Optimization of a compiler from PDDL to Picat
(Short Paper)

Francesco Contaldo, Marco De Bortoli, and Agostino Dovier

Universita degli Studi di Udine
Dipartimento di Scienze Matematiche, Informatiche e Fisiche

Abstract. Picat is a new constraint logic programming language that
has obtained promising results in international competitions. These re-
sults have been achieved thanks to several features. The most effective of
them is an efficient handling of a tabling technique applied to search al-
gorithms. A compiler from PDDL to Picat, which automatically enables
to run PDDL models in Picat, has been recently developed. This paper
describes a method which automatically optimizes the output of such a
compiler, using a different representation of the states that better takes
advantage of Picat’s Tabling technique.

1 Introduction

One of the first and most important research areas in Al is planning. It deals with
the search for a strategy, in order to resolve a specific problem, in a given world
with fixed rules. The operation of finding this sequence of actions, performed by
the planner, can be seen as the search for a path in a direct graph, where every
node represents a state of the world, and every edge corresponds to an action.

The ancestor of modern planners is STRIPS (Stanford Research Institute
Problem Solver [5]), the language used by Shakey the robot. It was developed
at the end of the 60’s and was the first robot that could reason about its own
actions and plan what to do based on a given goal.

The popularity of planning was increasing, but there were no common guide-
lines or modeling style, at least until the 1998, when PDDL (Planning Domain
Definition Language) was proposed [9]. Since then, also thanks to its use in the
International Planning Competitions [1], PDDL and its extensions (e.g., [6]) are
the reference for planning domain modeling.

Picat [11] is a recently designed rule-based, declarative programming lan-
guage, provided with a large number of features inherited from several program-
ming paradigms, such as imperative, scripting, logic and constraint program-
ming, and external interfaces with constraint solvers, SAT solvers, and MIP
solvers. One of the most successful features of Picat up to now is the planner
module, that allows to obtain efficient results on IPC benchmarks. Benchmarks
can be encoded directly in the planner module of Picat (as done, e.g., in [2, 10]);
however, due to the relevance of PDDL in the community, it will be useful to
directly use them within Picat. For this purpose a first compiler from PDDL to
Picat (written in Picat) has been presented in [3].

In this paper we propose a method, inspired by Planning Graph technique [7],
that optimizes the compiler in order to produce an encoding that better exploits
the Picat’s tabling capabilities. In particular it uses the Structured state repre-
sentation (as opposed to Factored state representation used by PDDL).

2 Preliminaries

We assume the reader has a basic knowledge of Planning, PDDL, and Picat
(Prolog-like) syntax.

State representation used in PDDL is known as Factored Representation: a
state is identified by a set of atoms, i.e. a set of predicates denoting that some
primitive properties of the world are true. An atom can be rigid, if it represents
a never changing property (e.g. the fact that in location (z,y) there is a wall),
or fluent, that can be false or true depending on the current state (e.g. the fact
that in location (z,y) at time ¢ there is a robot). Below there is an example of a
factored representation (inspired by the problem known as Nomystery), encoded
in PDDL and Picat, respectively:

{at (truckl ,locl),...,connected(locl ,loc2)}
$[at (truckl ,locl),..,connected(loc2,loc3)]

In a Structured Rapresentation the state is represented using internal data
structures, such as lists or sets, and where it is possible it enables a reduction
of the symmetries. The use of data structures is very suitable for the tabling
technique used by Picat. In fact the states that are memorized during the plan
seek can share common elements present in the structures used to represent
them, reducing the usage of memory during the computation.

Considering the Nomystery domain described above, one of its possible struc-
tured state representations do not use the predicate connect, because it is a rigid
predicate that describes the map and there is no need to replicate it in every
state. However, it is possible to go further, memorizing the state simply as:

s ({locl ,loc2,loc3})

In this state representation the three trucks are directly encoded using their
positions, avoiding the presence of symmetric states during the search. Since
all the trucks are identical there will be no significant difference among two
equals states in which the position of two trucks is exchanged. E.g. one of the
two states can be at(truckl,locl),at(truck2,loc2) and the other one can be
at(truck2,locl), at(truckl,loc2). At the end “s” can have other arguments, e.g.,
storing the set of desired truck destinations, or other domain informations.
Picat implements two main search techniques to find a plan: depth-first
and resource-bounded. Both of the previously mentioned approaches exploit
the Picat’s tabling technique that enables the planner to memorize the vis-
ited states and thus to avoid the re-computation of already-visited branches. In
depth-first, the solver keeps applying actions until it finds either a dead end,
an already-visited state or a goal state, otherwise it backtracks and it explores

other branches. In the second approach the planner adds a resource amount
value that is used by the planner as convenience measure to decide whether it is
advantageous to re-explore an already visited failing state. [11].

3 Optimizing the compiler

The goal of the optimization is to automatically transform a model based on
a factored state representation, inherited from PDDL and obtained using the
compiler presented in [3], into a model based on a structured state representation
that exploits the Picat’s Tabling technique [2].

The main intention is to identify the rigid elements and the fluent elements
inside each main predicate (i.e., those that appear in the effect of some action,
the fluent one) in order to reduce the size of them. At this point it is fundamental
to distinguish the meaning of the adjectives rigid and fluent. In the first section
these two attributes are used to classify the predicates in the domain. So, in
this case the rigid elements represent the static information inside a single pred-
icate, while the fluent elements represent the dynamic information that evolves
according to each action taken by the planner. As a matter of fact the predicate
at (truck,location) from Nomystery encodes a static information: the name
of the truck. Clearly the name of an entity is something that cannot evolve or
change during the different explored states so it is possible to define it rigid.
Instead the location of each truck is more meaningful, it can assume different
values during the seek in order to find the goal configuration. Thus each main
predicate will be represented only by its fluent elements and, where it is pos-
sible, some predicates are merged together if they were sharing the same rigid
element at the beginning of the compiling phase. Then the state representation
is changed accordingly, introducing a term whose arguments are sets of list, one
for each new main predicate, and all the actions are modified to deal with the
new data structures.

The underlying algorithm of the compiler can be split in two main parts.
The first one is a preprocessing step which is inspired by the Planning Graph
technique. This step aims to “ground” as predicates as possible, starting from
the initial problem state an iterative and terminating procedure tries to apply
a fixed number of actions in order to instantiate the larger possible number of
predicates. In this iterative procedure an action is applied only once and it stops
when a fixed point is reached: there is no new action applicable to the current
state or all the actions have been already applied. When the computational step
has finished the analysis one starts. The goal of this last step is to identify
the rigid elements inside each predicates performing an arithmetic mean of the
positions of the elements that differ among the same grounded predicates. Then
the analysis is lifted to the whole problem level working with all the elements
of all the predicates at same time. The main idea that is behind this is step
is to built a DAG of dependencies among all the predicates elements, thus,
for each main predicates in the domains, there exists a directed edge from its
rigid elements and its remaining elements that become temporary fluent. At

the end the DAG is used to modify the main predicates of the domain, holding
the original definition of the rigid predicates. The obtained result should be a
more compact state representation since the static elements are deleted from the
predicates, then the number of the predicates used can be reduced performing a
merge between two predicates that shared the same rigid elements.

4 Results and conclusions

The effect of the compiler optimization has been tested on three models as
benchmarks: Floortile, Tetris, Nomystery, from the IPC list of benchmarks.

Nomystery| Structured Factored
Instance |Representation|Representation
bound| time |bound| time(s)
Nomystery 0| 6 1 6 2.70
Nomystery_1| 9 18.96 9 34.04
Nomystery_2| 13 159.05 13 376.13
Nomystery_3| 15 125.58 15 421.43
SUM 304,59 834,30

Tetris Structured Factored
Instance |Representation|Representation
bound| time |bound| time(s)
Tetris_0 2 0 2 0
Tetris_1 9 0.15 9 0.16
Tetris_2 10 0.05 10 0.352
Tetris_3 16 0.22 16 0.587
Tetris_4 16 5.39 16 11.554
Tetris_5 16 13.473 16 201.157

SUM 19.283 213.81

Floortile Structured Factored
Instance |Representation|Representation
bound| time |bound| time(s)
Floortile_0 14 0.005 14 0.007
Floortile_1 15 0.057 15 0.088
Floortile_2 12 0.17 12 0.21
Floortile_3 14 3.09 14 3.194
Floortile 4 | 24 10.34 24 12.95
Floortile 5 | 26 309.41 26 308.37
SUM 323.072 325.019

Table 1. Iterative Deeping Results (Factored representation is what returned by the
previous compiler, Structured Representation is after our automatic optimization)

The computational results, reported in Table 1, highlight an improvement of
the performance in all instances tested of Nomystery, Tetris and for the most

one of Floortile. Focusing on the global time, obtained by the summation of
all the times for a specific problem, it can be observed how all the problems
encoded using the optimization have better performance than the ones encoded
with the factored representation. As for Nomystery and Tetris we have obtained
an improvement of 60% and 90%, respectively. On the other hand, concerning
the Floortile problem we have gained only 2 seconds in the global measurement.
The running time required by the optimization process is on average around the
350 ms, thus, it is not an overhead for medium-big size problems.

We have also tested direct, manually optimized, Picat encodings of the three
benchmarks. The running time on the instances tested are negligible (below 50ms
— same results as state-of-the-art planners). Other work is needed to automatize
the compiler process to lead to encodings with the same performances.

Acknowledgments. We thank Roman Bartdk and Neng-Fa Zhou for their help in
various stages of this work. A. Dovier is partially supported by INAAM-GNCS
20152017 projects.

References

1. International planning competitions web site. http://ipc.icaps-conference.org/. Ac-
cessed: 2017-05-10.

2. Roman Bartdk, Agostino Dovier, and Neng-Fa Zhou. On modeling planning prob-
lems in tabled logic programming. In M. Falaschi and E. Albert, editors, Proc. of
PPDP, Siena, Italy, July 14-16, 2015, pages 31-42. ACM, 2015.

3. Marco De Bortoli, Roman Bartdk, Agostino Dovier, and Neng-Fa Zhou. Compil-
ing and executing PDDL in picat. In C. Fiorentini and A. Momigliano, editors,
Proceedings of the 31st Italian Conference on Computational Logic, Milano, Italy,
June 20-22, 2016., volume 1645 of CEUR Workshop Proceedings, pages 132-147.

4. Agostino Dovier, Andrea Formisano, and Enrico Pontelli. Perspectives on logic-
based approaches for reasoning about actions and change. In M. Balduccini and
Tran Cao Son, editors, Logic Programming, Knowledge Representation, and Non-
monotonic Reasoning - Essays Dedicated to Michael Gelfond on the Occasion of
His 65th Birthday, LNCS 6565, pages 259-279. Springer, 2011.

5. Richard Fikes and Nils J. Nilsson. STRIPS: A new approach to the application of
theorem proving to problem solving. Artif. Intell., 2(3/4):189-208, 1971.

6. Maria Fox and Derek Long. Pddl2.1: an extension to pddl for expressing temporal
planning domains. In Journal of Artificial Intelligence Research, 2003.

7. B. Cenk Gazen and Craig A. Knoblock. Combining the expressivity of UCPOP
with the efficiency of graphplan. In S. Steel and R. Alami, editors, Proc. of ECP’97,
Toulouse, France, LNCS 1348, pages 221-233. Springer, 1997.

8. M. Gelfond and V. Lifschitz. Action languages. FElectronic Transactions on Arti-
ficial Intelligence, 2:193-210, 1998.

9. D. Mcdermott, M. Ghallab, A. Howe, C. Knoblock, A. Ram, M. Veloso, D. Weld,
and D. Wilkins. PDDL - The Planning Domain Definition Language. Technical
Report TR-98-003, Yale Center for Computational Vision and Control, 1998.

10. Neng-Fa Zhou, Roman Bartdk, and Agostino Dovier. Planning as tabled logic
programming. TPLP, 15(4-5):543-558, 2015.

11. Neng-Fa Zhou, Hakan Kjellerstrand, and Jonathan Fruhman. Constraint Solving
and Planning with Picat. Springer Briefs in Intelligent Systems. Springer, 2015.

