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ABSTRACT
Medical product development is becoming more and more complex
and requires highly-specialized and interdisciplinary collaborations.
Their success relies essentially on the selection of suitable partners.
However, how to find suitable partners and how to match capabili-
ties of an unknown partner with complex project requirements?
Suitability must at least be judged with respect to professional
competencies, collaboration capability and project-specific require-
ments — none of which are easily determined. So, partner selection
is mostly dominated by regional proximity or even coincidence.
This is a typical scenario for recommender systems. Therefore, we
aim at discovering the unexploited potential of collaboration part-
ners by proposing a novel recommendation approach that merges
trust with health-sensitive semantic information. This hybrid ap-
proach should help to identify collaborators matching complex
project requirements faster, better and more holistically.
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1 INTRODUCTION
Recommender systems (RecSys) in the health domain typically
address either health professionals or end users (patients). This
means that the recommended items are typically foodstuffs [5, 14],
sport activities [11], medicine or in some cases even diagnoses. The
goals are clear: for example, healthy food predominantly aims at
burning calories and sport aims at improving physical activity — the
recommendations are about behavioristic and behavioral changing
aspects [12]. Common to these types of recommendation is the
large field of potential users and their health records [19]. who
contribute sufficient data and thus the knowledge of the RecSys.

However, in another health-related field of application, this is
not feasible: recommending collaboration partners in medi-
cal technology. Here, the amount of active users is limited to
researchers, clinicians and enterprises. Apart from that, the objec-
tives are substantially more unclear but also complex due to their
multidimensionality and they need to be selected with regard to
a project goal and project team (e.g., from physicians, natural and
computer scientists to engineers having different professional and
social capabilities, research habits and objectives).

The decisive advantage is that medicine has a semantically struc-
tured terminology (e.g., ICD-10, UMLS). This enables the classifi-
cation of documents (e.g., scientific publications) with supervised
learning to extract well-defined feature vectors on which RecSys
may be based. Therefore, we could perform recommendations with
respect to the technological, product-related and clinical suitabil-
ity of partners. However, it is not sufficient to only rely on this
in order to find an appropriate partner — the collaboration capa-
bilities as a subset of social competences and homophily are of
importance, too [13]. These can be derived as collaboration trust
from the bibliometric meta data: Who worked with whom on which
topic [3]?

Therefore, we propose a hybrid recommender approach that
ties both aspects together: trust-based recommendation [9] based
on collaboration data and semantically structured feature vectors
based on scientific corpora. This should enable the identification
of project-specific, suitable collaboration partners and to recom-
mend them even with fuzzy project goals as support for science
management.
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A blood-free scalpel. Medical technology is on the one hand
highly complex and diverse, on the other hand it is characterized by
the need for innovation-driven and fast development [17]. The tar-
get group interested in finding project-suitable partners is widely
spread: clinic, research, economy. The knowledge transfer is re-
quired but the identification of suitable partners can be difficult —
even within the same university. Imagine the following scenario:
A surgeon contacts the medical technology department with a re-
quest: “During operations too much blood obstructs my view. Can
you come up with a scalpel that cuts without bleeding?”1 The med-
ical demand is clear, but the physician does not have insights into
the technological challenges and product development. Medical
technology faces the difficulty to find partners from opaque require-
ments: It is not clear what the best approach is and who is able to
implement it. It remains challenging to match project objectives
with potential collaboration partners.

2 CAPABILITY MATCHING
One major requirement to meet project goals are collaboration
partners with specific professional competences. For this, scien-
tific publications, patents and project descriptions are knowledge
bases that are directly related to the authors’ in-domain activity
and proficiency [16]. Due to the interdisciplinary characteristics
of medical technology, the different kinds of researchers leave se-
mantic tracks from basic research to the application of innovative
products. The goal is not only to follow these tracks, but also to
process the information and aggregate it to representative feature
vectors for professional competence recommendation.

The systematized domain language also used in scientific cor-
pora facilitates semantic text mining: e.g., with the well-established
Support Vector Machine. The basis for a clear classification and
comparable representation of professional competences is a domain
model (see Fig. 1).
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Figure 1: The three-dimensional domain model has 20
technological, product-related and clinical fields classifying
medical technology innovations.

We trained a generalizing text mining system that classifies
documents into this domain model with high accuracy (>80%). This
information needs to be aggregated to a profile-centric feature
vector for professional competence as part of the RecSys.

1Such a scalpel exists: A laser-scalpel.

2.1 Hybrid, Trust-based Group-Recommender
After integrating professional competencies, another important
factor must be included. Researchers have a highly unique way of
collaborating. Not everyone would/could/should collaborate with
each other. We have successfully used bibliometric-based recom-
mendations to identify collaborators in a research cluster, in which
we used graph mining on the co-authorship graph [15] to deter-
mine interdisciplinary experience (see Fig. 2). Combining such
approaches with content-based recommendations [18] should yield
researchers with topic, method and skill that are complementary
in cross-domain groups [13].

Social recommendations have been shown to provide higher
accuracy than mere tag-based approaches [6] and outperform pure
content-based approaches as they provide additional context to the
recommendation algorithm. Social network approaches for collabo-
ration suggestions have already been successfully tested in social
networks for scientists [1] and also in co-authorship networks [8].

Still, one further problem remains. Identifying individuals that
could collaborate is simpler than suggesting collaborators for a
whole group of researchers. However, the field of group recom-
mendation provides algorithms [4] that consider the trade-off
between individual and group preferences and can be applied here.
Typical applications are, for example, group recipe recommenda-
tions [6]. A tensor-based approach seems fruitful in order to com-
bine these approaches.

2.2 Evaluation
Although finding good recommendations is difficult already, con-
firming these recommendations is even more difficult. Researchers
have very little time to evaluate such systems. Besides other in-
formation retrieval methods of evaluation, we are planning to use
intelligible visual representations [10] of our feature vectors. This
approach should simplify evaluation in such complex scenarios [7].

The overall aim of this project is to find suitable collaborators
that contribute complementary skill-sets for a diverse set of require-
ments based on collaboration requests including textual descrip-
tions and further context-dependent features. Such a system could
increase the speed of medical technology development and lastly
benefit research, patients and society as a whole.
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