
Link++: Adaptive Linking of Multiple
Transportation Networks

Ali Masri1,2, Karine Zeitouni2 and Zoubida Kedad2

1 VEDECOM
Versailles, France

{first}.{last}@vedecom.fr
2 Université de Versailles Saint-Quentin-En-Yvelines, Laboratoire DAVID

Versailles, France
{first}.{last}@uvsq.fr

Abstract. The integration of heterogeneous transportation data and
services is essential towards enabling multimodality. Many new services
are emerging and gaining a lot of popularity but are still isolated from
multimodal solutions such as ridesharing, bike sharing. These services
tend to publish their data according to the principles of linked open
data in order to allow this integration. However, existing data inter-
linking tools are not suitable to discover and create transportation con-
nections. The discovery of transportation connections is dependent on
the timetable and geospatial information of the entities. In addition,
the representation of the connection needs to be rich enough to provide
the required information for further processing. In this paper, we intro-
duce Link++, a customizable interlinking tool that enables detection and
generation of customized semantic connections between transportation
datasets.

1 Introduction

Multimodality is the integration of multiple modes of transportation data
and services. It allows us to form links between different modes and ser-
vices in order to provide richer and more optimized planning services.
What is interesting about transportation data is that these links are
translated to real physical links between the transportation entities. For
example, when we say that there is a relation between a railway stop and
a bus stop, we mean that there is a physical path at a specific moment
that connects these two stops. Therefore, we give passengers the ability
to use this path as a transit service to switch from one mode to another.
This switch may be very important in many cases. It improves trip time,
maybe cost and for sure extends trip plan possibilities and options.

In general, existing approaches tend to solve the integration problem by
mapping the data they need into a unified model, then storing the uni-
fied data into a repository supported by an API e.g. Google Transit3,

3 http://maps.google.com/landing/transit/index.html



STIF4. However, they still do not take into consideration highly evolv-
ing datasets such as car sharing, bike sharing, car pooling, etc. Such
services are highly dynamic and often do not have the notion of a fixed
transportation stop. In turn, this makes the integration problem more
challenging and demanding special needs.

Our goal is to find a simple way for operators to identify nearby trans-
portation services by providing a connection portal enabling the identi-
fication of connections between one transportation data source and an-
other. We are in a need of a homogeneous light-weighted representation
of transportation connections (transfer points from one stop to another)
and the means to discover them in a flexible and customized manner.
With this representation we can link different types of transportation
services regardless the mode or service they offer. All what transporta-
tion systems need to know is just how to handle these light connections
and use them to connect with the outer world, which is much simpler
than handling heterogeneous data and maintaining them.

Enabling such solution requires access to transportation sources which
can be obtained from open data [7, 5]. Open data is gaining a great deal
of popularity and numerous transportation operators are using it to pub-
lish their data on the web5,6,7. The main cause behind publishing the
data is to increase the market visibility for each service.

Many solutions took benefit from this to provide rich data for smart cities
applications. They use linked data techniques and data interlinking tools
to provide extended information relevant to both transportation and pas-
senger profile queries [13, 6]. These techniques address equivalence detec-
tion between entities to establish links between data sources. This may
help in enriching data about entities. However, this is not always enough
in transportation data. Further complex relations are required to reflect
the nature of transportation connections.

Beyond equivalence or sameAs links, we are interested in finding connec-
tions between transportation data sources based on the geospatial and
time characteristics of the data which capture the reach-ability between
different transportation networks. Furthermore, using the given tools we
face two main limitations. The first is the restriction to a predefined set
of functions for composing linking rules, due to the lack of flexibility of
existing systems in defining custom functions. For instance, to calculate
information such as closeness of two transportation points of transfer
(bus stop, train station, etc), we can not define custom functions to cal-
culate walking distances, driving distances, etc. The user is forced to dig
into the code (if available) and modify it directly. The second limitation

4 http://www.stif.info
5 http://opendata.paris.fr/page/home/
6 http://www.strasbourg.eu/ma-situation/professionnel/open-data/donnees/

mobilite-transport-open-data
7 http://www.uitp.org/tags/open-data



is the representation of the generated output. Supporting complex rela-
tions requires more complex output patterns.

As an example, let us suppose that a link is established between two
transportation points of transfers. Existing tools can provide the out-
put BusStop1 nextTo TrainStation132 which does not give information
about the occurrence of this relation. They are next to each others but
how close are they? when the connection is available? and what are the
modes of transportation that we can use? etc.

Based on what precedes, there is no way of creating connections that
are suitable to many complex matching tasks other than the standard
equivalence matching tools. Our main goal is to provide a system that
is flexible and rich enough to allow users to define their own way of
connecting data sources. Users must be given the power to use custom
functions and define any form of output needed for their tasks.

In this paper we introduce Link++, a system that uses connection pat-
terns, custom functions and rules to enable the generation of richer con-
nections to link data sources. These connections can be applied to pro-
vide missing connections between transportation operators and services.
With this approach, we can generate rich semantic links between entities
to be published as open data in the sense of improving re-usability and
reducing the need for re-calculation. We evaluate our approach using a
real use case on connecting two transportation modes and checking how
this affects the time of trips.

The paper is structured as follows:

2 Background and Related Work

With the introduction of LinkedData[5] many approaches took chance
of leveraging and exposing their data to the web. In the category of
transportation data and smart cities [2][13][6] did this integration by fol-
lowing the linked data principles[4][5] and they succeeded in connecting
data from different sources to produce applications with wider-scope ser-
vices. [10] tackled the problem of cataloging, exploring, integrating, un-
derstanding, processing and transforming urban information. They pro-
posed an approach for incremental and continuous integration of static
and streaming data, based on Semantic Web technologies, while they
tested their system to a traffic diagnosis scenario.

The GeoKnow[11] project and DataLift[16] platform came as a solu-
tion to help transforming data from isolated silos into linked data. They
provided the necessary tools to transform, link, publish and query data
extracted from multiple different sources with different formats.

The way links are created for open data datasets are through data in-
terlinking. Data interlinking in general is a way to discover similarity re-
lationships between RDF data sources in a semi-automatic fashion. The



process of linking requires two datasets – source and target, a distance
measure and a threshold. A link between two entities of a dataset is suc-
cessfully assigned if a distance measure between them exceeds a selected
threshold. The main goal is to link similar instances – that are scattered
between different data sources – in order to expand the knowledge graph.
The MeLinDa survey[17] described data interlinking in more details and
highlighted the characteristics of the most popular approaches.

We can divide the link discovery frameworks into two categories: domain
specific and universal ones. The domain specific frameworks aim to dis-
cover the links between knowledge bases of a particular domain. The
second category is designed to consider the linking tasks regarding the
knowledge base domain. Based on [17], table1 shows the most popular
interlinking tools with their properties. RKB-CRS [9], proposed an ar-

Techniques Output Domain

RKB-CRS[9] String owl:sameAs Publications
GNAT[15] String, similarity-propagation owl:sameAs Music

ODD-Linker[8] String link set Independent
RDF-AI[18] String, WordNet alignment format Independent

Silk[20] String, numerical, date owl:sameAs, user-specified Independent
LIMES[12] String, geographical, numerical, date owl:sameAs, user-specified Independent

Link++ User-defined User-defined Independent

Table 1. Comparison between different interlinking tools

chitecture for managing URI equivalences on the Web of Data by using
Consistent Reference Services. Their approach requires a JAVA program
to be written for each pair of datasets to integrate. In each program, the
coder selects the resources to compare and the their comparison function
using string similarity on the property values. GNAT[15] is an automatic
interlinking tool that works on music datasets described within the Music
Ontology[14]. It is implemented in prolog and based on similarity aggre-
gation algorithm to detect relations based on resource’s neighbors in a
graph. ODD-Linker[8] proposed an extensible framework for interlinking
relational data with a high quality links. Linking rules are expressed in
LinQL that is later translated to SQL queries in order to compare and
identify links. LinQL supports many string matching algorithms, syn-
onyms, hyponyms and other conditions on attributes. RDF-AI[18] is a
dataset matching and fusion architecture. It takes two files, the datasets
to be linked and a set of XML files describing the linking process (pre-
processing, matching configuration, dataset structure, merge configura-
tion). A local copy of the datasets is needed, and the matching is based
on string similarity with an external resource (WordNet). Silk[20] is a
domain independent interlinking tool. Input datasets are inserted via a
SPARQL endpoint URI, a local copy, or a database access. Matching
configuration can be done either with a GUI toolbox or the Silk Link



Specification Language (Silk LSL). User specifies the properties to be
matched, the pre-processing functions and the matching technique to be
used. Matching function are combined via aggregation functions (MAX,
MIN, AVG). Silk provides a load of pre-processing function on Literals
and numeric data types. Many comparison functions are defined includ-
ing string similarity, numerical distance, date-time. The only distance
function available for matching geospatial datasets, is the geometric dis-
tance — based on the Euclidean distance. It takes the latitude and the
longitude of both entities and matches them according to a given thresh-
old. The good thing in this distance function is that the threshold is
well formatted, the user can define the minimal distance in meters or
kilo-meters. LIMES[12] is one of the tools provided by the GeoKnow[1]
project, it handles the matching in a very fast speed compared to other
link discovery frameworks. LIMES provide better distance functions for
geospatial data, thus we have more options to match. It supports ba-
sic string metrics, numeric vectors such as Euclidean and Orthodromic
distance metrics and many other similarity metrics e.g. Hausdorff, Sum
of minimum, Frchet, etc. Writing a linkage rule in LIMES is done via
XML, and no GUI is available to support the process. Although many
distance metrics are supported, these functions are only good for geo-
graphical data. Geographical data is a subset of transportation data, so
more powerful functions are needed, those who enable richer linking be-
tween transportation units or objects.

Analyzing existing link discovery approaches shows that they are more
suitable to equivalence matching. They provide functions and aggre-
gations to detect sameAs, part-of or subClass relationships. These ap-
proaches may be suitable in some cases for geospatial data (the GeoKnow
project [1] and LinkedGeoData [19]), but they are not sufficient for trans-
portation data. Interlinking solutions must take into account both the
spatial and temporal characteristics of transportation data in addition to
the real-time state. Consider that we want to connect two transportation
data sources with the intention of discovering how we can reach one stop
from another. Doing so with existing tools limits us to equivalence detec-
tion due to the provided functions and output format. What is required
is a more representative and semantic way to connect these sources [3]
showing how they can be connected from a transportation point of view.
As a conclusion, the output of an interlinking process mainly focuses on
detecting a set of owl:sameAs links. However, we need to have more infor-
mation in the generated links to enable better post-processing and anal-
ysis and to reduce re-calculation costs (e.g., include information about
a connection status and the distance between two connected entities in
transportation links).

3 Link++

As we have discussed earlier, existing interlinking tools are not suitable
to connect transportation data sources. What is required is a more cus-
tomizable connection generation process to enable richer and more flex-
ible connection representation. We introduce Link++ (shown in Figure



1), a system that enables flexible connection discovery and customized
output definition using connection patterns, custom functions and link-
ing rules. Connection patterns are templates for connection generation
used to define both the content and format of a linking process output.

In general, the approach consists of two main phases:

– The definition phase, where users define the connection patterns, the
required functions and linking rules.

– The generation phase, where: 1) the definitions are taken and applied
to the datasets 2) the rule is applied to the entities 3) and when valid,
a connection is created and stored in a repository.

In a formal definition, a linking task T requires the following input for
the process:

– Input data sources D1 and D2 representing the datasets to be linked

– O is the custom-defined connection pattern

– R is the linkage rule that defines when a connection must be gener-
ated

– F is a set of functions required for the linking task

– L is a set of pre-defined libraries implementing the dependencies of
F

Fig. 1. Link++: An approach for flexible and customizable connection generation.

The following sections explain in detail the tasks required for an inter-
linking process.



3.1 Specifying Custom Functions and External Libraries

Enabling users to define their own functions is crucial for a complete
system that supports all required matching tasks. Thus, the first task is
to enable users to write any functions to be used in their linking rules
or similarity calculations. Users can simply do it with Link++ with a
custom Java class. In addition, external libraries are needed to support
third-party code. It is supported and can be used in our system by sim-
ply adding the JAR file to the code repository.

The user specified functions play an important goal in the matching
tasks since they can form a linking rule, a similarity metric, a transfor-
mation/preprocessing operations or any other function based on users’
needs. The functions are gathered in a JAVA file accompanied with the
used jar libraries, then they are compiled at run time and used when
needed. To reference each method the user simply address the function as
follows: ”class-name”.”method-name”. For example: MyClass.walkingDistance.

3.2 Defining a Linking Rule

A linking rule specifies the conditions required to generate a connection
between a given pair of entities. The main goal is to apply this rule to
each entity pair in order to seek for a match and create the specified
connection. Defining a rule requires a set of functions (similarity metrics
and preprocessing functions) previously defined by the user. Each rule is
defined with a root node that is either an aggregation or a comparison
operator and sub-nodes specifying any other function chained in a way
to suit the linking task.

An aggregation operator combines the values of different operators/values
by applying the specified aggregation method, e.g., max, min, average,
etc. It is defined by an aggregation function and a threshold. Each func-
tion contains a set of parameters that can be specified from the given
data sources or directly by the user. The threshold defines whether the
value of the operator must be evaluated as true or false in the linking rule.

Since data sources can be represented in different ways, we can use the
transformation operator to modify this representation. To this end, we
define a function that takes its parameters from the data sources or from
the composition of other transformation operators, e.g., lowercase, up-
percase, concatenation, round, ceiling, etc.

Finally, the comparison operator is used to define the similarity (or the
relatedness) between two properties of the given data sources. A compar-
ison is valid between operators themselves or with other transformation
functions, and a threshold defines whether the value is accepted or not
for the rule to be valid, e.g., distance, equality, etc.



3.3 Configuring a Connection Pattern

Connections are the final outputs of the interlinking task specified by
connection patterns. Therefore, it is important to be precise when defin-
ing a connection pattern. A pattern specifies the format of the generated
connections and the required information they must contain. In other
words, it represents a template that will be filled when a connection is
instantiated.

A connection pattern is composed of a set of properties, where each prop-
erty is defined by a function that calculates it. Function parameters can
be the inputs from the data sources or predefined by the rule composer.
A connection pattern is freely chosen by a user according to the inter-
linking task and the post-processing needs. The formal definition of a
connection pattern O is as follows:
Let D1 and D2 be two data sources. Given V any data type and F a
set of custom functions required to generate the patterns, Pr is a set of
properties where each property is represented by a property name n, a
value v and a corresponding function f , which calculates the property
value during the generation process.

Pr = {(n, v, f)|n ∈ String, v ∈ V f ∈ F} (1)

A connection pattern is formalized as:

O = (d1, d2, pr)|d1 ∈ D1, d2 ∈ D2, pr ⊆ Pr (2)

Both the connection pattern and the linking rule files are described in
XML files that conform a data type definition (DTD); custom functions
are written using JAVA (users can write any JAVA file and use the de-
fined methods in his/her connection pattern or rule), and the output is
generated in RDF.

We will give a demonstration case with a real scenario of defining both
the linking rule and the connection pattern in the evaluation section. It
illustrates the configuration process and shows an instance of the XML
files (output pattern and rule).

3.4 Connection Discovery Algorithm

Once the configuration step is completed, the connection discovery pro-
cess starts as described in the sequel. Algorithm 1 represents the pseudo-
code of the implemented linking process. The algorithm iterates over each
pair of entities in the two data sources and evaluates the linking rule be-
tween them. Based on the rule evaluation, the algorithm decides if a
connection must be created or not. If a rule is triggered, a new connec-
tion is generated by evaluating the connection pattern and applying the
corresponding function of each property. The values are calculated by
the specified functions in the output pattern, and their parameters are



filled from the currently-compared entities. Here, we instantiate the con-
nection and fill in its information from the return values of the functions.
The connection is stored in a specified repository, and the algorithm con-
tinues on the remaining pairs until all are treated. In the worst cases,

Data: D1, D2, O, R, F
Result: Discover the list of connections and add them to the connections store
/* iterate over the elements of D1 */

foreach e1 in D1 do
/* iterate over the elements of D2 */

foreach e2 in D2 do
/* evaluate the linking rule */

if evaluateRule(e1, e2, R) is true then
/* if the rule holds, create new connection based on the

output pattern */

c ← createConnection(e1, e2, O);
/* calculate the value of each property in the pattern

based on the specified function */

foreach p in c.properties do
f ← F.getFunction(p.getFunction);
value ← f.calculate(p.getProperties);
c.addProperty(p.name, value);

end
/* the connection is instantiated and ready to be added to

the connection store */

add c to connections store;

end

end

end
Algorithm 1: Connection discovery algorithm.

the time complexity of the algorithm is O(n * m), where n and m are
the sizes of the input datasets. The storage complexity (in terms of data
pages) is the same as a nested loop join in databases that is equal to the
size of the smallest dataset + one page, which usually fits in memory.
This complexity may be reduced by using some pre-filtering techniques
that the system may offer in a future version; for instance, using a spatial
index to replace the inner loop by a search in an index (which reduces
the cost to log(n)). Then, the specific rules and function defined by the
user will be applied in a refinement phase automatically by the system.

Link++ is implemented and an executable version of it can be found on-
line via the link https://github.com/alimasri/link-plus-plus.git;
in addition to a video tutorial on: https://youtu.be/u2gr7Wa4eT4. A
screen-shot of the system is shown in Figure 2. It shows the project-
based graphical user interface where users can add their data sources,



functions, linking rule and connection pattern. The output is shown in a
separate directory.

Fig. 2. A screen-shot of Link++

4 Evaluation

To recall, in transportation networks, a connection can be described as
an accessible path from one transportation point of transfer to another.
A point of transfer is any stop that allows users to change a transporta-
tion unit or mode. A connection contains properties describing both the
departure and arrival stops in addition to other properties. We define a
transportation connection as one of the following two types:
– Timetable connection that has specific departure and arrival times.

This type of connection will be referred to as a scheduled connec-
tion. It has the following properties: departure-time, arrival-time,
departure-stop and arrival-stop.

– Other connections that have no schedule information and for which
availability is not restricted by timing constraints. We will refer to
these connections as unscheduled connections. They have the follow-
ing properties: departure-stop, arrival-stop and distance.

We evaluate the approach using the datasets from SNCF8 and Autolib9

companies. The number of instances in each of the SNCF and Autolib
datasets is 1067 and 869, respectively.

8 http://gtfs.s3.amazonaws.com/transilien-archiver_20160202_0115.zip
9 http://opendata.paris.fr/explore/dataset/stations_et_espaces_autolib_

de_la_metropole_parisienne/



In the following, we describe the evaluation phases from preparing the
data, setting-up the system and visualizing the generated output.

Data Preparation In this phase, the goal is to represent the timetable
information in a format compatible with our definition of connection.
Instead of designing a network by a series of stops or other representa-
tions, we want to represent it by a series of connections between stops.
Since SNCF is a public transportation company with data described in
timetables, the task here is to extract scheduled connections from the
given data.

To this end, we have proposed an algorithm that transforms timetable
data from GTFS files into scheduled connections. The algorithm iterates
over the timetable information for each stop and creates a connection
that starts from a departure stop at a departure time and ends with an
arrival stop with the specified time. The process is repeated to a prede-
fined date range to limit the number of connections created.

In case of Autolib, we do not have timetable information, so we need a
way to discover the connections between its stops. Using our approach,
we can match Autolib’s dataset with itself (in order to know when a
Autolib station is reachable from an another) to discover these unsched-
uled connections between. Since the configuration task is common and
independent, the following section describes how to use our approach to
discover the unscheduled connections for Autolib-Autolib and Autolib-
SNCF.

Discovering New Connections Two tasks are required one for
Autolib-Autolib connections and one for Autolib-SNCF connections. In
this example, unscheduled connections are driving or walking connec-
tions between Autolib-VELIB and Autolib-SNCF, respectively. We use
our approach to search for connections that match a predefined criteria.
Since our approach works on RDF data, we have used the DataLift [16]
platform to transform both SNCF stops and VELIB CSV files into RDF
turtle formats. In the sequel, we describe in detail all of the required
tasks to achieve our goal.
– Defining custom functions: Our system is flexible as it allows users

to create any custom function to be used in the linking task. Users
can use external dependencies, as well. In our example, we define
the functions getWalkingDistance, getWalkingTime, getDrivingDis-
tance and getDrivingTime. In a real scenario, we get this information
from a web service, such as Google’s distance matrix API (https://
developers.google.com/maps/documentation/distance-matrix/).
However, due to the query limit, we have chosen to implement them
by local functions based on mathematical calculations (http://www.
movable-type.co.uk/scripts/latlong.html).

– Define the linking rules: Recall that the linking rule describes the
condition that triggers the creation of a connection. Two rules are
required, one for Autolib-Autolib and the other for Autolib-SNCF.



For the first one, the condition of the defined rule is the following:
“If a driving path exists within 200 km (the time before the bat-
tery is totally discharged), create a connection”. For Autolib-SNCF
connections, the rule is: “If a walking path exists from one stop to
another within one kilometer, create a connection”.

Rules are written in XML format, and the functions that calculate
the walking distance and time are referenced from the custom func-
tions file. We note that the parameters “200 km” and “1 km” are
given by the user who is responsible for the configuration. We set
these parameters as the maximum feasible scope for a person to
ride the car or walk from one station to another. Figure 3 shows an
example of how a rule can be defined.

Fig. 3. An example of rule definition in XML.

– Defining the connection pattern: We define the output generated by
the system at each valid rule. We have chosen the following proper-
ties to be represented in a connection pattern: source-id, target-id,
walking/driving distance and walking/driving time. This pattern is
the same for both tasks, and an example is shown in Figure 4.

Fig. 4. An example of a connection pattern in XML.



Executing these tasks with the above configuration enabled us to en-
rich the network with discovering 535,966 internal connections between
Autolib car stations and 272 new connections between the two different
transportation modes SNCF and Autolib.
Compared to the existing link discovery frameworks, our approach suc-
ceeded in discovering links with richer representations and customized
properties that can be used for numerous tasks.

5 Conclusion

Open data made it possible for new companies and services to gain vis-
ibility in the market. New transportation services are taking advantage
of this to provide the needed data to support multimodality. As we have
seen, existing open data interlinking tools are not suitable to support
transportation data linking which represents real connections in the phys-
ical world. In this paper, we introduce Link++, a customizable interlink-
ing tool that enables detection and generation of customized semantic
connections between transportation datasets.

Link++ provides the means for existing transportation systems to ac-
cess information about nearby services and integrate them. We have
introduced how Link++ defines custom connections and used these con-
nections to expand a transportation network containing trains and car
sharing networks. In the future, our focus will target the dynamic part of
the connections since they are not always static and may be affected by
external events. On the other hand, we aim to take profile information
while generating connections which introduces the need of real-time con-
nection generation. Furthermore, we will consider optimizing the Carte-
sian product in the discovery algorithm.

References

1. Spiros Athanasiou, Daniel Hladky, Giorgos Giannopoulos, Alejandra
Garcia Rojas, and Jens Lehmann. Geoknow: Making the web an
exploratory place for geospatial knowledge. ERCIM News, 96:12–
13, 2014.

2. Sören Auer, Jens Lehmann, and Sebastian Hellmann. Linkedgeodata:
Adding a spatial dimension to the web of data. Springer, 2009.

3. Montserrat Batet, Sébastien Harispe, Sylvie Ranwez, David Sánchez,
and Vincent Ranwez. An information theoretic approach to improve
semantic similarity assessments across multiple ontologies. Informa-
tion Sciences, 283:197–210, 2014.

4. Christian Bizer. Evolving the web into a global data space. In
BNCOD, volume 7051, page 1, 2011.

5. Christian Bizer, Tom Heath, and Tim Berners-Lee. Linked data-the
story so far. Semantic Services, Interoperability and Web Applica-
tions: Emerging Concepts, pages 205–227, 2009.



6. Sergio Consoli, Misael Mongiov̀ı, Diego Reforgiato Recupero, Silvio
Peroni, Aldo Gangemi, Andrea Giovanni Nuzzolese, and Valentina
Presutti. Producing linked data for smart cities: the case of catania.

7. Michael B Gurstein. Open data: Empowering the empowered or
effective data use for everyone? First Monday, 16(2), 2011.

8. Oktie Hassanzadeh, Lipyeow Lim, Anastasios Kementsietsidis, and
Min Wang. A declarative framework for semantic link discovery over
relational data. In Proceedings of the 18th international conference
on World wide web, pages 1101–1102. ACM, 2009.

9. Afraz Jaffri, Hugh Glaser, and Ian Millard. Managing uri synonymity
to enable consistent reference on the semantic web. 2008.

10. Spyros Kotoulas, Vanessa Lopez, Raymond Lloyd, Marco Luca Sbo-
dio, Freddy Lecue, Martin Stephenson, Elizabeth Daly, Veli Bicer,
Aris Gkoulalas-Divanis, Giusy Di Lorenzo, et al. Spud semantic pro-
cessing of urban data. Web Semantics: Science, Services and Agents
on the World Wide Web, 24:11–17, 2014.

11. Jon Jay Le Grange, Jens Lehmann, Spiros Athanasiou, A Garcia-
Rojas, Giorgos Giannopoulos, Daniel Hladky, Robert Isele, A-
C Ngonga Ngomo, M Ahmed Sherif, Claus Stadler, et al. The geo-
know generator: Managing geospatial data in the linked data web.
Linking Geospatial Data, 2014.

12. Axel-Cyrille Ngonga Ngomo and Sören Auer. Limes-a time-efficient
approach for large-scale link discovery on the web of data. integra-
tion, 15:3, 2011.

13. Julien Plu and François Scharffe. Publishing and linking transport
data on the web: extended version. In Proceedings of the First In-
ternational Workshop on Open Data, pages 62–69. ACM, 2012.

14. Yves Raimond, Samer A Abdallah, Mark B Sandler, and Frederick
Giasson. The music ontology. In ISMIR, pages 417–422. Citeseer,
2007.

15. Yves Raimond, Christopher Sutton, and Mark B Sandler. Automatic
interlinking of music datasets on the semantic web. LDOW, 369,
2008.

16. François Scharffe, Ghislain Atemezing, Raphaël Troncy, Fabien Gan-
don, Serena Villata, Bénédicte Bucher, Fayçal Hamdi, Laurent Bi-
hanic, Gabriel Képéklian, Franck Cotton, et al. Enabling linked data
publication with the datalift platform. In Proc. AAAI workshop on
semantic cities, pages No–pagination, 2012.

17. François Scharffe and Jérôme Euzenat. Melinda: an interlinking
framework for the web of data. arXiv preprint arXiv:1107.4502,
2011.

18. François Scharffe, Yanbin Liu, and Chuguang Zhou. Rdf-ai: an ar-
chitecture for rdf datasets matching, fusion and interlink. In Proc.
IJCAI 2009 workshop on Identity, reference, and knowledge repre-
sentation (IR-KR), Pasadena (CA US), 2009.

19. Claus Stadler, Jens Lehmann, Konrad Höffner, and Sören Auer.
Linkedgeodata: A core for a web of spatial open data. Semantic
Web, 3(4):333–354, 2012.

20. Julius Volz, Christian Bizer, Martin Gaedke, and Georgi Kobilarov.
Silk-a link discovery framework for the web of data. LDOW, 538,
2009.


