
The Sevod Vocabulary for Dataset Descriptions
for Federated Querying

Stasinos Konstantopoulos, Angelos Charalambidis, Antonis Troumpoukis,
Giannis Mouchakis, and Vangelis Karkaletsis

Institute of Informatics and Telecommunications,
NCSR ‘Demokritos’, Athens, Greece

{konstant,acharal,antru,gmouchakis,vangelis}@iit.demokritos.gr

Abstract. Dataset description vocabularies focus on provenance, ver-
sioning, licensing, and similar metadata. VoID is a notable exception,
providing some expressivity for describing subsets and their contents and
can, to some extent, be used for discovering relevant resources and for
optimizing querying. In this paper we describe the Sevod vocabulary, an
extension of VoID that provides the expressivity needed in order to sup-
port the query planning methods typically used in federated querying.
We also present a tool for automatically scraping such metadata from
RDF dumps and give statistics about the size of the descriptions for the
FedBench datasets.

Keywords: RDF store histograms, RDF vocabulary, optimizing federated SPARQL
query processing

1 Introduction

Machine-readable descriptions of Web data, such as general metadata, quality
features, statistical information about the entities and how they link, and licens-
ing/provenance metadata, are becoming an increasingly important element of
the architecture of the Web. Without such descriptions, client applications can-
not be informed of the nature, scope and characteristics of data from particular
sources, limiting applications to consuming well-known reference datasets.

Existing vocabularies operate both at the level of cataloguing datasets, as
well as at the more detailed level of statistics about the resources contained
and described in each dataset [6, Section 5.6]. The Data Catalogue Vocabulary
(DCAT) [17] is the W3C Recommendation for describing datasets in data cata-
logs. DCAT is used to publish attribution, licensing, and thematic information
about complete datasets. The Asset Description Metadata Schema (ADMS) [3]
is the DCAT extension that targets semantic interoperability by linking datasets
to semantic assets (schemas, taxonomies, codelists, etc.) DCAT and ADMS af-
ford discoverability and the expression of provenance and licensing, while linking
to the semantic assets used by each dataset works towards enabling client appli-
cations to assess if data from multiple datasets is interoperable.



The Vocabulary of Interlinked Datasets (VoID) [2] is the W3C recommen-
dation for publishing details about the internal structure of datasets. Besides
the schemas used in a dataset, VoID also allows declaring the namespace of
the resources described in it. This further enhances discoverability, as a client
application can reason about which datasets might contain data that describes
a given resource. Finally, VoID also supports query optimization use cases, by
foreseeing terms for providing multifaceted instance-level statistics, such as the
number of triples with a specific predicate, the number of triples with subjects
that are members of a specific class, the number of distinct subjects, predicates,
and objects, and similar.

Although dataset statistics in VoID go some of the way towards supporting
client applications to efficiently plan and execute queries, they do not cover all
information needs of modern federated querying systems. Federated querying is
a key technology for sustaining the decentralized nature of the Web and has
been formally added to the architecture of the Semantic Web in the new edition
of the SPARQL specification. In this paper, we present Sevod, an extension
of VoID that specifically addresses the aspects of dataset description that are
relevant to efficient and transparent federated SPARQL query processing. More
specifically, we first review federated SPARQL query processing, focusing on the
data descriptions needed by the different federation engines (Section 2). Based
on this review, we extract requirements for a dataset description schema that can
support the state of the art of federated SPARQL query processing and discuss
how well these requirements are met by VoID (Section 3). We then proceed to
present Sevod and to explain how the proposed extensions cover the requirements
that are not met by VoID (Section 4), present a method for generating Sevod
description (Section 5), and conclude (Section 6).

2 Federated SPARQL Query Processing

Given a non-trivial query, there are multiple alternative query execution plans
that will all produce the same response, or equally valid responses. Although
any of these can be used, they might vary radically in their cost, that is, in the
resources and the amount of time that they need to execute. Query optimization,
i.e., selecting the most cost-efficient plan, has been studied in a variety of contexts
and from many different angles [10]. These different approaches converge on
relying on a cost function that assigns a numerical cost to each candidate plan.
This cost is meant to reflect the resources needed to execute the plan.

To calculate cost, these functions refer to statistics that estimate the volume
of data that needs to be lifted from the persistent store and to be transferred.
Such statistics are the cardinality of query patterns, i.e., the number of tuples
that match a given pattern, and the selectivity of joins, i.e., the ratio of the car-
dinality of a pattern that joins against another query pattern. In conventional
databases, these statistics are stored in histograms [14], internal data structures
that are part of the database index. Prominent relevant work includes statis-
tics on intermediate tables (SITs), one-dimensional cardinality counts for an



attribute [7]. SITs are organized in buckets; each bucket stores a range of values
for a given attribute and the number of tuples in this range. Multidimensional
histograms [1] avoid the propagation of errors through a sequence of operators by
directly storing statistics about more complex sub-expressions that match longer
intermediate sub-expressions of the query, rather than individual attributes. Nat-
urally, not all possible combinations can be stored. To limit space requirements,
buckets are merged when their statistics are comparable and merging does not
degrade the estimations, and sub-buckets are created whenever there is a narrow
value range with diverging statistics.

As histograms are internally used by the database’s own query processor,
they never received an explicit representation or serialization. This includes dis-
tributed databases, where the central node controls the way data is distributed
and also maintains such histograms; or where distributed histograms are commu-
nicated in implementation-specific serializations. The open nature of the Web,
however, creates new use cases where federated query processors are less tightly
integrated. In addition to the optimizations performed internally to each data
source, federated systems also need to identify data sources that contain rele-
vant data and to optimize the execution of the various sub-queries among them
[20, 21]. Some federated systems do not rely on any prior knowledge about the
data sources they federate, and base their planning on universal, hard-wired
assumptions [25, FedX] or information they discover during query execution
[5, Avalance]. But most systems base query planning on histograms, adapting
methods originally proposed in the databases literature and assigning explicit
semantics to these originally internal data structures. Federated querying sys-
tems such as DARQ [19], SPLENDID [12], LHD [27], and Semagrow [9] consume
detailed, instance-level VoID descriptions for data source discovery and for query
plan cost estimation.

Several systems, however, have out-grown VoID and use methods that require
more sophisticated data source descriptions. Recent versions of Semagrow use
an inclusion hierarchy of multi-dimensional histogram buckets, each providing
statistics about triple patterns or sets of joined triple patterns [28]. Although
VoID subsets can represent the inclusion hierarchy of buckets, VoID focuses on
star-shaped descriptions of resources and more complex joins of triple patterns
cannot be represented. The Odyssey system [18] uses characteristic sets to rep-
resent statistics about how resources are linked, which also fall outside VoID’s
ability to express information about the objects of triples. Finally, the QUET-
SAL system integrates a line of research on sophisticated data source selection
[23, 22, 8]. QUETSAL advances beyond source selection based on isolated triple
pattern matching to also consider the joins between triple patterns.

All of these recent developments necessitate the extension of VoID with the
expressivity needed to represent not only statistics about how resources are
described in star-shaped joins, but also how they link and combine in arbitrary
joins. This will allow making explicit information structures that are currently
internally computed and stored by these federation systems, so that they can be
shared and, hopefully, exposed directly by future triple store implementations.



3 Vocabulary Requirements

As discussed in the previous section, database histograms comprise buckets. A
bucket holds a value range for an attribute and the cardinality of this attribute
range, that is, the number of tuples where the given attribute has a value within
the given range. Following what is common practice in representing relational
data in RDF, an attribute value in a relational table’s tuple would be a triple
where the subject is the key of the tuple, the predicate is the attribute name,
and the object is the attribute value.

We will generalize buckets here, to allow not only the object (attribute value)
but any of the elements of a triple to be specified by a range and not fixed. We
will also call buckets subsets, to match more familiar terminology:

Requirement 1 The elementary unit of information in a Web dataset descrip-
tion is a subset that holds:

– the subject URI or a specification of a range of subjects
– the predicate URI or a specification of a range of predicates
– the object URI or value, or a specification of a range of objects
– the cardinality: the number of triples that match the above.

This requirement makes subsets useful for retrieving the cardinality of isolated
SPARQL triple patterns, by searching in the histogram for a subset where the
binded values in the triple pattern fall within the range given in the subset.

Multidimensional buckets hold the number of tuples that have values within
the range given in the bucket for all the attributes covered by the bucket. Again,
we transfer this to RDF in a way that reflects SPARQL queries, requiring that
histograms can also capture the cardinality of triple pattern joins:

Requirement 2 A subset can be specified by a set of triple specifications like
those in Requirement 1, with added constraints on triple elements that should be
identical.

Buckets are organized in an inclusion hierarchy, where the attribute ranges in
a child bucket are subsets of the attribute ranges in its parent. Since the children
of a bucket might or might not be a partitioning of the parent, depending on
the histogram algorithm used, it must also be possible to specify if the children
of a given bucket are a partitioning or not.

Requirement 3 Subsets are organized in an inclusion hierarchy, where the
triples matching a child subset are included in the triples matching the parent
subset. The children of a subset might or might not be a partitioning, but if they
are it must be possible to express this fact.

A further consideration is that, depending on the method used to con-
struct the histogram, selectivity and cardinality values might be approximated
or known be within a given range, rather than exactly known. Srivastava et al.
[26] and Kaushik and Suciu [15], for instance, presented methods that model
cardinalities and distinct value counts based on the entropy maximization prin-
ciple.



svd:part

svd:joinObject

svd:joinPredicate

void:Dataset

Description

void:Linkset

void:Technical

Feature

svd:Partition svd:Join

void:Dataset

void:subset

void:feature

void:target

foaf:primaryTopic

foaf:topic

svd:partitions

svd:joinSubject

Fig. 1. Sevod top classes and relationship to VoID.

Requirement 4 Subset statistics do not need to be scalar values, but may also
be more complex representations of constraints over or distributions of scalar
values that are not precisely known.

4 The Sevod Vocabulary

Sevod extends VoID to provide the expressivity needed in order to support the
query planning methods typically used in federated querying. The top Sevod
classes and their relationship to their VoID super-classes is shown in Figure 1.
The svd:Join class connects the void:Dataset instances that bind joins of
triple patterns with the selectivity of these joins. The svd:Partition class
connects the void:Dataset instances that form a partitioning of another
void:Dataset instance and allows to express the local closure of the data
that might be present in this superset.

The vocabulary can be downloaded from its namespace URL, http://www.
w3.org/2015/03/sevod

4.1 Joins of Triple Patterns

For the purposes of resource discovery, VoID is adequate for finding sources for
grounding star patterns in the query, where the properties of a known ‘central’
resource need to be retrieved. It is less well-suited for finding sources for path
and sink patterns, since VoID makes no assertions regarding the individuals in
the object position of triples. In order to fully cover Requirement 1, Sevod defines
the following properties:



Definition 1 (Triple Pattern) The properties svd:subjectRegexPattern,
svd:predicateRegexPattern, and svd:objectRegexPattern denote that
all triples in a dataset have subject URIs, predicate URIs, and object URIs/lexical
forms that match the given regular expressions.

svd:subjectRegexPattern rdf:type rdf:Property ;
rdfs:domain void:Dataset ; rdfs:range xsd:string .

svd:predicateRegexPattern rdf:type rdf:Property ;
rdfs:domain void:Dataset ; rdfs:range xsd:string .

svd:objectRegexPattern rdf:type rdf:Property ;
rdfs:domain void:Dataset ; rdfs:range xsd:string .

To cover Requirement 2, Sevod introduces the svd:Join class. A svd:Join
instance expresses that two void:Dataset instances can be joined

Definition 2 (Join) The svd:joins property links a svd:Join instance with
the void:Dataset instances that are joined.

svd:Join rdf:type rdfs:Class .
svd:joins rdf:type rdf:Property ;

rdfs:domain svd:Join ;
rdfs:range void:Dataset .

The svd:joins property is refined into three sub-properties, so that a
svd:Join instance can also specify on with triple element (subject, predicate,
object) the two datasets join.

Definition 3 (joinSubject) The svd:joinSubject property links a svd:Join
instance j with a void:Dataset instance d1 iff

– there is also a triple j svd:joins d2; and
– for all joinable triples (S P O) of d1, the corresponding joined triples in
d2 have S as one of their elements.

svd:joinsSubject rdfs:subPropertyOf svd:joins .

Definition 4 (joinPredicate) The svd:joinPredicate property links a svd:Join
instance j with a void:Dataset instance d1 iff

– there is also a triple j svd:joins d2; and
– for all joinable triples (S P O) of d1, the corresponding joined triples in
d2 have P as one of their elements.

svd:joinsPredicate rdfs:subPropertyOf svd:joins .

Definition 5 (joinObject) The svd:joinObject property links a svd:Join
instance j with a void:Dataset instance d iff

– there is also a triple j svd:joins d2; and



– for all joinable triples (S P O) of d1, the corresponding joined triples in
d2 have O as one of their elements.

svd:joinsObject rdfs:subPropertyOf svd:joins .

Different join patterns can be expressed using these properties, such as stars
(using svd:joinSubject only), paths (using both svd:joinObject and
svd:joinSubject), and sinks (using svd:joinObject only).

Naturally, svd:Join instances hold statistics about the selectivity of the
join. To cover Requirement 4, we define the range of the svd:selectivity
property to be a class instead of simple numerical fillers. In this manner, we
encapsulate statistics under a class that can be extended to cover application-
specific requirements. In order to ensure compatibility, we further require that
instances of this svd:SelectivityValue class must have an rdf:value
property and that this property has as value an xds:integer. Other, applica-
tion specific, properties may be defined as needed for extensions of this class.

Definition 6 (selectivity) The svd:selectivity property links an instance
of svd:Join with an instance of svd:SelectivityValue that is (or esti-
mates or approximates) the selectivity of the join denoted by the svd:Join
instance. Instances of the svd:SelectivityValue class denote an exact, es-
timated, or approximated measurement. svd:SelectivityValue instances
must have the rdf:value property with a filler that is an xds:integer that
is either the value itself (if the measurement is exact and certain) or a value that
is appropriate to use by applications that do not take into account uncertainty
or approximation parameters. Where appropriate, uncertainty or approximation
parameters are given by application-specific properties.

svd:selectivity rdf:type rdf:Property ;
rdfs:domain svd:Join ;
rdfs:range svd:SelectivityValue .

svd:SelectivityValue rdf:type rdfs:Class .

Join Example To give an example, consider the following SPARQL query which
retrieves from the New York Times dataset topic pages about places in Greece,
using links to Geonames to identify which of the places in the New York Times
dataset are in Greece:

SELECT ?Page WHERE
{

?X nyt:topicPage ?Page .
?X owl:sameAs ?G .
?G geonames:countryCode "GR" .

}

Let us assume that two SPARQL endpoints serving relevant data can be iden-
tified, based on void:property annotations: the nyt:topicPage predicate



void:triples "7432"^^xsd:long ;

void:property nyt:topicPage ;

:nyt−1

a svd:Join

_:_

_:_

a svd:SelectivityValue

rdf:value "21236"^^xsd:long .

svd:joinsSubject

svd:selectivity

void:distinctSubjects "11133"^^xsd:int ;

void:distinctObjects "30614"^^xsd:int .

a void:Dataset ;

void:triples "31673"^^xsd:long ;

void:property owl:sameAs ;

:nyt−2

a void:Dataset ;

void:triples "345889"^^xsd:long .

:nyt

void:propertyPartition

void:distinctSubjects "7432"^^xsd:int ;

void:distinctObjects "7354"^^xsd:int .

a void:Dataset ;

Fig. 2. Example usage of svd:Join.

only appears in the New York Times endpoint and the geonames:countryCode
predicate only appears in the Geonames endpoint. For the, more ubiquitous,
owl:sameAs predicate finer-grained description that gives information about
about the subjects and objects is used to point at the New York Times endpoint.

One piece of information needed for efficient query execution planning is the
cardinality of the query fragment that will be executed at each endpoint. Figure 2
gives an example of how svd:Join instances represent statistics about joins of
triple patterns.

4.2 Partitions

VoID defines the void:subset property for structuring the overall dataset
into homogeneous subsets. This partially covers Requirement 3 by defining the
vocabulary needed for expressing inclusion hierarchies of subsets. To fully cover
Requirement 3, Sevod introduces classes and properties that express that the
subsets of a given dataset are exhaustive and no other subsets exist.

Definition 7 (Partition) svd:Partition denotes that a set of void:Dataset
instances are a partition of another void:Dataset instance. This is done by
using the property svd:part to link the svd:Partition instance with the
instances that make up the partition and the property svd:partitions to link
it with the instance that is partitioned by them.



svd:Partition rdf:type rdfs:Class .

Definition 8 (partitions) svd:partitions is the functional property that
links a svd:Partition instance with the void:Dataset for which it is a
partition.

svd:partitions rdf:type rdf:Property ;
rdfs:domain svd:Partition ;
rdfs:range void:Dataset .

Definition 9 (part) The svd:part property links a svd:Partition in-
stance with each of the void:Dataset instances that make up the partition.
All fillers of this property must also be fillers of the void:subset property of the
void:Dataset instance that fills the svd:Partition instance’s svd:partitions
property.

svd:part rdf:type rdf:Property ;
rdfs:domain svd:Partition ;
rdfs:range void:Dataset .

Partition Example Building up on our previous example, Figure 3 gives a more
detailed description of the contents of nyt2, the owl:sameAs subset of the
New York Time dataset. As already hinted in the discussion of joins, details
about the subjects and objects of ubiquitous predicates such as rdf:type or
owl:sameAs are needed to avoid involving irrelevant datasets in a query. Fig-
ure 3 shows how svd:Partition instances can be used to express two par-
titionings of the same data along two facets (subject namespace and object
namespace).

5 Generating Sevod Descriptions

Detailed instance-level descriptions are cumbersome to acquire and maintain,
ruling out manual curation. The process can, however, be automated by ob-
serving the responses to queries. SWOOGLE [11], RDFStats [16], LODStats
[4] and STRHist [28] generate rich enough statistics to populate the VoID and
Sevod models. Useful as they might be, these estimators of what lies behind a
SPARQL endpoint are developed to work around the lack of an authoritative
data source description by the data source itself. Although providing a DCAT or
VoID description is becoming increasingly popular, these are restricted to gen-
eral metadata about the dataset and schema-level descriptions, including when
VoID is used.

We present here Sevod Scraper,1 a tool which extracts Sevod metadata di-
rectly from the actual data, operating over an RDF dump file of the dataset.
Sevod Scraper is meant to be used by the data providers to prepare and maintain
dataset descriptions to be published together with the actual data.

1 Open source, available at https://github.com/semagrow/sevod-scraper



_:p2−3

void:property owl:sameAs ;

a void:Dataset ;

void:triples "5"^^xsd:long .

_:p2−4

void:property owl:sameAs ;

a void:Dataset ;

void:triples "7"^^xsd:long .

<http://www.ordnancesurvey.co.uk/>

svd:part

<http://data.nytimes.com/>

<http://sws.geonames.org/>

<http://data.nytimes.com/>

_:p2−8

void:property owl:sameAs ;

a void:Dataset ;

void:triples "9943"^^xsd:long .

a svd:Partition

_:_

a svd:Partition

_:_

svd:partitions

svd:part

void:subset

void:property owl:sameAs ;

a void:Dataset ;

void:triples "31673"^^xsd:long .

:nyt−2

void:property owl:sameAs ;

a void:Dataset ;

void:triples "1250"^^xsd:long .

_:p2−6

void:subset

svd:objectVocabulary

svd:objectVocabulary

<http://dbpedia.org/>

_:p2−7

void:property owl:sameAs ;

a void:Dataset ;

void:triples "9990"^^xsd:long .

void:property owl:sameAs ;

a void:Dataset ;

void:triples "30423"^^xsd:long .

_:p2−5

svd:subjectVocabulary

svd:subjectVocabulary

<http://rdf.freebase.com/>

<http://sws.geonames.org/>

<http://rdf.insee.fr/>

void:property owl:sameAs ;

a void:Dataset ;

void:triples "9939"^^xsd:long .

_:p2−1

_:p2−2

void:property owl:sameAs ;

a void:Dataset ;

void:triples "1789"^^xsd:long .

svd:objectVocabulary

svd:objectVocabulary

svd:objectVocabulary

svd:objectVocabulary

svd:part

Fig. 3. Example usage of svd:Partition.

Sevod Scraper partitions the dataset into several (possibly overlapping) sub-
sets. Provided that we need to generate metadata not only for properties, but for
subjects and objects as well, we generate one subset for each property, one sub-
set for some subject URI prefixes and one subset for some object URI prefixes.
The decision to use prefixes to specify URI ranges is based on the observation
[16] that string (including URI) range estimations can be given:

– using one bucket for each distinct string or storing the range as a set of
strings, resulting in large histograms;

– using a hash function to reduce the number of distinct strings. However,
hashing the string representation of URIs fails to take into account the se-
mantic similarity between resources, so it is unlikely that a universally good
function can be identified [13]; or

– by reducing strings to prefixes.



Table 1. FedBench datasets statistics and number of triples of the metadata obtained
by the Sevod Scraper using the default parameters.

Dataset numb. numb. numb. dis- numb. dis- Metadata
triples properties tinct subjects tinct objects triples

ChEBI 4,775,935 49 51,297 772,930 437
Dbpedia 42,852,838 1,080 9,496,685 13,518,436 6,282
DrugBank 520,252 141 20,511 408,964 1,142
GeoNames 107,953,314 48 7,480,534 35,454,090 367
Jamendo 1,052,868 49 336,745 593,727 2,777
KEGG 1,094,059 42 35,080 940,041 426
LMDB 6,151,225 244 695,220 2,053,739 2,143
NYT 338,426 57 22,486 191,288 420

Determining which URI prefixes we want to keep balances between the size and
detail of the resulting metadata. To make this decision easier for the user, the
user sees parameters from the perspective of size limits and the tool decides how
to adhere to these by selecting which URI prefixes to include in the description.

Table 1 gives a sense of the size of the descriptions generated by Sevod
Scraper using default parameters. The table lists the number of triples used to
describe well-known datasets from the FedBench suite [24].

Given a user-provided bound B, if a number of k URI prefixes s.t. k > B
have the same prefix, we would like to replace these URI prefixes with their
longest common prefix. Sevod Scraper uses for this reason two path tries, one
for the subject and the other for the object URIs. In these path tries each edge
corresponds to a path component, allowing also the * special component to
denote, unsurprisingly, any number of characters or an empty string. If during
any insert we have a situation that one node contains more than B children,
some of its children will be combined to a single node using their common URI
prefix. Instead of subject and object URIs, these nodes are specified using the
svd:subjectRegexPattern and svd:objectRegexPattern properties.

This hierarchy of trie nodes is then represented as a hierarchy of VoID
subsets. For each subset, Sevod Scraper extracts the standard VoID statistics,
namely the number of triples properties, distinct subjects and distinct objects
of the subset. Especially for the property subsets, the authority component2

of all subjects and objects is extracted and added to the description using the
svd:subjectVocabulary and svd:objectVocabulary terms. Finally, the
scraper also computes join selectivity metadata. For every pair of property sub-
sets, the tool computes the selectivity values of the star (i.e., subject-subject),
the sink (i.e., object-object) and the path (i.e., object-subject) joins between
these subsets.

2 The URI component after the scheme, if foreseen by the scheme; for the http scheme
used here, the authority is the host name between http:// and the immediately
following /



6 Conclusions

We presented the Sevod vocabulary, an extension of VoID that specifically ad-
dresses the aspects of dataset description that are relevant to efficient and trans-
parent federated SPARQL query processing. The extension is designed to address
federated SPARQL requirements extracted by analysing the information needs
of current federated SPARQL query processors.

Sevod is the first vocabulary that makes explicit and share-able the data
summaries used to optimize query processing. The adoption and maintenance of
Sevod can facilitate the transfer of optimization methods between the databases
and the Semantic Web communities. But of more interest to the Semantic Web
is the ability to publish these detailed data summaries, allowing endpoints to
provide the metadata needed to be discovered as relevant to federated queries
and to be included in an efficient query execution plan. In this manner, federated
querying can be made as efficient as the querying of distributed databases while
maintaining the dynamic and decentralized nature of the Semantic Web.

In order to realize this ability, we have started by making it easy for data
providers to publish Sevod descriptions. We developed the Sevod Scraper tool
that automates the generation Sevod descriptions of varying detail by setting
the intended description size. Future work on the Scraper will be on using past
query load to make more informed decisions about where the descriptions should
be more detailed and where they can be left more shallow, in order to adhere
to the publishers’ maximum description size requirement with minimal loss of
query plan efficiency. This will be based on our previous work on workload aware
histogram construction on the client side [28], but extended to take advantage
of the direct access to the data enjoyed by the publisher.

The next step will be to develop tools for serializing and deserializing Sevod
descriptions for the most prominent, current federated query processors. The
expectation is that this will close the loop between data publishers and data
consumers, and kick-start the adoption of Sevod.

Acknowledgements

The work described here has received funding from the European Union’s Hori-
zon 2020 research and innovation programme under grant agreement No 644564.
For more details, please visit https://www.big-data-europe.eu

Bibliography

[1] Aboulnaga, A., Chaudhuri, S.: Self-tuning histograms: Building histograms
without looking at data. In: Proceedings of the 1999 ACM Interna-
tional Conference on Management of Data (SIGMOD ’99). pp. 181–192.
ACM, New York, NY, USA (1999), http://doi.acm.org/10.1145/
304182.304198



[2] Alexander, K., Cyganiak, R., Hausenblas, M., Zhao, J.: Describing linked
datasets with the VoID vocabulary. W3C Interest Group Note, 3 March
2011 (Mar 2011), http://www.w3.org/TR/void

[3] Archer, P., Shukair, G.: Asset description metadata schema (ADMS). W3C
Working Group Note, 1 August 2013 (2013), http://www.w3.org/TR/
vocab-adms, this version of the WG Note is based on M. Dekkers (ed.,
2012), ADMS Draft Specification, ISA Deliverable D1.1. URL https://
joinup.ec.europa.eu/asset/adms

[4] Auer, S., Demter, J., Martin, M., Lehmann, J.: LODStats – an extensible
framework for high-performance dataset analytics. In: Proceedings of the
18th International Conference on Knowledge Engineering and Knowledge
Management (EKAW ’12). pp. 353–362. Springer-Verlag, Berlin, Heidelberg
(2012), http://dx.doi.org/10.1007/978-3-642-33876-2_31

[5] Basca, C., Bernstein, A.: Querying a messy web of data with Avalanche.
Journal of Web Semantics 26(1), 1–28 (2014), http://dx.doi.org/10.
1016/j.websem.2014.04.002

[6] Ben Ellefi, M., Bellahsene, Z., Breslin, J., Demidova, E., Dietze, S., Szyman-
ski, J., Todorov, K.: RDF dataset profiling: A survey of features, methods,
vocabularies and applications. Semantic Web Journal, accepted for publi-
cation (2017).

[7] Bruno, N., Chaudhuri, S.: Exploiting statistics on query expressions for
optimization. In: Proceedings of the 2002 ACM International Conference
on Management of Data (SIGMOD ’02). pp. 263–274. ACM, New York,
NY, USA (2002), http://doi.acm.org/10.1145/564691.564722

[8] Cem Ozkan, E., Saleem, M., Dogdu, E., Ngonga Ngomo, A.C.: UPSP:
unique predicate-based source selection for SPARQL endpoint federation.
In: Proceedings of 3rd International Workshop on Dataset Profiling and
Federated Search for Linked Data (PROFILES 2016), held on 30 May 2016
at ESWC 2016, Anissaras, Crete, Greece (2016)

[9] Charalambidis, A., Troumpoukis, A., Konstantopoulos, S.: SemaGrow: Op-
timizing federated SPARQL queries. In: Proceedings of the 11th Inter-
national Conference on Semantic Systems (SEMANTiCS 2015), Vienna,
Austria, 15-18 September 2015 (2015), http://dx.doi.org/10.1145/
2814864.2814886

[10] Chaudhuri, S.: An overview of query optimization in relational systems. In:
Proceedings of the 17th ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems (PODS ’98). pp. 34–43 (1998)

[11] Ding, L., Finin, T., Joshi, A., Pan, R., Cost, R.S., Peng, Y., Reddivari, P.,
Doshi, V., Sachs, J.: Swoogle: A search and metadata engine for the se-
mantic web. In: Proceedings of the Thirteenth ACM International Confer-
ence on Information and Knowledge Management. pp. 652–659. CIKM ’04,
ACM, New York, NY, USA (2004), http://doi.acm.org/10.1145/
1031171.1031289

[12] Görlitz, O., Staab, S.: SPLENDID: SPARQL endpoint federation exploiting
VOID descriptions. In: Proceedings of the 2nd International Workshop on



Consuming Linked Data (COLD 2011), Bonn, Germany, October 23, 2011.
CEUR Workshop Proceedings, vol. 782 (2011)

[13] Harth, A., Hose, K., Karnstedt, M., Polleres, A., Sattler, K.U., Umbrich, J.:
Data summaries for on-demand queries over linked data. In: Proceedings of
the 19th International World Wide Web Conference (WWW 2010), Raleigh,
NC, USA, 26-30 April 2010 (2010)

[14] Ioannidis, Y.: The history of histograms (abridged). In: Proceedings of
the 29th International Conference on Very Large Databases (VLDB 2003),
Berlin, Germany (2003), ten-Year Best Paper Award

[15] Kaushik, R., Suciu, D.: Consistent histograms in the presence of distinct
value counts. Proc. VLDB Endow. 2(1), 850–861 (Aug 2009), http://
dx.doi.org/10.14778/1687627.1687723

[16] Langegger, A., Wöss, W.: RDFStats – an extensible RDF statistics gener-
ator and library. In: 23rd International Workshop on Database and Expert
Systems Applications. pp. 79–83. IEEE Computer Society, Los Alamitos,
CA, USA (2009)

[17] Maali, F., Erickson, J., Archer, P.: Data catalog vocabulary (DCAT). W3C
Recommendation 16 January 2014 (Jan 2014), http://www.w3.org/TR/
vocal-dcat

[18] Montoya, G., Skaf-Molli, H., Hose, K.: The Odyssey approach for optimizing
federated SPARQL queries. In: 16th International Semantic Web Confer-
ence (ISWC 2017), Vienna, Austria, 23–25 October 2017 (2017), preprint
available at https://arxiv.org/abs/1705.06135

[19] Quilitz, B., Leser, U.: Querying distributed RDF data sources with
SPARQL. In: Bechhofer, S., Hauswirth, M., Hoffmann, J., Koubarakis, M.
(eds.) Proceedings of the 5th European Semantic Web Conference (ESWC
2008), Tenerife, Spain, 1–5 June 2008. Lecture Notes in Computer Science,
vol. 5021 (2008)

[20] Rakhmawati, N.A., Hausenblas, M.: On the impact of data distribution in
federated SPARQL queries. In: Proceedings of the Sixth IEEE International
Conference on Semantic Computing (ICSC 2012). pp. 255–260 (2012)

[21] Rakhmawati, N.A., Umbrich, J., Karnstedt, M., Hasnain, A., Hausenblas,
M.: Querying over federated sparql endpoints: A state of the art survey.
Tech. rep., DERI (Jun 2013), http://arxiv.org/abs/1306.1723

[22] Saleem, M., Ngonga Ngomo, A.C.: HiBISCuS: Hypergraph-based source
selection for SPARQL endpoint federation. In: Proceedings of the 11th
ESWC Conference, Anissaras, Crete, Greece, 25–29 May 2014. pp. 176–191
(2014), http://dx.doi.org/10.1007/978-3-319-07443-6_13

[23] Saleem, M., Ngonga Ngomo, A.C., Xavier Parreira, J., Deus, H.F.,
Hauswirth, M.: DAW: Duplicate-aware federated query processing over
the Web of Data. In: Proceedings of the 12th International Semantic
Web Conference (ISWC 2013), Sydney, Australia, 21–25 October 2013,
Part I. Lecture Notes in Computer Science, vol. 8218. Springer (2013),
https://doi.org/10.1007/978-3-642-41335-3_36

[24] Schmidt, M., Görlitz, O., Haase, P., Ladwig, G., Schwarte, A., Tran, T.:
Fedbench: A benchmark suite for federated semantic data query processing.



In: Proceedings of the 10th International Semantic Web Conference (ISWC
2011), Bonn, Germany, 23–27 October 2011. Lecture Notes in Computer
Science, vol. 7031, pp. 585–600. Springer (2011), http://doi.org/10.
1007/978-3-642-25073-6_37

[25] Schwarte, A., Haase, P., Hose, K., Schenkel, R., Schmidt, M.: FedX: A
federation layer for distributed query processing on Linked Open Data. In:
Proceedings of the 8th Extended Semantic Web Conference (ESWC 2011),
Heraklion, Crete, Greece, May 29 – June 2, 2011. Lecture Notes in Computer
Science, vol. 6644, pp. 481–486. Springer (2011)

[26] Srivastava, U., Haas, P.J., Markl, V., Kutsch, M., Tran, T.M.: ISOMER:
Consistent histogram construction using query feedback. In: Proceedings of
the 22nd International Conference on Data Engineering (ICDE ’06). IEEE
Computer Society, Washington, DC, USA (2006), http://dx.doi.org/
10.1109/ICDE.2006.84

[27] Wang, X., Tiropanis, T., Davis, H.C.: LHD: optimising linked data query
processing using parallelisation. In: Proceedings of Linked Data on the Web
(LDOW 2013), Rio de Janeiro, 14 May 2013 (2013)

[28] Zamani, K., Charalambidis, A., Konstantopoulos, S., Zoulis, N., Mavroudi,
E.: Workload-aware self-tuning histograms for the Semantic Web. Trans-
actions on Large Scale Data and Knowledge-Centered Systems 28 (Sep
2016), http://dx.doi.org/10.1007/978-3-662-53455-7_6, pub-
lished as LNCS 9940


