
Koral: A Glass Box Profiling System for Individual
Components of Distributed RDF Stores

Daniel Janke1, Steffen Staab1,2, and Matthias Thimm1

1 Institute for Web Science and Technologies
Universität Koblenz-Landau, Germany

{danijank,staab,thimm}@uni-koblenz.de
2 Web and Internet Science Group

University of Southampton, UK
s.r.staab@soton.ac.uk

Abstract. In the last years, scalable RDF stores in the cloud have been developed
increasing the complexity of RDF stores running on a single computer. In order to
gain a deeper understanding how, e.g., the data placement or the distributed query
execution strategies affect the performance, we have developed the modular glass
box profiling system Koral. With its help, it is possible to test the behaviour of
already existing or newly created strategies tackling the challenges caused by the
distribution in a realistic distributed RDF store. Thereby, the design goal of Koral
is that only the evaluated component needs to be exchanged and the adaptation
of other components is aimed to be minimal. The wide variety of measurements
allow for an in-depth investigation of the performance.

1 Introduction
In the last years, several scalable RDF stores in the cloud were developed, in which
graph data is distributed over compute and storage nodes for scaling efforts of query
processing and memory needs. This distribution over several compute and storage nodes
introduces a higher degree of complexity. In contrast to centralized RDF stores, dis-
tributed RDF stores need strategies for data placement over compute and storage nodes,
for distributed query processing and for handling failures of compute or storage nodes.

In order to improve the current state-of-the-art, the strength and weaknesses of the
already existing techniques as well as their impacts on the individual components of a
distributed RDF store need to be identified. Therefore, glass box profiling systems are
required that (i) profile the performance of a component in a distributed RDF store, (ii)
allow for a fair comparison of alternative implementations of a single component and
(iii) provide measurements for in-depth performance analyses. Especially, the second
ability is important since comparing performances of alternative implementations helps
to identify weaknesses and thus, indicate directions for future improvements.

Our contribution is the open source glass box profiling system Koral [1]. It is a
distributed RDF store that is such modularized that the inter-dependencies between
its components are reduced to an extent that each component can be exchanged with
alternative implementations. This allows for comparing the performance of alternative
implementations of the same component. Together with the wide variety of provided
metrics, Koral allows for in-depth performance analyses of approaches tackling the
challenges of distributed RDF stores. A detailed and extensive evaluation of different
graph cover strategies with the help of Koral can be found in [4].



2 Glass Box Profiling System Koral
Koral consists of one master node and several slaves as shown in Fig. 1. The network
managers maintain peer-to-peer network connections and manage the communication.
At loading, the huge size of the input graph needs to be reduced as early as possible.
Therefore, the contained textual resources are replaced by numerical ids. The creation
of the ids as well as storing the mapping between the textual and the numerical rep-
resentation is done by the dictionary encoder. Since some graph cover strategies (i.e.
strategies to assign triples to compute nodes) might require, e.g. subjects, as plain text,
the dictionary encoder encodes only those parts of the triples that are not required in
their textual representation (see Sec. 2.1). The encoded graph is then used by the graph
cover creator to create the requested graph chunks (i.e. the sets of all triples assigned
to the individual compute nodes). If unencoded triple elements exist, they are encoded
after the graph cover creation in order to reduce the size of the graph chunks. In order
to perform, e.g. cost estimations required for query optimization, statistical information
about the content of each graph chunk is collected and stored in a statistics database.
Some distributed query execution strategies might require some preprocessing steps of
the input data like appending additional information to the encoded resource ids. There-
fore, the master iterates all graph chunks a last time before they are sent to the slaves.
The slaves create local index structures (SPO, OSP, and POS indices as described in
[7]). While the multi-pass strategy has the disadvantage that it iterates the data files sev-
eral times, it has the advantage that it prevents to run out of memory and is thus highly
scalable for very large files.
At run-time, a query execution coordinator is instantiated for each received query. Af-
ter the initial parsing step including the encoding of constants, the query execution trees
for the slaves are created and sent to the corresponding slave. Each slave executes the
query execution tree assigned to him. The match operations use the local triple indices
to find matches for the corresponding triple pattern. The resulting variable bindings are
transferred to the succeeding operation on the same or any other slave. In order to make
better use of the network bandwidth, several intermediate results are bundled together
and sent to the receiving slave within one package. The final query results are sent to
the query coordinator. The coordinator decodes the ids using the dictionary and sends
the decoded variable bindings to the sender of the query.

Master

Dictionary

Slave1

Encoder
Graph Cover

Creator
Query Execution

Coordinator
Network
Manager

Dictionary Statistics

Query
Executor

Network
Manager

Local Triple Indices

Query
Executor

Network
Manager

Local Triple Indices

Slaven

Fig. 1. Architecture of Koral.



2.1 Exchangeability of Graph Cover Strategies

To allow for testing new graph cover strategies, all methods used by Koral are declared
in the interface of the graph cover creator component. First of all, each graph cover
strategy can define, which elements of a triple can be encoded during the initial dictio-
nary encoding phase and which ones are required in their textual representation. The
main functionality of each graph cover strategy is the creation of the graph cover out of
this initially encoded input RDF graph. The created graph chunks are used during the
succeeding loading steps.

In order to avoid restrictions on the graph cover strategies that can be used in Koral,
a distributed query execution strategy is required that works with arbitrary graph covers.
This graph cover-independent query execution strategy is the default implementation in
Koral (see Sec. 2.2).
The existing implementations of Koral comprises three graph cover strategies:

1. The hash cover [3] assigns triples to chunks according to the hash value computed
on their subjects.

2. The hierarchical hash cover [6] creates a hash cover only on common IRI prefixes.
3. The minimal edge-cut cover [5] aims at minimizing the number of edges between

vertices of different partitions under the condition that each partition contains ap-
proximately the same number of vertices.

2.2 Exchangeability of Distributed Query Execution Strategies

Distributed query execution strategies may vary in (i) additional information added to
the graph chunks, (ii) the way query execution trees are created for the individual slaves,
and (iii) the actual implementation of the query operations executed on the slaves. In
order to encode additional information into the graph chunks the loading procedure of
the graph includes a step for final adjustments of the created graph chunks. For a newly
received query, the query execution coordinator parses the query and creates the query
execution trees that are sent to the slaves. These trees can be adjusted for each individual
slave based on the query execution strategy.

Each slave has a query executor component that runs for each available CPU core
one worker thread. The query executor registers query operations at the worker threads
based on their current workload. After the registration the query operations are initial-
ized. Thereby, the operations get access to the network manager, to send messages to
other operations, and to the local triple indices. After initialization, the worker thread
circularly executes all query operations assigned to him. During the execution of a query
operation it receives messages from child operations and send messages to its parent op-
eration. When an operation is finished, the worker thread unregisters it and instructs the
query operation to shut down.
The existing implementation of Koral realises an extension of the state-of-the-art
asynchronous execution mechanism realised in TriAD [2]. This extension makes it in-
dependent of the used graph cover strategy. When the master receives a query, the query
execution coordinator parses is and creates the query execution tree. The complete tree
is submitted to all slaves and thereafter executed. To avoid (some) duplicate joins and
corresponding data transfer, each join is uniquely assigned to the slave responsible for
the join of the resource. The responsibility was determined during the graph loading.



3 Evaluation Measures
Loading Time. Koral measures the overall load time, but also the run times of the
individual loading steps are of interest. For instance, the graph cover computation time
can be used to compare different graph cover strategies.
Storage imbalance. Scaling the cloud for handling growing memory needs may be
jeopardized by graph cover strategies reducing data transfer. They might generate a
skewed distribution delegating expensive tasks on few compute nodes. Therefore, Koral
counts the number of triples stored in each graph chunk.
Querying Time. For the overall query performance, Koral measures the time until the
complete result is delivered. This measurement is crucial, e.g., for statistical reports.
In a fact-finding mission the fast return of a few top-k results may be more important.
Hence, Koral provides the time interval between issuing a query and the times when the
individual results are returned. To support performance comparisons of different query
operator variants, Koral measures the idling and working time of each query operation.
Network Usage. Time-based measurements depend on the exact configuration of the
system such as network bandwidth and latency. In order to measure the volume of
transferred data, we measure the number of transferred variable bindings as well as the
number of bound variables. Beside the volume Koral also measures the number of sent
packages, since in a high-latency network it might have a strong effect on the run time.
Query Workload. An interesting question to answer would be, how many join compar-
isons might be executed by different compute nodes in parallel. To answer this question
Koral measures the number of comparisons performed by each join operation on each
slave. With these measures it can be identified how balanced the join comparisons are
distributed over all compute nodes and how large the total computational effort is.

4 Conclusion
We have presented our versatile open source glass box profiling system Koral. It is a
modularized distributed RDF store in which the inter-dependencies between its compo-
nents are reduced to an extent so that each component can be exchanged with alternative
implementations. Thus, it allows for profiling novel approaches tackling the challenges
introduced by the distribution and compare them with existing approaches.

References
1. Koral. https://github.com/Institute-Web-Science-and-Technologies/

koral, accessed: 2017-07-12
2. Gurajada, S., Seufert, S., Miliaraki, I., Theobald, M.: TriAD: A Distributed Shared-nothing

RDF Engine Based on Asynchronous Message Passing. In: SIGMOD. pp. 289–300 (2014)
3. Harth, A., Decker, S.: Optimized Index Structures for Querying RDF from the Web. In: Proc.

of LA-WEB ’05. pp. 71—-. IEEE (2005)
4. Janke, D., Staab, S., Thimm, M.: Impact analysis of data placement strategies

on query efforts in distributed rdf stores. Tech. rep., Institute for WeST (2016),
http://west.uni-koblenz.de/sites/default/files/research/
publications/janke2016iao_technicalreport.pdf

5. Karypis, G., Kumar, V.: A Fast and High Quality Multilevel Scheme for Partitioning Irregular
Graphs. SIAM J. Sci. Comput. 20(1), 359–392 (1998)

6. Lee, K., Liu, L.: Scaling Queries over Big RDF Graphs with Semantic Hash Partitioning.
PVLDB 6(14), 1894–1905 (Sep 2013)

7. Wood, D., Gearon, P., Adams, T.: Kowari: A platform for semantic web storage and analysis.
In: In XTech 2005 Conference. pp. 05–0402 (2005)


