
Foundations of RDF?and SPARQL?

(An Alternative Approach to Statement-Level Metadata in RDF)

Olaf Hartig

Dept. of Computer and Information Science (IDA), Linköping University, Sweden
olaf.hartig@liu.se

Abstract The standard approach to annotate statements in RDF with metadata
has a number of shortcomings including data size blow-up and unnecessarily
complicated queries. We propose an alternative approach that is based on nesting
of RDF triples and of query patterns. The approach allows for a more compact
representation of data and queries, and it is backwards compatible with the stan-
dard. In this paper we present the formal foundations of our proposal and of
different approaches to implement it. More specifically, we formally capture the
necessary extensions of the RDF data model and its query language SPARQL,
and we define mappings based on which our extended notions can be converted
back to ordinary RDF and SPARQL. Additionally, for such type of mappings we
define two desirable properties, information preservation and query result equiv-
alence, and we show that the introduced mappings possess these properties.

1 Introduction
The term statement-level metadata refers to a form of data that captures information
about another piece of data representing a single statement or fact. A typical example are
so called edge properties in graph databases; such an edge property takes the form of a
key-value pair that captures additional information about the relationship represented by
the edge with which the key-value pair is associated [9]. Popular use cases for applying
edge properties (and statement-level metadata in general) include capturing certainty
scores, weights, temporal restrictions, and provenance information.

While the Resource Description Framework (RDF) [1] presents another graph-
based approach to represent statements about entities and their relationships, its triple-
based data model does not natively support the representation of statement-level meta-
data. To mitigate this limitation the RDF specification introduces the notion of RDF
reification which can be used to provide a set of RDF triples that describe some other
RDF triple [4]. This approach requires the user to include four additional RDF triples to
refer to the triple for which the user wants to provide metadata. Then, to query so-repre-
sented statement-level metadata using the standard RDF query language SPARQL [2],
each query has to contain additional SPARQL triple patterns to match the triples that
establish the reification. The following example illustrates the use of RDF reification.

Example 1. Consider the RDF triples in Figure 1a (represented in the standard Turtle
syntax [8]).1 The first two of these triples (i.e., the first two lines of Figure 1a) indicate
the age of somebody named Bob. To capture metadata about a given RDF triple as
per RDF reification, we have to introduce an IRI or a blank node and use it as the
subject of four RDF triples that reify the given triple by employing the RDF reification
vocabulary [4]. For instance, the last four triples in Figure 1a use a blank node labeled
:s to reify the second of the example triples about Bob. Now, we can provide metadata

1 We omit prefix declarations in this paper. The prefixes used can be found at http://prefix.cc.

http://prefix.cc


:bob foaf:name "Bob" ;
foaf:age 23 .

_:s rdf:type rdf:Statement ;
rdf:subject :bob ;
rdf:predicate foaf:age ;
rdf:object 23 .

(a)

SELECT ?x ?age ?src WHERE {
?x foaf:age ?age .
?r rdf:type rdf:Statement ;

rdf:subject ?x ;
rdf:predicate foaf:age ;
rdf:object ?age ;
dct:source ?src . }

(b)

_:s dct:creator <http://example.com/crawlers#c1> ;
dct:source <http://example.net/listing.html> .

(c)
SELECT ?x ?age ?src WHERE {

?x foaf:age ?age .
?x ?p ?age .
?p rdf:singletonPropertyOf foaf:age .
?x dct:source ?src . }

(d)

SELECT ?x ?age ?src WHERE {
GRAPH ?g {

?x foaf:age ?age .
}
?g dct:source ?src . }

(e)

Figure 1: Existing approaches to RDF statement-level metadata: (a, b, c) data and query
for RDF reification, (d) query for singleton properties, and (e) query for named graphs.

about the reified triple by using this blank node as illustrated in Figure 1c. Given such
data (including the metadata), assume we want to retrieve a list containing the age of
persons in our data and the respective sources of the statements about the persons’ ages.
To this end, we may use the SPARQL query in Figure 1b. Note that the given query
contains four triple patterns to identify the reified triple whose metadata we want to see.

The example highlights two major shortcomings of RDF reification: First, adding
four reification triples for every reified triple is inefficient for exchanging RDF data.
Second, writing queries to access statement-level metadata is cumbersome because any
metadata-related (sub)expression in a query has to be accompanied by another subex-
pression to match the corresponding four reification triples. To address these short-
comings other authors have proposed alternative approaches including singleton prop-
erties [6], and an application of named graphs [5]. However, as can be observed in
Figures 1d and 1e, each of the two proposals still requires verbose constructs in queries
whose only purpose is to match artifacts that the respective proposal introduces to as-
sociate a triple with the metadata about it (Figures 1d and 1e present the example query
from Figure 1b in terms of the two proposals, respectively). An additional issue of
the singleton properties proposal is that it introduces a large number of unique predi-
cates, which is untypical for RDF data and, thus, disadvantageous for commonly-used
SPARQL optimization heuristics [11]. An additional disadvantage of the proposal to
use named graphs is that it inhibits an application of named graphs for other use cases.

We propose an alternative that allows for very concise queries by still remaining
backwards compatible. That is, our proposal can be implemented based on any system
that has been optimized for any of the other proposals. Additionally, our proposal also
opens the possibility of mapping it natively to a corresponding physical storage model,
which may be a foundation for novel implementations tailored to our proposal. The
basis of our proposal is to extend the RDF data model with a notion of nested triples.
More precisely, the extension, which we call RDF?, allows for triples that represent
metadata about another triple by directly using this other triple as their subject or object.



Example 2. Assume an extension of the Turtle syntax that implements the idea of
nested triples by enclosing any embedded triple using the strings ’<<’ and ’>>’ (we
call this extended syntax Turtle? and specify it in our technical report [3]). Then, all
data in Example 1 (including the metadata in Figure 1c) may be represented as follows.

:bob foaf:name "Bob" .
<<:bob foaf:age 23>> dct:creator <http://example.com/crawlers#c1> ;

dct:source <http://example.net/listing.html> .

Given the outlined notion of RDF?with nested triples, the crux of our proposal is
to extend the SPARQL query language accordingly. That is, in the extended language,
called SPARQL?, triple patterns may also be nested, which gives users a query syntax
in which accessing specific metadata about a triple is just a matter of mentioning the
triple in the subject (or object) position of a metadata-related triple pattern. Apparently,
the subject or object of such a metadata-related triple pattern may not only be a con-
crete (i.e., variable-free) triple, but it may also be another triple pattern with variables.

Example 3. By adopting the extended syntax outlined in Example 2, we may represent
the query of Example 1 (cf. Figure 1b) in the following, more compact form.

SELECT ?x ?age ?src WHERE { <<?x foaf:age ?age>> dct:source ?src . }

In an ongoing research project we aim to study the trade-offs of RDF?and SPARQL?.
The purpose of this paper is to present preliminary work towards such a study. In partic-
ular, we provide a formal foundation of different approaches to implement our proposal.
We emphasize that RDF?and SPARQL?may be understood—and used—simply as syn-
tactic sugar on top of RDF and SPARQL. That is, any RDF?-specific syntax (such as
the aforementioned Turtle?) may be parsed directly into plain RDF data that uses any of
the other RDF-based approaches for representing statement-level metadata. Then, any
given SPARQL?query may be rewritten accordingly into an ordinary SPARQL query. In
this paper we define formal mappings for these conversions of data and queries, and we
show that the data-level mappings are information preserving (i.e., the resulting RDF
data can be converted back to the original RDF? representation) and the query-level
mappings preserve a notion of query result equivalence. These contributions present
a foundation for implementing our proposal as a wrapper on top of any existing RDF
triple store. Such an implementation does not only require a comparably small effort,
but it can also benefit readily from possible optimizations that the triple store has for
RDF reification (or any of the other related proposals). On the other hand, our proposal
may also be implemented natively, which requires the development of techniques to ex-
ecute SPARQL?queries directly on a physical storage model designed to support RDF?.
For instance, the idea of nesting carries over naturally to the physical level where it may
be adopted to develop a storage model that embeds physical representations of triples
into one another. As a formal foundation of native implementations, in this paper we
provide a query semantics of SPARQL?. In summary, we make three main contributions:

1. We introduce the RDF?data model formally, define a formal semantics of SPARQL?,
and show properties related to redundancies in RDF?data (Section 2).

2. We define desirable properties of mappings that may be used to store RDF?data as
ordinary RDF data and convert SPARQL?queries into SPARQL queries (Section 3).

3. We define concrete examples of such mappings that use the RDF reification vocab-
ulary, and we show that these mappings possess the desirable properties (Section 4).



2 RDF?and SPARQL?

This section formalizes our proposal. We begin with the structural part of the RDF?data
model. Thereafter, we define SPARQL?by introducing a syntax and a formal semantics.
Finally, we show properties related to redundancies as are possible by our data model.

2.1 RDF?

As a basis for the following definitions, we assume pairwise disjoint sets I (all IRIs),
B (blank nodes), andL (literals). As usual, a tuple in (I∪B)×I×(I∪B∪L) is an RDF
triple and a set of RDF triples is an RDF graph [1]. RDF? extends the notion of such
triples by allowing for triples that have another triple in its subject or its object position.
Such nesting may be arbitrarily deep. The following definition captures this notion.

Definition 1. An RDF? triple is a 3-tuple that is defined recursively as follows:
1. Any RDF triple t ∈ (I ∪ B)× I × (I ∪ B ∪ L) is an RDF? triple; and
2. Given RDF? triples t and t′, and RDF terms s ∈ (I∪B), p ∈ I and o ∈ (I∪B∪L),

then the tuples (t, p, o), (s, p, t) and (t, p, t′) are RDF? triples.

We write T? to denote the (infinite) set of all RDF? triples. Moreover, for any RDF?

triple t = (s, p, o) we write Elmts+(t) to denote the set of all RDF terms and all RDF?

triples mentioned in t; i.e., Elmts+(t) = {s, p, o}∪
{
x ∈ Elmts+(t′)

∣∣ t′ ∈ {s, o}∩T?}.
Note that, if Elmts+(t) ∩ T? 6= ∅, then t represents a form of statement-level metadata
and, thus, we call t a metadata triple (any other RDF? triple is an ordinary RDF triple).

Similar to the notion of an RDF graph, we refer to a set of RDF? triples as an RDF?

graph. For these graphs we overload function Elmts+, that is, for each RDF?graph G?

we define Elmts+(G?) =
⋃
t∈G? Elmts+(t). Furthermore, we write T+(G?) to denote

the set of all RDF? triples in an RDF? graph G?, including those that are (recursively)
embedded in other RDF? triples of G?; i.e., T+(G?) = G? ∪

(
Elmts+(G?) ∩ T?

)
. Note

that, since any RDF triple is an RDF? triple (case 1 in Definition 1), any RDF graph G
also is an RDF?graph (for which it holds that Elmts+(G) ∩ T?= ∅ and T+(G) = G).
Example 4. The data given in Turtle? syntax in Example 2 can be captured formally by
an RDF?graph G?ex = {(bob, name,Bob), (t, creator, c1), (t, source, listing.html)}, where
t is the RDF? triple (bob, age, 23) (which is an ordinary RDF triple); Bob, 23 ∈ L, and
bob, name, creator, c1, source, listing.html, age ∈ I. Note that T+(G?ex) = G?ex ∪ {t}.

2.2 SPARQL?Syntax
For the sake of conciseness, in this paper we introduce a syntax for SPARQL? that is
based on Pérez et al.’s algebraic SPARQL syntax [7], and we focus only on the core
concepts. For a more detailed formalization of SPARQL?, including the complete exten-
sion of the full W3C specification of SPARQL, we refer to our technical report [3].

We recall that the basic building block of SPARQL queries is a basic graph pat-
tern (BGP); that is, a finite set of triple patterns, where every triple pattern is a tuple
of the form (s, p, o) ∈

(
V ∪ I ∪ L

)
×
(
V ∪ I

)
×
(
V ∪ I ∪ L

)
with V being a set of

query variables that is disjoint from I, B, and L, respectively. SPARQL? extends these
patterns by adding the possibility to nest triple patterns within one another.

Definition 2. A triple?pattern is a 3-tuple that is defined recursively as follows:
1. Any triple pattern t ∈

(
V ∪I ∪L

)
×
(
V ∪I

)
×
(
V ∪I ∪L

)
is a triple?pattern; and

2. Given two triple? patterns tp and tp′, and s ∈ (V ∪ I ∪ L), p ∈ (V ∪ I) and
o ∈ (V ∪ I ∪ L), then (tp, p, o), (s, p, tp) and (tp, p, tp′) are triple?patterns.



Similar to the notion of a BGP, we call any finite set of triple?patterns a BGP? (note
that by this definition, every ordinary BGP is also a BGP?). While our technical report
defines more expressive types of SPARQL? queries [3], in this paper we focus on the
BGP? fragment of SPARQL?and, thus, define a SPARQL?query to be a pair (W,B) that
consists of a finite set W of variables (i.e., W ⊆ V) and a BGP?B. Likewise, in this
paper, an ordinary SPARQL query is a pair (W,B) with W ⊆ V and B being a BGP.

Hereafter, we write T P? to denote the (infinite) set of all triple?patterns. Moreover,
in the same spirit as they are used for RDF? triples and RDF?graphs, we overload func-
tions Elmts+ and T+ for our query patterns: For every triple? pattern tp=(s, p, o) we
have Elmts+(tp) = {s, p, o} ∪

{
x ∈ Elmts+(tp′)

∣∣ tp′ ∈ {s, o} ∩ T P?}, and for every
BGP?B it is Elmts+(B) =

⋃
tp∈B Elmts+(tp) and T+(B) = B∪

(
Elmts+(B) ∩ T P?

)
.

Example 5. The SPARQL? query in Example 3 can be captured formally by the pair
Qex = ({?x, ?age, ?src}, Bex) with a BGP? Bex = {((?x, age, ?age), source, ?src)}.
Note that Bex consists of a single triple? pattern, whereas T+(Bex) consist of two:
T+(Bex) = { ((?x, age, ?age), source, ?src), (?x, age, ?age) }.

2.3 SPARQL?Semantics
Before defining a query semantics of SPARQL?, we recall that the semantics of SPARQL
is defined based on the notion of solution mappings [2,7], that is, partial mappings
µ : V →

(
I ∪ B ∪ L

)
. For SPARQL?we extend this notion to so-called solution?map-

pings that may bind variables not only to IRIs, blank nodes, or literals, but also to RDF?

triples. Hence, a solution?mapping η is a partial mapping η : V →
(
T?∪ I ∪ B ∪ L

)
.

Given a solution? mapping η and a BGP? B, we write η[B] to denote the BGP?

obtained from B by replacing the variables in B according to η (variables that are
not in dom(η) are not replaced). Now we are ready to define the following evaluation
function that formalizes a (set) semantics of SPARQL?queries over RDF?graphs.

Definition 3. Let Q be a SPARQL?query (W,B). The evaluation of Q over an RDF?

graph G?, denoted by [[Q]]G? , is a set of solution?mappings that is defined as follows:
[[Q]]G? =

{
η|W

∣∣dom(η) = vars(B) and η[B] ⊆ T+(G?)
}
,

where η|W is the solution?mapping that is the restriction of η to the variables in W, and
vars(B) denotes the set of all variables mentioned inB, i.e., vars(B)=Elmts+(B)∩V .

Example 6. ForQex (cf. Example 5) overGex (cf. Example 4) we have [[Qex]]Gex = {η1}
with η1(?x) = bob, η1(?age) = 23, and η1(?src) = listing.html. Consider another query,
Qex2=({?t, ?src}, Bex2) with Bex2={(?t, source, ?src)}. Then, [[Qex2]]Gex = {η2} with
η2(?t) = t and η2(?src) = listing.html (with the RDF? triple t as given in Example 4).

Note that the evaluation function in Definition 3 is a direct extension of the evalua-
tion function that Pérez et al. have defined for ordinary SPARQL queries [7]. That is, for
a SPARQL?query whose BGP? is an ordinary BGP and an RDF?graphG that is an ordi-
nary RDF graph (i.e., T+(G) = G), both functions return the same result (the solution?

mappings returned as per Definition 3 are ordinary solution mappings in this case).

2.4 Redundancy in RDF?Graphs
We conclude the formal introduction of RDF?and SPARQL?by highlighting a notewor-
thy characteristic of the RDF?data model. Consider an RDF?graph G? that contains an
RDF? triple t ∈ G? such that t is a metadata triple and, thus, mentions another RDF?



triple t′; i.e., t′ ∈ Elmts+(t). Additionally, t′may also be an element of G? (in addition
to being contained indirectly in G? due to its containment in t), or t′ may not be con-
tained directly in G?. We consider both options (t′ ∈ G? and t′ /∈ G?) to be equivalent
in terms of the information content carried byG?. This understanding is reflected in how
we define the SPARQL?query semantics in Definition 3 (observe that the definition im-
poses the condition that η[B] ⊆ T+(G?) rather than η[B] ⊆ G?). As a consequence,
for the result of any query over G?, it makes no difference whether t′ ∈ G? or t′ /∈ G?.
Hence, having t′ contained directly in G? is a form of redundancy. In the remainder of
this section we show that implementation techniques for our proposal are free to choose
how to deal with such redundancies in order to achieve performance gains.

Informally, we say that an RDF? graph that does not contain such redundancies is
redundancy free; on the other hand, adding such redundancies will eventually result in a
redundancy-complete graph. The following definition captures these notions formally.

Definition 4. An RDF? triple t′ is redundant in an RDF? graph G? if t′ ∈ G? and
there exists another RDF? triple t ∈ G? such that t′ ∈ Elmts+(t). An RDF? graph G?

is redundancy free if there does not exist any RDF? triple that is redundant in G?. An
RDF? graph G? is redundancy complete if for every RDF? triple t ∈ G?, every RDF?

triple t′∈ (Elmts+(t′) ∩ T?) is redundant in G? (hence, t′∈ G?).

Note that RDF? graphs that are ordinary RDF graphs are both redundancy free
and redundancy complete. Every other RDF?graph may be augmented with redundant
triples and, similarly, redundancy may be removed. The following definition captures
such operations and Proposition 1 below shows properties of the resulting RDF?graphs.

Definition 5. Let G? be an RDF? graph. The redundancy augmentation of G? is an
RDF? graph G?aug that is defined as G?aug = T+(G?). The redundancy elimination
ofG? is an RDF?graphG?el that is defined asG?el = {t ∈ G? | t is not redundant in G?}.

Proposition 1. LetG?be an RDF?graph, andG?aug andG?el be the redundancy augmen-
tation and redundancy elimination of G?, respectively. The following properties hold:
1. G?aug is redundancy complete, and G?el is redundancy free.
2. If G? is redundancy complete, then G?aug = G?.
3. If G? is redundancy free, then G?el = G?.
4. For every SPARQL?query Q, it holds that [[Q]]G?

aug
= [[Q]]G? and [[Q]]G?

el
= [[Q]]G? .

Proof. The properties in Proposition 1 follow trivially from Definitions 3–5, where the
crux of the fourth property is that T+(G?) = T+(G?aug) = T+(G?el).

The fourth property in Proposition 1 is perhaps the most relevant in practice because
approaches to implement our proposal may leverage the highlighted query result equiv-
alences. For instance, a physical storage model for RDF?might be designed to explicitly
capture all redundant triples if this allows for more efficient query execution techniques.

3 Desirable Properties of RDF?-to-RDF Mappings
While the previous section presents all the necessary formal foundations to implement
our proposal natively, the remainder of this paper provides the additional foundations
needed for wrapper-based implementations. We begin with general definitions that cap-
ture desirable properties of the mappings that a wrapper may use to convert data and
queries. The next section shall then introduce specific mappings.



As indicated in Section 1, we assume that every wrapper uses two mappings. The
first mapping is a function that maps every RDF? graph to an ordinary RDF graph.
Hereafter, we refer to such a function as an RDF?-to-RDF mapping. As is typical for
such kind of mappings [10], we consider it desirable for an RDF?-to-RDF mapping to
be information preserving; informally, this property requires the existence of an inverse
mapping [10]. This inverse mapping can then be used to reconstruct the original RDF?

graph from the resulting RDF graph. The following formal definition captures a notion
of information preservation that shall allow us to indicate that specific RDF?-to-RDF
mappings have this property only for designated subsets of all possible RDF?graphs.

Definition 6. Let G?be a (possibly infinite) set of RDF?graphs. An RDF?-to-RDF map-
pingm is information preserving for G? if there exists a computable mappingm′ from
RDF graphs to RDF?graphs such that for everyG?∈ G? it holds thatm′(m(G?)) = G?.

The second mapping used by wrapper-based implementations of our proposal is
concerned with rewriting SPARQL?queries into ordinary SPARQL queries. Hence, we
define such SPARQL?-to-SPARQL mappings to be functions that map every SPARQL?

query to a SPARQL query. Informally, given a SPARQL query resulting from the ap-
plication of such a mapping and an RDF graph produced by a corresponding RDF?-to-
RDF mapping, it is desirable that evaluating the SPARQL query over the RDF graph
returns a query result that is equivalent to the result of evaluating the original SPARQL?

query over the original RDF? graph. However, true equivalence cannot be achieved in
all cases because evaluating a SPARQL? query may result in solution? mappings that
map variables to RDF? triples, which is impossible with ordinary solution mappings (as
obtained by evaluating ordinary SPARQL queries). To accommodate for this difference
we shall define a notion of query result equivalence that is based on reducing solution?

mappings to ordinary solution mappings. To define this reduction formally we assume
an auxiliary mapping that maps every RDF? triple to a distinct IRI or blank node:

Definition 7. A triple-to-ID mapping id is an injective function id : T?→(I ∪ B).

Definition 8. Let id be a triple-to-ID mapping. Then, the id -specific reduction of
a solution? mapping η, denoted by reduceid(η), is a solution mapping µ such that
dom(µ) = dom(η) and for each variable ?v ∈ dom(η) it holds that µ(?v) = id(η(?v))
if η(?v) is an RDF? triple and µ(?v) = η(?v) if η(?v) is not an RDF? triple. Moreover,
the id -specific reduction of a set Ω of solution?mappings, denoted by reduceid(Ω), is
a set of solution mappings defined by reduceid(Ω) =

⋃
η∈Ω reduceid(η).

Example 7. Let t be the RDF? triple (bob, age, 23) in Example 4. Assume a triple-to-ID
mapping id ex s.t. id ex(t) = b where b is an arbitrary blank node. Then, the id ex-specific
reduction of solution?mapping η2, as given in Example 6, is a solution mapping µ2 with
µ2(?src) = listing.html and µ2(?t) = b (recall from Example 6 that we have η2(?t) = t).

We now have all the necessary to define the notion of query result preservation. Sim-
ilar to our definition of information preservation, we define this property with the pos-
sibility to indicate limitations on the scope for which the property is supposed to hold.

Definition 9. Let G?andQ?be (possibly infinite) sets of RDF?graphs and of SPARQL?

queries, respectively, dm be an RDF?-to-RDF mapping, and id be a triple-to-ID map-
ping. A SPARQL?-to-SPARQL mapping qm is query result preserving for G? and Q?
under dm and id if for every SPARQL?query Q∈Q? and every RDF?graph G?∈ G?,
it holds that [[qm(Q)]]dm(G?)= reduceid([[Q]]G?).



4 Mapping RDF? to Standard RDF Reification
This section provides the foundations of creating wrappers that use RDF reification [4]
to implement RDF?and SPARQL?on top of any existing RDF triple store. More specif-
ically, we define a suitable RDF?-to-RDF mapping and a corresponding SPARQL?-to-
SPARQL mapping, and we show that these mappings possess the desirable properties.

The idea of the RDF?-to-RDF mapping is to flatten RDF? triples by using the RDF
reification vocabulary such that, for instance, the RDF? data in Example 2 would be
mapped to the RDF data in both Figures 1a and 1c. As a basis for defining this mapping
we use the notion of the triple-to-ID mapping (cf. Definition 7) and introduce another
auxiliary concept; namely, a notion of reducing an RDF? triple to an ordinary RDF triple
by applying a given triple-to-ID mapping to the subject and object of the RDF? triple.

Definition 10. Given a triple-to-ID mapping id , the id -specific reduction of an RDF?

triple t = (x1, x2, x3), denoted by reduceid(t), is an RDF triple (x′1, x
′
2, x

′
3) s.t. x′2=x2

and for each i∈{1, 3}we have that x′i = id(xi) if xi is an RDF? triple and else x′i = xi.

Example 8. Consider the triple-to-ID mapping id ex as in Example 7 and RDF? triple t
as in Example 4. The id ex-specific reduction of RDF? triple (t, source, listing.html) is the
RDF triple (b, source, listing.html), whereas reduceidex(t) simply is t itself.

We now define the RDF?-to-RDF mapping. Informally, for any given RDF? graph,
this mapping returns an RDF graph that consists of two subgraphs. The first subgraph
contains RDF triples that are the reductions of all RDF? triples in the given RDF?

graph (including the triples that are nested in some metadata triples). The second sub-
graph contains RDF triples that are added to reify every RDF? triple that is nested in
some metadata triple in the given RDF?graph. The formal definition is given as follows.

Definition 11. Let id be a triple-to-ID mapping. The id -specific standard RDF repre-
sentation of RDF?is an RDF?-to-RDF mappingm that, for every RDF?graphG?, gives:

m(G?) =
{
reduceid(t) | t ∈ T+(G?)

}
∪
⋃
t∈(Elmts+(G?)∩T?) reif

id(t),

where for every RDF? triple t, with reduceid(t) = (s, p, o), we have:

reif id(t) =
{
(id(t), rdf:type, rdf:Statement), (id(t), rdf:subject, s),

(id(t), rdf:predicate, p), (id(t), rdf:object, o)
}
.

Example 9. Given the triple-to-ID mapping id ex in Example 8, it is trivial to see that
the standard RDF representation of our example RDF?graph G?ex (cf. Example 4) is the
RDF graph that may be serialized in Turtle as given in both Figures 1a and 1c together.

We note that the triple-to-ID mapping used in Definition 11 may map triples to IRIs
or blank nodes that are already used in the given RDF?graph. If this is the case, that is,
if the image of the triple-to-ID mapping overlaps with the set of IRIs and blank nodes
in the RDF? graph, we say that the triple-to-ID mapping and the RDF? graph are in
conflict. Formally, a triple-to-ID mapping id is in conflict with an RDF? graph G? if
there exists an RDF? triple t ∈ T+(G?) such that id(t) ∈ Elmts+(G?). From now on
we assume triple-to-ID mappings that are not in conflict with any given RDF?graph.

Now we can show that the mapping in Definition 11 possesses the information
preservation property as long as the mapping is applied only to redundancy-complete
RDF?graphs that do not use the RDF reification vocabulary (i.e., for such a graph G? it
must hold that Elmts+(G?) ∩ {rdf:Statement, rdf:subject, rdf:predicate, rdf:object} = ∅).



Theorem 1. Let id be a triple-to-ID mapping and G? be a (possibly infinite) set of
RDF? graphs such that for every G? ∈ G? it holds that (i) id is not in conflict with G?,
(ii)G?is redundancy complete, and (iii)G?does not use the RDF reification vocabulary.
The id -specific standard RDF representation of RDF? is information preserving for G?.

Proof (Sketch). To prove Theorem 1 we define a mapping m′ as required by Defini-
tion 6. To this end, for every RDF graph G, let R(G) to be the set of all 5-tuples
(x, s, p, o, R) with x, s, p, o ∈ (I ∪ B ∪ L) and R ⊆ G such that

R = {(x, rdf:type, rdf:Statement), (x, rdf:subject, s), (x, rdf:predicate, p), (x, rdf:object, o)}.
Furthermore, let N(G) = {t ∈ G | t /∈ R for all (x, s, p, o, R) ∈ R(G)}. Note that
if G is the id -specific standard RDF representation of some G?∈ G?, then it holds that
N(G) does not use the RDF reification vocabulary and for every (x, s, p, o, R) ∈ R(G)
we have that x is in the image of mapping id and x is unique. These properties follow
from the fact that id is injective and G? does not use the RDF reification vocabulary.
Due to the latter property (the uniqueness of all x), we may turn R(G) into a mapping
that maps every x to a triple with the corresponding s, p, and o, respectively. Formally:
let dereifR(G) be a mapping with dom(dereifR(G)) = {x | (x, s, p, o, R) ∈ R(G)}
such that for every (x, s, p, o, R) ∈ R(G) we have that dereifR(G)(x) = (s, p, o). As
our last preliminary, we introduce a recursively-defined mapping reverseR(G) that maps
every RDF triple t = (x1, x2, x3) to an RDF? triple t?= (x?1, x

?
2, x

?
3) such that for each

i ∈ {1, 2, 3} we have that x?i = reverseR(G)
(
dereifR(G)(xi)

)
if xi ∈ dom(dereifR(G))

and x?i = xi if xi /∈ dom(dereifR(G)). Now we have everything to define m′ for every
RDF graph G: m′(G) = {reverseR(G)(t) | t ∈ N(G)}. The crux of showing that m′ is
computable is the fact that, for any RDF graphG, the set R(G) can be generated by one
pass overG. The crux of showing the correctness ofm′ is that the mapping reverseR(G)

is the reverse operation of our notion of reducing RDF? triples (cf. Definition 10). ut

We now turn to the SPARQL?-to-SPARQL mapping. The idea of this mapping is to
use the RDF reification vocabulary in the same manner as done by the RDF?-to-RDF
mapping in Definition 11. For instance, the SPARQL? query in Example 3 would be
mapped to the SPARQL query in Figure 1b. Since this paper focuses only on the BGP?

fragment of SPARQL?, we also define the mapping only for this fragment. However,
since this fragment is the basic building block of any other, more expressive fragment,
it is easy to extend the mapping to other fragments by using a recursive definition.

To define the mapping we first need two auxiliary mappings whose purpose is sim-
ilar to that of the triple-to-ID mapping and the reduction of RDF? triples, respectively.

Definition 12. A TP?-to-var mapping var is an injective function var : T P?→ V .

Definition 13. Let var be a TP?-to-var mapping. The var -specific reduction of a tri-
ple?pattern tp?= (x1, x2, x3), denoted by reducevar(tp?), is a triple pattern (x′1, x

′
2, x

′
3)

s.t. for all i∈{1, 2, 3}we have that x′i=var(xi) if xi is a triple?pattern and else x′i=xi.

Example 10. Assume a TP?-to-var mapping var ex such that var ex(tp) = ?r for the tri-
ple? pattern tp = (?x, age, ?age). Then, the var ex-specific reduction of the triple? pat-
tern in Example 5, ((?x, age, ?age), source, ?src), is the triple pattern (?r, source, ?src).

For TP?-to-var mappings we also consider a notion of conflict—in this case w.r.t.
a BGP?. That is, a TP?-to-var mapping var is in conflict with a BGP?B if there exists



a triple? pattern tp ∈ T+(B) such that var(tp) ∈ Elmts+(B). As for the triple-to-ID
mappings, hereafter, we assume only TP?-to-var mappings that are not in conflict with
any given BGP?. Now, we are ready to define the SPARQL?-to-SPARQL mapping.

Definition 14. Let var be a TP?-to-var mapping. Then, the var -specific standard RDF
representation of SPARQL? is a SPARQL?-to-SPARQL mapping m that, for every
SPARQL?queryQ?= (W ?, B?), is defined bym(Q?) = (W,B) such thatW =W ?and

B =
{
reducevar(tp?) | tp?∈ T+(B?)

}
∪
⋃
tp?∈(Elmts+(B?)∩T P?) reif

var(tp?),

where for every triple?pattern tp?, with reducevar(tp?) = (s, p, o), we have:
reifvar(tp?) =

{
(var(tp?), rdf:type, rdf:Statement), (var(tp?), rdf:subject, s),

(var(tp?), rdf:predicate, p), (var(tp?), rdf:object, o)
}
.

The following result shows that the standard RDF representation of SPARQL? (Def-
inition 14) is a query result preserving mapping for RDF?graphs and SPARQL?queries
that do not use the RDF reification vocabulary (for queries with their BGP?B this means
it must hold that Elmts+(B) ∩ {rdf:Statement, rdf:subject, rdf:predicate, rdf:object} = ∅).
Theorem 2. Let var be a TP?-to-var mapping, letQ?be a set of SPARQL?queries such
that for every (W,B) ∈ Q? it holds that (i) var is not in conflict with B and (ii) B
does not use the RDF reification vocabulary, and let G? be a set of RDF? graphs such
that no G? ∈ G? uses the RDF reification vocabulary. Then, the var -specific standard
RDF representation of SPARQL? is query result preserving for G? and Q? under any
triple-to-ID mapping id and the id -specific standard RDF representation of RDF?.

Proof (Sketch). Theorem 2 can be shown by an induction on the setB of triple?patterns
in the queries inQ?. Then, the crux of the equivalence of query results is the analogy of
Definitions 11 and 14 and the restriction of Theorem 2 to cases in which the RDF?-to-
RDF mapping used is an id -specific standard RDF representation of RDF?. Note that,
in contrast to Theorem 1, Theorem 2 does not need to require redundancy completeness
for the graphs in G? because of Property 4 in Proposition 1. ut

5 Outlook
This paper provides the formal foundations of a new proposal to represent statement-
level metadata and related queries in the RDF context. We consider establishing these
foundations as the basis to systematically study the trade-offs of our proposal. Conse-
quently, our future work is to conduct such a study, which will take multiple directions:
First, we aim to investigate how appealing SPARQL?queries are to users in comparison
to the corresponding SPARQL queries that would have to be written for the other ap-
proaches to statement-level metadata in RDF (i.e., standard RDF reification, singleton
properties, and singleton named graphs). Second, we want to understand the practi-
cal consequences of executing SPARQL? queries based on a wrapper that employs the
mappings defined in this paper. In fact, we are interested not only in wrappers for RDF
reification but also for singleton properties and named graphs. To this end, the work
in this paper has to be extended by defining (information preserving and query result
preserving) mappings for these two approaches, which can easily be done by adapting
the definitions and the results in Section 4. Third, we want to investigate approaches
to implement our proposal natively. A particularly interesting idea in this context is to
carry over the notion of nested triples to the physical level. Finally, as another direction
for more fundamental work, we aim to compare RDF? to notions of nested relations.



References

1. R. Cyganiak, D. Wood, M. Lanthaler, G. Klyne, J. J. Carroll, and B. McBride. RDF 1.1
Concepts and Abstract Syntax. W3C Recommendation, Feb. 2014.

2. S. Harris, A. Seaborne, and E. Prud’hommeaux. SPARQL 1.1 Query Language. W3C
Recommendation, Mar. 2013.

3. O. Hartig and B. Thompson. Foundations of an Alternative Approach to Reification in RDF.
CoRR, abs/1406.3399, 2014. Online: http://arxiv.org/abs/1406.3399.

4. P. J. Hayes and P. F. Patel-Schneider. RDF 1.1 Semantics. W3C Recommendation, Feb.
2014.

5. D. Hernández, A. Hogan, and M. Krötzsch. Reifying RDF: What Works Well With Wikidata?
In Proceedings of the 11th International Workshop on Scalable Semantic Web Knowledge
Base Systems (SSWS), 2015.

6. V. Nguyen, O. Bodenreider, and A. P. Sheth. Don’t like RDF Reification? Making Statements
about Statements Using Singleton Property. In Proceedings of the 23rd International World
Wide Web Conference (WWW), 2014.

7. J. Pérez, M. Arenas, and C. Gutierrez. Semantics and Complexity of SPARQL. ACM Trans-
actions on Database Systems, 34(3), 2009.

8. E. Prud’hommeaux and G. Carothers. RDF 1.1 Turtle. W3C Recommendation, Feb. 2014.
9. I. Robinson, J. Webber, and E. Eifrém. Graph Databases. O’Reilly Media, 2013.

10. J. Sequeda, M. Arenas, and D. P. Miranker. On Directly Mapping Relational Databases to
RDF and OWL. In Proceedings of the 21st World Wide Web Conference (WWW), 2012.

11. P. Tsialiamanis, L. Sidirourgos, I. Fundulaki, V. Christophides, and P. Boncz. Heuristics-
based Query Optimisation for SPARQL. In Proceedings of the 15th International Conference
on Extending Database Technology (EDBT).

Acknowledgments

The author would like to thank a number of persons for providing feedback on RDF?and
SPARQL?, as well as on earlier versions of this document. In alphabetical order, these
persons are: Bryan Thompson, Cosmin Basca, Grant Weddell, Juan Sequeda, Kavitha
Srinivas, Maria-Esther Vidal, Michael Schmidt, Mike Personick, Peter Boncz, Tamer
Özsu, and the three anonymous reviewers of AMW 2017. The author’s work has been
funded partially by the CENIIT program at Linköping University (project no. 17.05).

http://arxiv.org/abs/1406.3399

	Foundations of RDF and SPARQL
	Introduction
	RDF and SPARQL
	RDF
	SPARQL Syntax
	SPARQL Semantics
	Redundancy in RDF Graphs

	Desirable Properties of RDF-to-RDF Mappings
	Mapping RDF to Standard RDF Reification
	Outlook


