRB), to extend the popular Weighted

Approximate-Rank Pairwise loss (WARP). WMRB uses a new rank

estimator and an efficient batch training algorithm. The approach

allows more accurate item rank approximation and explicit utiliza-

tion of parallel computation to accelerate training. In three item

recommendation tasks, WMRB consistently outperforms WARP

and other baselines. Moreover, WMRB shows clear time efficiency

advantages as data scale increases.
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1 INTRODUCTION
Rank based learning algorithms have been widely applied to recom-

mendation problems. One prominent example isWeightedApproximate-

Rank Pairwise loss [2]. It achieves a high precision on the top of a

predicted ranked list instead of an averaged high precision over the

entire list. However, it is not scalable to large item set in practice

due to its intrinsic online learning fashion. In this work, we ad-

dress the limitation by proposing a novel algorithm and empirically

demonstrate its advantages in both accuracy and time efficiency.

2 BACKGROUND
Notation. Let x denote a user, y an item, and Y the entire item set.

yx denotes items interacted by user x. ȳx ≡ Y \ yx is the irrelevant

item set. We omit subscript x when there is no ambiguity. fy (x)
denotes the model score. The rank of item y is defined as

ry = ranky (f ,x ,y) =
∑̄
y∈ȳ

I[fy (x) ≤ fȳ (x)], (1)

where I is the indicator function. Finally, |t |+ ≡max(t , 0), t ∈ R.
Weighted Approximate-Rank Pairwise loss (WARP) devel-

ops an online approximation of item ranks. Its critical component

is an iterative sampling approximation procedure: For each
user-item pair (x, y) , sample y′ ∈ Y uniformly with replacement

until 1 + fy′(x) < fy (x) is violated. It estimates item ranks by

ry ≈ rank
warp
y (f ,x ,y) = ⌊ |Y| − 1

N
⌋ (2)

where N is the sampling times to find the violating example. It then

incurs a rank-sensitive loss as in Order Weighted Average [3], i.e.,
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Figure 1: Standard deviations (relative values) of two types of
rank estimators at different item ranks. Simulation is done
with item set size N=100,000. ‘online’ uses estimator (2) and
‘sampled-batch q’ uses (4) where q = |Z|/|Y|.
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Φowa (ry ) =
ry∑
j=1

α j α1 ≥ α2 ≥ .. ≥ 0, (3)

where the non-increasing α series control the sensitivity to ranks.

3 WEIGHTED MARGIN-RANK BATCH LOSS
Limitations of WARP. We first point out several limitations of

WARP. 1) Rank estimator in (2) is not only biased
1
but also with

large variance. As simulated in Fig.1, online estimation (blue) has

a large relative variance, especially when items have high ranks

(small p). 2) Low updating frequency results in prolonged train-

ing time in practice. This is because it can take a large number

of sampling iterations to find a violating item, especially after the

beginning stage of training. 3) Intrinsic sequential manner of
WARP prevents full utilization of available parallel computation

(e.g. GPUs), making it hard to train large or flexible models.

3.1 Proposed Approach
We address the limitations by combining a rank-sensitive loss and

batch training. We first define (sampled)margin rank as

rankwmrb
y (f ,x ,y) = |Y|

|Z|
∑
y′∈Z

|1 − fy (x) + fy′(x)|+I(y′ ∈ ȳ), (4)

where Z is a subset of Y randomly sampled (without replacement).

1
Suppose an item has a rank r in a population N. Let p = r/N . Expectation of the

estimator in (2) is approximately p +
∑N
k=2

1

k p(1 − p)k−1 > p . It overestimates the

rank seriously when r is small.



RecSys 2017 Poster Proceedings, August 27-31, Como, Italy Kuan Liu and Prem Natarajan

Table 1: Recommendation accuracy comparisons (in %). Best results are in bold (e.g., 12.6). WMRB outperforms pairwise based
methods as well as batch based method CE.

Datasets XING Yelp ML-20m
Metrics P@5 R@30 NDCG@30 P@5 R@30 NDCG@30 P@5 R@30 NDCG@30

- POP 0.5 2.7 1.3 0.3 0.9 0.5 6.2 10.0 8.5

Pairwise

WARP 2.6 8.3 5.6 1.3 4.4 2.5 9.8 14.2 13.4

A-WARP 2.6 11.6 6.7 1.3 4.3 2.5 10.1 13.3 13.5

Batch

CE 2.5 12.3 6.5 1.4 4.5 2.6 9.6 14.3 13.2

WMRB 3.0 12.6 7.2 1.5 5.1 2.9 10.2 14.6 13.9

Table 2: Dataset statistics. U: users; I: items; S: interactions.

Data |U | |I | |Strain | |Stest |
XING 1,500,000 327,002 2,338,766 484,237

Yelp 1,029,433 144,073 1,917,218 213,460

ML-20m 138,493 27,278 7,899,901 2,039,972

While margin rank defined in (4) is not the rank in (1), it charac-

terizes overall score violation of irrelevant items. The margin loss

is often used to approximate the indicator function. Moreover, (4)

can be readily computed in a batch manner—Model scores between

a user and a batch of items fy′(x)∀y′ ∈ Y are first computed; The

margin losses of violating items are then summed up.

We then design a rank-sensitive loss function. Note the mar-
gin rank ry = rankwmrb

y (f ,x ,y) is a non-negative real number

rather than an integer as in (3). We define a differentiable loss

function to incur “rank weighted” loss as follows:

Lwmrb (x ,y) = Φwmrb (ry ) = log(ry + 1). (5)

By noting Φ′′(r ) = − 1

(1+r )2 < 0, the loss is more sensitive with

small r, thus mimicking the property as in (3).

Compared to WARP. , WMRB replaces the sequential sampling

procedure with batch computations. It results in a different rank

approximation and loss function. Per user-item pair, WMRB in-

volves more computation and is compensated with easy utilization

of parallel computing. WMRB updates model parameters much

more frequently than WARP – which only updates the parameters

of one user-item after many sampling.

WMRB has an unbiased estimator of margin rank. Its different

sampling scheme results in smaller variances. Simulation in Fig.1

shows sampled-wmrb has much smaller variance than warp as long
as |Z|/|Y| is not too small.

4 RESULTS
We validateWMRB on three datasets: XING

2
, Yelp

3
, andMovieLens-

20m
4
. The tasks are to recommend to users job posts, Yelp business,

and movies, respectively. We assess the quality of recommendation

by comparing models’ recommendation to ground truth interac-

tions split from the datasets. We report recommendation accuracies

under metrics Precsion@5, Recall@30, and NDCG@30 as well as

training time. The datasets statistics are listed in Table 2.

We compare WMRB to different methods. POP recommends

items purely based on popularity. WARP and A-WARP are im-

plemented in LightFM [1]. A-WARP differs from vanilla WARP

by incorporating available attributes. CE uses Cross-Entropy loss

2
http://2016.recsyschallenge.com/

3
https://www.yelp.com/dataset_challenge. Downloaded in Feb 17.

4
https://grouplens.org/datasets/movielens/20m/

Table 3: Dataset complexities and training time compar-
isons. ( Tepoch : average epoch time; Tconv : total training
time.) With increasing data scales, WMRB shows time effi-
ciency advantages over pairwise based implementation.

Datasets # of # of LightFM WMRB

Param. Attr. Tepoch Tconv Tepoch Tconv
ML-20m 4.6M 11 7m 1.2h 22m 3.3 h

Yelp 9.3M 19 10m 5.0 h 9m 3.9 h
XING 12.1M 33 94m 31.2h 24m 20.7h

function and is a batch training based algorithm implemented by

ourselves. CE and WMRB incorporate attributes as in A-WARP.

Accuracy. Table 1 reports accuracy comparisons of different mod-

els. We highlight two observations. First, WMRB consistently out-

performs WARP and A-WARP. For instance, the relative improve-

ments are 8.6%, 18.6%, and 9.8% on Recall@30. Second, with both

being batch based methods, WMRB wins over CE clearly, indicating

the effectiveness of the rank-sensitive loss.

Time efficiency. Table 3 reports dataset complexity and training

time of different models. To measure complexity, we report the

total number of model parameters and the average number of at-

tributes per user-item pair. While we make an effort to speed up

each method,
5
we are most interested in how running time changes

with different data scales given fixed models and configurations.

From Table 3, WMRB is slower than LightFM on ML-20m. It

catches up quickly on Yelp, where data scale increases. On XING,
which has the largest model size and complexity, WMRB is much

faster. The trend clearly shows scalability advantages of batch train-

ing based WMRB.

5 CONCLUSION
In this work, we propose a simple yet effective approach to scale

up learning to rank algorithm. It implements the idea of ordered

weighted average loss in a batch training algorithm. Our prelimi-

nary empirical study shows its effectiveness.
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5
WMRB are implemented based on Tensorflow and run on a single GPU (GeForce

GTX TITAN X). LightFM runs asynchronous SGD on Cython with 5 cores.(Intel Xeon

CPU 3.30GHz)
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