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ABSTRACT
In the Internet of Things, smart devices are connected to collect and
to exchange data. In our vision, in the Internet of Talking Things,
objects such as intelligent fridges will be able to communicate
with humans to set up preferences and profiling options which
allow a personalized usage of the object. In this paper, we present
a recommender system implemented as a Telegram Bot, that can
fit with the previous scenario. The system is a movie recommender
which exploits the information available in the Linked Open Data
(LOD) cloud for generating the recommendations and leading the
conversation with the user. It can be easily seen as an intelligent
component of a connected TV.
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1 BACKGROUND AND MOTIVATIONS
The main distinctive feature of a conversational recommender sys-
tem (CORS) compared to a classical one is its capability of inter-
acting with the user during the recommendation process [3]. The
user provides feedback and tries to get better recommendations. It
is not essential that a complete user profile has been built before
beginning the recommendation process and all preferences have
been specified upfront by the user. There is a cycle of interactions
between the CORS and the user repeated until the user reaches
an item of interest. Accordingly, the goal of a CORS is not only to
improve the accuracy of the recommendations, but also to provide
an effective user-recommender interaction.

In this paper we propose a conversational movie recommender
system implemented as Telegram Bot (@MovieRecSysBot). Chat-
bots are a kind of bots which emulate user conversations. The main
advantages of using a Telegram bot are that it facilitates the interac-
tion of the user by a clean and well-known user interface (the same
that people daily use for other purposes on their smartphones),
it does not require credentials since each account is identified in
Telegram by the phone number, and lastly the user can answer
by tapping a button. The Bot is based on the Linked Open Data
(LOD) cloud, and more specifically on the properties encoded in
DBpedia1. These properties are exploited by the Bot for eliciting
user preferences, for providing recommendations as well as for gen-
erating personalized explanations in natural language. The system

1http://wiki.dbpedia.org/
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is capable of adapting its behavior to the user feedback by imple-
menting a critiquing strategy proposed in [4]. LOD have already
been effectively used in other recommendation scenarios [9]as well
as for other tasks such as cross-lingual information retrieval [7, 8].

In the next Section how the Telegram Bot works and its interac-
tion with the user are described.

2 DESCRIPTION OF THE CHATBOT
The workflow carried out by the Bot is depicted in Figure 1. In the

Figure 1: The Bot workflow

first step, Preference Acquisition, the Bot asks the user to express
her interests. It asks questions related to entities (e.g, movies and
persons) and their properties in DBpedia (e.g, genre, role). When the
user starts the interaction, her profile is empty, so the recommender
system needs to address a classical cold-start problem. The system
offers the user two different strategies to express her preferences:
(i) rating a set of items or properties proposed by the system; (ii)
typing the entities or properties she is willing to rate. The first op-
tion allows the user to express the preferences by tapping buttons.
The second option implements an entity recognizer based on the
Levenshtein distance [11] by means of a Did you mean function
(Figure 3 (a)), so that, if the user makes typos, the system is anyway
able to recognize the right entity or property. The second step is
the Recommendation. The Bot currently implements PageRank with
Priors [2], also known as Personalized PageRank. Differently from
PageRank, which assigns an evenly distributed prior probability to
each node (1/N , where N is the number of nodes), the Personalized
PageRank adopts a non-uniform personalization vector by assign-
ing different weights to different nodes to get a bias towards some
nodes (in this case, the preferences of a specific user). The algorithm
has been effectively used in other recommendation environments
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[1]. Figure 2 shows how the user preferences and the DBpedia
properties are represented in a single graph. The algorithm is run
for each user and the assignment of the probabilities to the nodes
has been inspired by the model proposed in [5]. The algorithm
generates a ranking of the items potentially interesting for a given
user. The Bot also implements an Explanation module. Tintarev
and Masthoff [10] point out that explaining a recommendation is
generally intended as justifying the suggestion, but it might be also
intended as providing a detailed description that allows the user to
understand the quality of the recommended item. The Bot is able
to provide these types of explanation. Details about an item can be
obtained by tapping on a Details button (Figure 3 (b)) which shows
information extracted from IMDB on a given movie. The Why?
button implements an explanation algorithm inspired by [6]. The
idea is to use the connections in the LOD-based graph between the
user preferences and the recommended items for explaining why a
given item has been recommended.

Figure 2: Example graph which connects users, items and
entities in DBpedia

An example of natural-language explanation provided by the
system is: "I suggest you Duplex because you like movies where:
the actor is Ben Stiller as inMeet the Fockers, the genre is Comedy as
in American Reunion. Moreover, I recommend Duplex because the
actor is Ben Stiller and you like him". In this case the system used the
connections, extracted from DBpedia, between the recommended
movie Duplex and the user preferences (consisting of Meet the
Fockers,American Reunion, and Ben Stiller). By tapping on the Profile
button (Figure 3 (b)) the user can also explore her profile, and update
her preferences.

Finally, the Bot allows the user to give feedback on a given
recommendation. This module implements an Adaptive Strategy
proposed in [4]. By tapping on the Like, but... button (Figure 3 (b))
the user activates the Refine strategy. The Refine is a critiquing
strategy which allows the user to express a preference on a movie,
but to separately evaluate its characteristics (e.g,. I like this movie
but it runs too or I like the movie, but not an actor). Therefore, the
user can express a preference on a single characteristic of a movie.
The node associated to the characteristic the user does not like
(e.g., Quentin Tarantino) will be removed from the graph used by
the PageRank and the recommendation process starts again on the

Figure 3: A screenshot of the Bot during the training phase
in typing mode (a), and the recommendation phase (b)

new updated graph. Finally, the Bot allows the user to explore and
to update her profile. Through these functions the user can view
the preferences stored in her profile and change them. At the end,
when the profile has been updated, the system will run again the
PageRank and generate a new set of recommendations.
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