
A C++ reasoner for the description logic DL4,×
D

?

(work in progress)

Domenico Cantone, Marianna Nicolosi-Asmundo, and
Daniele Francesco Santamaria

University of Catania, Dept. of Mathematics and Computer Science
email: {cantone,nicolosi,santamaria}@dmi.unict.it

Abstract. We present an ongoing implementation of a KE-tableau based
reasoner for a decidable fragment of stratified elementary set theory
expressing the description logic DL〈4LQSR,×〉(D) (shortly DL4,×

D ). The
reasoner checks the consistency of DL4,×

D -knowledge bases (KBs) repre-
sented in set-theoretic terms. It is implemented in C++ and supports
DL4,×

D -KBs serialized in the OWL/XML format.
To the best of our knowledge, this is the first attempt to implement
a reasoner for the consistency checking of a description logic that is
represented via a fragment of set theory that can also classify standard
OWL ontologies.

1 Introduction

Computable set theory is a research field rich of decidability results, however
only recently some of its fragments have been applied in the context of knowledge
representation and reasoning for the semantic web. Such efforts are motivated
by the characteristics of the considered set-theoretic fragments. These provide
very expressive and unique formalisms that combine the modelling capabilities
of a rule language with the constructs of description logics. In particular, the
set-theoretic fragment 4LQSR [1], involving variables of four sorts, pair terms,
and a restricted form of quantification over variables of the first three sorts, is
appropriate for these finalities since it turned out to be efficiently implementable.

In [4], 4LQSR-quantifier-free atomic formulae of the types x = y, x ∈ X1,
〈x, y〉 ∈ X3 (with x, y variables of sort 0, 〈x, y〉 a pair term, X1 a variable
of sort 1, and X3 a variable of sort 3) and 4LQSR purely universal formulae
of the type (∀z1)...(∀zn)ϕ0 (with zi variables of sort 0, for i = 1, . . . , n, and
ϕ0 a propositional combination of 4LQSR-quantifier-free atomic formulae) are
used to represent the expressive description logic DL4,×

D , thus yielding a decision

procedure for reasoning tasks for DL4,×
D such as the consistency of knowledge

bases (KBs) and the Higher Order Conjunctive Query Answering problem. The
latter problem, in particular, includes the most relevant ABox reasoning tasks.

The description logic DL4,×
D admits full negation, union and intersection of

concepts and abstract roles, concept domain and range, and existential and min-
imum cardinality restriction on the left-hand side of inclusion axioms. It also

? Work supported by Gruppo Nazionale per il Calcolo Scientifico (GNCS-INdAM).



supports role chains on the left-hand side of inclusion axioms and properties on
roles such as transitivity, symmetry, reflexivity, and irreflexivity. Thanks to its
expressiveness, DL4,×

D can represent expressive ontologies, such as, for instance,
OntoCeramic [6].

Since existential quantification is admitted only on the left-hand side of in-
clusion axioms, DL4,×

D is less expressive than logics such as SROIQ(D) [8] as

far as the generation of new individuals is concerned. On the other hand, DL4,×
D

is more liberal than SROIQ(D) in the definition of role inclusion axioms, since
the involved roles are not required to be subject to any ordering relationship, and
the notion of simple role is not needed. For example, the role hierarchy presented
in [8, page 2] is not expressible in SROIQ(D), but can be represented in DL4,×

D .

In addition, DL4,×
D is a powerful rule language able to express rules with negated

atoms such as Person(?p) ∧ ¬hasHome(?p, ?h) =⇒ HomelessPerson(?p).
Notice that rules with negated atoms are not supported by the Semantic Web
Rule Language (SWRL).

By resorting to the algorithm introduced in [4], in this paper we present the
first effort to implement a KE-tableau based decision procedure for the consis-
tency problem of DL4,×

D -KBs. Implementation is being carried out in C++, as
C++ allows for low level directives and can be easily compiled in several envi-
ronments. The choice of KE-tableau systems [9] in place of traditional semantic
tableaux [11] is motivated by the fact that KE-tableau systems introduce an
analytic cut rule allowing the construction of trees whose distinct branches de-
fine mutually exclusive situations, thus preventing the proliferation of redundant
branches (typical of Smullyan’s semantic tableaux). Thus, when a consistent KB
is given in input, the procedure yields a KE-tableau whose open branches induce
distinct models of the KB. Otherwise, a closed KE-tableau is returned.

Our reasoner, still in beta-testing, is available at the following address:
https://github.com/dfsantamaria/DL4xD-Reasoner.

2 Overview of the reasoner

The input of the reasoner is an OWL ontology, serialized in the OWL/XML
syntax (see Figure 1). If the ontology meets the DL4,×

D requirements, then a
parser produces the internal coding of all axioms and assertions of the ontology
in set-theoretic terms as a list of strings. Such translation exploits the function
θ used in [4] to map DL4,×

D -KBs to 4LQSR-formulae. Each such string represents
either a 4LQSR-quantifier free formula or a 4LQSR purely universally quanti-
fied formula whose quantifiers have been moved as inward as possible. In the
subsequent step, the reasoner builds the data-structures required to execute the
algorithm, and then it constructs the expansion of each 4LQSR purely universally
quantified formula according to [4, page 9] yielding an expanded (ground) KB,
ΦKB. Subsequently, a KE-tableau TKB, representing the saturation of KB, is con-
structed according to Procedure saturate-DL4,×

D -KB in [5]. Initially a one-branch
KE-tableau TKB for ΦKB is constructed. Then, TKB is expanded till saturation by
sistematically applying the E-Rule (elimination rule) and the PB-Rule (principle



of bivalence rule) in Figure 2 to formulae of type β1 ∨ . . .∨βn, giving priority to
the application of the E-Rule. Once such rules are no longer applicable, for each
open branch ϑ of the resulting KE-tableau, literals of type x = y occurring in ϑ
are dealt with by storing in ϑ the equivalence class of x and y.

Fig. 1. Execution cycle of the reasoner.

β1 ∨ . . . ∨ βn Sβi
βi

E-Rule

where Sβi := {β1, ..., βn} \ {βi},
for i = 1, ..., n

A | A
PB-Rule

with A a literal

Fig. 2. Expansion rules for the KE-tableau.

2.1 Some implementation details

We first show how the internal coding of DL4,×
D -KBs represented in terms of

4LQSR is defined and how data-structures for the representation of formulae,
nodes, and KE-tableaux are implemented. Then we describe the most relevant
functions that implement the algorithm.

4LQSR elements such as variables, pairs, relators, logic connectors, and quan-
tifiers are internally mapped as strings.

The class Var describes 4LQSR variables by means of a string representing the
name, an integer representing the sort of the variable, and an integer indicating
whether the variable is bound or free. Purely universally quantified variables
and free variables are collected in the vectors VQL and VVL, respectively, which
provide a subvector for each sort of variable.

The operators admitted in 4LQSR and internally coded as strings are mapped
in three distinct vectors that are fields of the class Operator.

4LQSR atomic formulae are stored using the class Atom. The latter has two
fields: the integer atomOp representing the operator of the formula, and the
vector components, whose elements point to the variables involved in the atomic
formula. 4LQSR formulae are represented by the class Formula having a binary
tree-shaped structure, whose nodes contain an object of type Atom. The left and
the right children contain the left and the right subformula, respectively. The
class Formula contains a pointer to an object of Atom, representing the atomic
formula.



The KE-tableau decision procedure exploits the class Tableau. This class uses
the instances of the class Node that represents the nodes of the KE-tableau. Node
has a tree-shaped structure with four fields: a vector of Formula that collects
the formulae of the current node, and three pointers to instances of the class
Node that are the left, the right, and the father node. The set of open branches
is collected in the field openbranches, whereas the set of closed branches is
maintained in the vector closedbranches. In addition, the class Tableau is
provided with a three-dimensional vector of integers EqSet, which stores the
equivalence classes induced by the atomic formulae of type X0 = Y 0, for each
branch ϑ of the tableau and for each variable in ϑ occurring in any atomic
formula of type X0 = Y 0.

The task of parsing the ontology from the OWL/XML file is performed by the
function readOWLXML. The latter takes as input the string obtained by reading the
OWL/XML file and returns a vector of strings representing the internal coding
of the KB. Once all input formulae have been parsed, the reasoner constructs
the expansion of the KB by means of the procedure expandKB, which yields the
vector of the output formulae (out) from the vector of the input formulae (inpf).
In order to instantiate all the quantified variables, expandKB exploits a stack and
the vectors VVL and VQL. After this step, the reasoner checks for atomic clashes
in the expanded KB by means of the procedure checkNodeClash.

The construction of the KE-tableau is performed by procedure
expandTableau, which exploits two stacks of type vector of pointers to Node.
The stack noncomBranches, keeps track of the non-complete branches, while
nonfulFormula keeps track of the non-fulfilled disjunctive formulae. Initially,
expandTableau attempts to empty the stack nonfulFormula by selecting iter-
atively its elements and applying either the procedure ERule or the procedure
PBRule, respectively implementing the E-Rule and the PB-Rule in Figure 2. The
disjuncts of the current formula are stored in a temporary vector and selected
iteratively. If a disjunct has its negation on the branch, it is removed from the
vector. Once all disjuncts of the formula have been selected, if there is only
one element in the stack, then the procedure ERule is applied to the disjunc-
tive formula. If the stack contains more than one element, then the procedure
PBRule is applied. Finally, if the stack is empty, a contradiction is detected,
and the branch is added to closedbranches. The procedure expandTableau

terminates when either noncomBranches or nonfulFormula are empty. When
the procedure terminates with some element in noncomBranches, such branches
are added to the vector openbranches. The subsequent phase consists in con-
structing the set of equivalence classes EqSet for each open branch computed by
expandTableau. EqSet is computed by the procedure computeEqT. For each open
branch in openbranches, the procedure searches for formulae of type X0 = Y 0,
where X0 and Y 0 are selected with respect to the ordering provided by the
vector VVL, and, for each variable, stores the equivalence class in EqSet.

The procedure terminates when all open branches of the vector openbranches
have been analysed. If the vector is not empty, the KB is declared to be consis-
tent.



3 Conclusions

We have presented an ongoing implementation of a KE-tableau based decision
procedure for the consistency problem of DL4,×

D -KBs in terms of set-theoretical
4LQSR-formulae. The reasoner, developed in C++, takes as input OWL ontolo-
gies serialized in the OWL/XML format.

Currently, the tool is in its beta-testing phase. We plan to compare it with
existing reasoners such as Hermit [7] and Pellet [10], and to provide some bench-
marking. Then, we intend to extend the reasoner with the HOCQA procedure [4],
thus providing ABox reasoning services. We also plan to allow data type reason-
ing by integrating Satisfiability Modulo Theories solvers. Moreover, techniques
developed in [2,3] will be used to include reasoning for description logics admit-
ting full existential and universal restrictions. Finally, we intend to implement
a parallel version of the software by exploiting Message Passing Interface, since
each branch of the KE-tableau can be computed by a single processing unit.

References

1. D. Cantone and M. Nicolosi-Asmundo. On the satisfiability problem for a 4-level
quantified syllogistic and some applications to modal logic. Fundamenta Informat-
icae, 124(4):427–448, 2013.

2. D. Cantone, M. Nicolosi-Asmundo, and E. Or lowska. Dual tableau-based decision
procedures for some relational logics. In Proceedings of the 25th Italian Conference
on Computational Logic, CEUR-WS Vol. 598, Rende, Italy, July 7-9, 2010, 2010.

3. D. Cantone, M. Nicolosi-Asmundo, and E. Or lowska. Dual tableau-based decision
procedures for relational logics with restricted composition operator. Journal of
Applied Non-Classical Logics, 21(2):177–200, 2011.

4. D. Cantone, M. Nicolosi-Asmundo, and D. F. Santamaria. A set-theoretic approach
to ABox reasoning services. In Costantini S., Franconi E., Van Woensel W.,
Kontchakov R., Sadri F., Roman D. Rules and Reasoning. RuleML+RR 2017.,
Lecture Notes in Computer Science, vol 10364. Springer, 2017.

5. D. Cantone, M. Nicolosi-Asmundo, and D. F. Santamaria. A C++ reasoner for
the description logic DL4,×

D . CoRR, abs/1707.07545, 2017.
6. D. Cantone, M. Nicolosi-Asmundo, D. F. Santamaria, and F. Trapani. Onto-

ceramic: an OWL ontology for ceramics classification. In Proc. of CILC 2015,
CEUR-WS, vol. 1459, pp. 122–127, Genova, July 1-3, 2015.

7. B. Glimm, I. Horrocks, B. Motik, G. Stoilos, and Z. Wang. HermiT: An OWL 2
Reasoner. Journal of Automated Reasoning, 53(3):245–269, 2014.

8. I. Horrocks, O. Kutz, and U. Sattler. The even more irresistible SROIQ. In Proc.
10th Int. Conf. on Princ. of Knowledge Representation and Reasoning, (Doherty,
P. and Mylopoulos, J. and Welty, C. A., eds.), pages 57–67. AAAI Press, 2006.

9. M. Mondadori M. D’Agostino. The taming of the cut. Classical refutations with
analytic cut. Journal of Logic and Computation, 4:285–319, 1994.

10. E. Sirin, B. Parsia, B. C. Grau, A. Kalyanpur, and Y. Katz. Pellet: A practical
OWL-DL reasoner. J. Web Sem., 5(2):51–53, 2007.

11. R. M. Smullyan. First-order Logic. Dover books on advanced Math. Dover, 1995.


