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Abstract

Recommender systems typically use collaborative filtering: information from
your preferences (i.e. your ratings) is combined with that of other users to pre-
dict what other items you might also like. Much of the research in the field has
focused on building algorithms that provide recommendations based purely on
predicted accuracy [5]. However, these models make strong assumptions about
how preferences come about, how stable they are, and how they can be mea-
sured [4]. Having a background in decision psychology I have studied how the
preference elicitation methods of recommender systems can be better under-
stood and improved based on psychological insights. I will illustrate this with an
example of new choice-based preference interfaces we have developed. Users are
more satisfied with a method that measures their preferences through a series of
choices than with a rating-based preference elicitation, because the rating-based
is more effortful and provides more obscure movies [2]. However, a drawback is
that recommendation lists of choice-based preference elicitation contain mostly
popular movies, and further research has investigated that showing trailers can
help to reduce this popularity effect a bit as users are able to use the trailer to
inspect less well-known items [3].

Moreover, recommender systems should also align with user goals. Many real-
life recommender systems are evaluated mostly on (implicit) behavioral data such
as clicks streams and viewing times. However, such an approach has limitations
and I will show how a user-centric approach can help better understand why
users are satisfied or not, for example why users prefer diversify over prediction
accuracy as it reduces choice difficulty [8]. The behaviorist approach to evalua-
tion also misses that users’ short term goals (i.e. their current behavior) might
not be representative of the goals they want to attain (i.e. their desired behav-
ior) [1]. This is especially relevant in health and life style domains [6] where
people are in need of support while changing their current behavior. I will elab-
orate on an example in the energy recommendation domain, and show how a
different type of recommender approach and interface might help users to save
more energy [7].
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