
Graph expression complexities and simultaneous
linear recurrences

Mark Korenblit1 and Vadim E. Levit2

1 Holon Institute of Technology, Israel
korenblit@hit.ac.il

2 Ariel University, Israel
levitv@ariel.ac.il

Abstract. The paper investigates relationships between algebraic ex-
pressions and graphs. Using the decomposition method we generate spe-
cial simultaneous systems of linear recurrences for sizes of graph expres-
sions. We propose techniques which provide closed-form solutions for
these systems.

1 Introduction

We consider a labeled two-terminal directed acyclic graph (st-dag in [1]) that
has only one source and only one sink in which each edge has a unique label.
An algebraic expression is a graph expression (a factoring of a graph [1]) if it is
algebraically equivalent to the sum of edge label products corresponding to all
possible paths between the source and the sink of the graph. We define the total
number of labels in an algebraic expression as the complexity of the algebraic
expression. Expressions with a minimum (or, at least, a polynomial) complexity
may be considered as a key to generating efficient algorithms on distributed
systems.

A series-parallel graph is defined recursively so that a single edge is a series-
parallel graph and a graph obtained by a parallel or a series composition of
series-parallel graphs is series-parallel [1]. A series-parallel graph expression has
a representation in which each label appears only once [1]. Generating an opti-
mum factored form for non-series-parallel graph expressions is a highly complex
problem. Interrelations between graphs and expressions are discussed in [1], [4],
[5] and other works.

We generate expressions of a number of non-series-parallel graphs using the
decomposition method. This method is based on revealing subgraphs of approxi-
mately equal sizes in the initial graph. The resulting polynomial-size expression
is produced by a special composition of subexpressions describing these sub-
graphs. In many cases, computing of complexity of the obtained expression is
reduced to solving a simultaneous system of three linear recurrences. In this
paper we propose a method which provides a closed-form (explicit) solution for
this system.



2 The decomposition method

Consider a graph called a full square rhomboid (FSR) [4]. We split every non-
trivial graph through two decomposition vertices (number 4 in Fig. 1) which are
chosen in the middle of the upper and the lower groups of the graph. Any path
from vertex 1 to vertex 7 in Fig. 1 passes either through one of decomposition
vertices or through edge b4. Thus the graph is decomposed into six subgraphs two
of which are FSR (connected by b4 in Fig. 1) and four ones are called single-leaf
full square rhomboids (FSR1). Each FSR1 is decomposed into six new subgraphs
in the similar way (Fig. 2(a)). They are one FSR, three FSR1 and two dipterous
full square rhomboids (FSR2). Decomposition of possible varieties of FSR2 (see
the example in Fig. 2(b)) gives two FSR1 and four FSR2 subgraphs.
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Fig. 1. Decomposition of a full square rhomboid.
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Fig. 2. Decomposition of single-leaf and dipterous full square rhomboids.

The total number of labels T (m) in the expression of a full square rhomboid
of size m, i.e., including m vertices of the middle (basic) group, for m = 2p

(p ≥ 1) is defined recursively as follows:T (m) = 2T
(
m
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(
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)
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(
m
2

)
+ 3T1

(
m
2

)
+ 2T2

(
m
2

)
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T2 (m) = 2T1

(
m
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)
+ 4T2

(
m
2

)
+ 1 ,

(1)

where T1(m) and T2(m) are the total numbers of labels in expressions of FSR1

and FSR2, respectively, of size m and T (1) = 0, T1 (1) = 1, T2 (1) = 3.
One can see that the sum of the coefficients in each of three simultaneous

recurrences (1) equals 6 and T1 (m) = 1
2T (m) + 1

2T2 (m). Therefore, system (1)



may be presented in general terms as a following simultaneous system of three
linear nonhomogeneous recurrences of first order [6] with constant coefficients:an = α11an−1 + α12bn−1 + α13cn−1 + α1

bn = α21an−1 + α22bn−1 + α23cn−1 + α2

cn = α31an−1 + α32bn−1 + α33cn−1 + α3.
(2)

In this system α11 + α12 + α13 = α21 + α22 + α23 = α31 + α32 + α33 and a
sequence bn is a linear combination of sequences an and cn (a0, b0, and c0 are
initial values of a, b, and c, respectively).

Our research indicates that system (2) appears in solving a problem of deriv-
ing the explicit form of graph expression complexity for various graphs of regular
structure. Some of subgraphs emerged in the result of decomposition are exactly
of the same structure as the initial one. Others are supplemented at one end by
elements which were in the middle of the split graph. The structure of these one-
sided subgraphs does not change in the middle and, hence, they are decomposed
in the same way. This gives, together with the subgraphs of the initial structure
and one-sided subgraphs, two-sided subgraphs supplemented at both ends by
the elements of the inner structure. The two-sided subgraphs are decomposed
likewise and their splitting yields new one-sided and two-sided subgraphs.

The coefficients in (2) equal the numbers of their respective subgraphs. Since
subgraphs of all types are decomposed into the same numbers of new subgraphs,
the sums of coefficients in all recurrences of (2) are equal. It is logical that a
characteristic of a graph supplemented by one set of additional elements is a
weighted average of characteristics of graphs, one of which has no additional
elements and another one has two sets. Specifically, we proved that the weights
are equal if the sizes of all revealed subgraphs are equal and the number of
subgraphs with a given kind of end adjacent to the location of the split from the
left is equal to the number of subgraphs of the same kind of end adjacent to the
location of the split from the right (see system (1)).

Therefore, solving system (2) being a rather special problem for a discrete
mathematics as a whole, is a common problem from the perspective of the algo-
rithmic theory.

It is possible to divide (2) into separate recurrences using the Hamilton-
Cayley theorem [2] and further to attempt to use general methods for linear
recurrences solving [6] (methods of characteristic equations (roots), of generating
functions, etc.). However, using the results obtained in [3], we propose a simpler
way that accommodates the restrictions imposed on the coefficients and the
unknowns of system (2) and directly gives a closed form for its solution.

3 Results

Lemma 1. If {
an = α11an−1 + α12bn−1 + α1

bn = α21an−1 + α22bn−1 + α2,

α11 + α12 = α21 + α22 and α12 ̸= −α21, α11 + α12 ̸= 1, α11 − α21 ̸= 1 then



an = (α11 + α12)
n
a0 + α12 (b0 − a0)

(α11 + α12)
n − (α11 − α21)

n

α12 + α21
+

α1
(α11 + α12)

n − 1

α11 + α12 − 1
+

α12 (α2 − α1)

α12 + α21
×(

(α11 + α12)
n − α11 − α12

α11 + α12 − 1
− (α11 − α21)

n − α11 + α21

α11 − α21 − 1

)
bn = (α11 + α12)

n
b0 + α21 (a0 − b0)

(α11 + α12)
n − (α11 − α21)

n

α12 + α21
+

α2
(α11 + α12)

n − 1

α11 + α12 − 1
+

α21 (α1 − α2)

α12 + α21
×(

(α11 + α12)
n − α11 − α12

α11 + α12 − 1
− (α11 − α21)

n − α11 + α21

α11 − α21 − 1

)
,

where a0 and b0 are initial values of a and b, respectively.

Lemma 2. Given system (2) and the following conditions:

1. α11 + α12 + α13 = α21 + α22 + α23 = α31 + α32 + α33,

2. ∃ real constants w1, w2, w1 + w2 = 1, that ∀ n, bn = w1an + w2cn,
three simultaneous recurrences (2) can be presented as the three pairs of the
following simultaneous recurrences, respectively:{

an = α
′

11an−1 + α
′

12bn−1 + α1

bn = α
′

21an−1 + α
′

22bn−1 + α2

where α
′

11 = α11 − w1

w2
α13, α

′

12 = α12 + 1
w2

α13, α
′

21 = α21 − w1

w2
α23, α

′

22 =

α22 +
1
w2

α23; {
an = α

′

11an−1 + α
′

12cn−1 + α1

cn = α
′

21an−1 + α
′

22cn−1 + α3

where α
′

11 = α11 + w1α12, α
′

12 = w2α12 + α13, α
′

21 = α31 + w1α32, α
′

22 =
w2α32 + α33; {

bn = α
′

11bn−1 + α
′

12cn−1 + α2

cn = α
′

21bn−1 + α
′

22cn−1 + α3

where α
′

11 = 1
w1

α21 + α22, α
′

12 = −w2

w1
α21 + α23, α

′

21 = 1
w1

α31 + α32, α
′

22 =
−w2

w1α31 + α33 and for all these pairs of simultaneous recurrences

α
′

11 + α
′

12 = α
′

21 + α
′

22.

The following theorem results from Lemmas 1 and 2.

Theorem 1. Given system (2) and the following conditions:

1. α11 + α12 + α13 = α21 + α22 + α23 = α31 + α32 + α33,

2. ∃ real constants w1, w2, w1 + w2 = 1, that ∀ n, bn = w1an + w2cn,



an = (C1)
n
a0 + C2

(C1)
n − (C3)

n

C4
(b0 − a0) + α1

(C1)
n − 1

C1 − 1
+

(α2 − α1)C2

C4

(
(C1)

n − C1

C1 − 1
− (C3)

n − C3

C3 − 1

)
bn = (C1)

n
b0 + C5

(C1)
n − (C3)

n

C4
(a0 − b0) + α2

(C1)
n − 1

C1 − 1
+

(α1 − α2)C5

C4

(
(C1)

n − C1

C1 − 1
− (C3)

n − C3

C3 − 1

)
cn = −w1

w2
an +

1

w2
bn ,

where C1 = α11+α12+α13 (C1 ̸= 1), C2 = α12+
1
w2

α13, C3 = α11−w1

w2
α13−α21+

w1

w2
α23 (C3 ̸= 1), C4 = α12 +

1
w2

α13 +α21 − w1

w2
α23 (C4 ̸= 0), C5 = α21 − w1

w2
α23,

and a0, b0, c0 are initial values of a, b, c, respectively.

4 Conclusions and open problems

We have proposed a method that gives a closed-form solution for a special simul-
taneous system of three linear recurrences. Sums of coefficients in the recurrences
are equal, and each recurrent variable is a linear combination of two other re-
current variables. The solution is applied to deriving explicit forms of graph
expression complexities. Specifically, using this method, we have obtained the
following formula for the number of labels in expressions of full square rhomboids
of size m (m = 2p): 89

45m
log2 6 − 20

9 mlog2 3 − 1
5 . Our intent is to determine the

class of graphs for which the complexities of their expressions go hand in hand
with these recurrences.

We are going to generalize this method to a system of an arbitrary (or, at
least, a larger) number of recurrences and, finally, to develop a method capable
to handle simultaneous recurrences with equal sums of coefficients in columns.
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