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ABSTRACT
While swarms that execute decisions are well known in the
swarm community, swarms that exhibit this capability a pri-
ori have never before been achieved. We demonstrate a
methodology, based on the Hamiltonian method of swarm
design, that enables the design and implementation of swarms
that exhibit decision-making capability. We develop the the-
oretical structure of the method and apply it to the develop-
ment of an ant algorithm and a swarm capable of deciding
whether its density exceeds a specific predetermined value.
The swarm designs are validated in simulation.
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1. INTRODUCTION
One of the most astounding properties of swarms is their

ability to make decisions globally despite having only lo-
cal knowledge, limited computational ability, and sometimes
only reactionary behavior. Ant swarms have the seemingly
innate ability to decide to reroute resources committed to
collecting food from one source to another source in response
to the second source being closer than the first [Dorigo et
al., 1996, Schoonderwoerd et al., 1996]. Bee swarms have
the ability to decide to settle in a specific location, even es-
chewing known locations in favor of secondary locations.
Despite being able to create artificial analogs and being

the subject of ongoing work [Valentini et al., 2016] there
are not yet any robust general engineering methodologies in
place that may be used to engineer decision making swarms.
As a result, engineering swarms that accomplish decision
tasks a priori when no direct analog exists between the de-
sired task and a known natural analog is still an area of active
investigation. The goal of swarm engineering is to develop
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such a methodology, usable over a wide range of potential
swarms.

In this paper, we address the development of a method of
generating swarms with decision-making capabilities. The
method is based on the Hamiltonian method of swarm de-
sign [Kazadi and Lee, 2007, Kazadi, 2009, Kazadi et al.,
2015]. In this method, global properties are constructed that
correspond to desired system outcomes. These properties
can be used to generate goals and these goals can be used
to generate agent-level behavior. The agent-level behavior
is robust in the sense that if it satisfies the design require-
ments, the swarm will have the desired global properties. We
will examine how to use this method to derive swarm-based
decision making.

The remainder of the paper is laid out as follows. Section
two describes the theoretical issues needed to address the
design questions. Section three applies these properties to
two di↵erent decision making swarms. Section four presents
validating simulation results. Section five discusses these
results and concludes.

2. LOCAL PROPERTIES, GLOBAL PROP-
ERTIES, AND STATE

In the Hamiltonian method, we initially take stock of lo-
cal measurables. These are quantities that can be measured
or modified (or both) by the agents themselves. They are
limited by the sensory and actuation capability of the agent.
We denote these by {s

i

}Ns
i=1. Each of the s

i

is limited and
comes from a set S

i

of all possible values for s
i

. Clearly, the
system can be described by the vector �!

s = (s1, . . . , sNs)
and rules for how �!

s is currently changing. The di�culty of
using such a high-dimensional representation is that it very
quickly becomes intractable.

Using the local measurables, we can develop global vari-
ables which are functions of local variables. I.e.,

P = f (�!s ) . (1)

Key among the properties of these functions are that they
be real-valued and well-defined. Assuming that they are
continuous and di↵erentiable, we may write

dP

dt

=
�!
rf · d

�!
s

dt

. (2)

The discrete version of this equation is

�P =
�!
rf ·��!

s . (3)
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This indicates that the change in the global measurable de-
pends on the nature of the function f and the changes in
the local measurables, which are themselves controlled by
the agents of the swarm. Therefore, we must understand
the nature of f in order to determine what the appropriate
behavior must be and then choose the right behaviors for the
swarm members. Together, determining the right behavior,
the value of P can be moved from one value to another.

3. STATE TRANSITIONS AND DECISION-
MAKING

Suppose we have a system with a global variable P or

even a set of global variables
�!
P . We define the state space

as the set of all possible values for
�!
P . Let us suppose there

exists a point
�!
P0 in the set of all possible values for P in

which |P0 � P (t)| < ✏ for all time t once the system has
come to a state in which it is in the same ✏-ball, as long

as no change to the systems occurs. Then we say that
�!
P0

is an attractor of the system. The set of all points which,
when the system enters, result in moving the system toward
the attractor in phase space, is called the basin of attraction.
We can define the state of a system as the attractor around
which the system orbits in state space.
Let us suppose that a system is in orbit of an attractor

in its phase space. The system is in a state defined by this
attractor. Going forward in time, two options are possible:
the system may remain in orbit of the attractor or it may
leave the basin of attraction of the attractor. If the system
remains out of any other basin of attraction, it is said to be
in a wandering state. If it settles around another attractor,
it is said to have made a state change. We are interested
in engineering systems that make specific and well-defined
state changes in response to changes in the system. While a
clear anthropomorphism, we say that, when a system makes
a reversible state change in response to an external situation
, the system has made a decision. The hallmark of the deci-
sion is that some measurable global aspect of the swarm has
changed in a predictable way in response to some change in
the system.

3.1 Designing ant swarms
One of the first examples of swarms to be intensely studied

were swarms of ants. One of the interesting facts about ants
is the fact that they have the ability to reroute resources
from one collection task to another collection task when the
latter task involves a piece of food that is closer to the ant
hill than the former task.

(A) (B)

Figure 1.1: These figures illustrate the ways in which an

ant swarm exploits two food sources at di↵erent distances

when the closer food source is found first (A) and when

it is found second (B).

It is interesting to ask how this is accomplished. We would
like to determine the behavioral requirements of the system
without resorting to behavioral studies of real ants.

Our methodology utilizes a global measurable for the sys-
tem. First, let us position of the ant hill as the origin of
the two-dimensional map making up the system’s universe.

Let � = {�!x
i

}Nf (t)
i=1 be the set of positions of all food items

placed in the system. We define trails as the paths between
the pieces of food and the ant hill. The agents then move
in one of three di↵erent states: at the ant hill, on a trail, or
freely moving o↵ any trail. Let us suppose that we have a
set of agents {a

j

}Na
j=1 where N

a

is the number of agents. For
any trail ⌧ , we define d

⌧

as the length of the trail. Then we
define

d (a
j

) =

(
d

⌧

0

if a
j

is on the trail ⌧

otherwise
. (4)

and N

ap as the number of agents actually on a path. We
further define

P1 =
1

N

ap

NaX

i=1

d (a
i

) =
1

N

ap

Nf (t)X

i=1

N

⌧i (t) d⌧i . (5)

where N

⌧i (t) is the number of agents on trails i at time t

and d

⌧i is the length of the trail ⌧
i

. P1 is the average path
length of the paths which ants are traversing. This property
has varies as

dP1

dt

=
1

N

ap

Nf (t)X

i=1

dN

⌧i (t)

dt

d

⌧i . (6)

Let
��!
dN

⌧

=

✓
dN⌧1 (t)

dt

, . . . ,

dN⌧Nap
(t)

dt

◆
and

�!
d

⌧

=
⇣
d

⌧1 , . . . , d⌧Nap

⌘
.

We can also define P2 as the rate at which food is acquired
from the food source. We can write this as

P2 =

Nf (t)X

i=1

N

⌧i (t) 2d⌧ia

v

(7)

where a is the quantity of food that is captured by each agent
during each run and v is the speed of the agent. Interestingly,
2a
v

P 1 = P2.
Suppose that the system consists of one path. Then, irre-

spective of the number of agents on the path, the value of
P1 is the same. Suppose now a new, shorter path becomes
available. In order for the swarm to make the “right” deci-
sion, the ant system must transfer to the shorter path. It is
not hard to see that

dP1

dt

< 0,
dP2

dt

< 0. (8)

In order for this to happen, we must have
�!
d

⌧

·
��!
dN

⌧

< 0.
One limitation of this condition is that we can satisfy the

condition by making every element of
��!
dN

⌧

negative. This is
consistent with the agents coming o↵ the trails. What we’d
prefer is to have the agents generally stay on the trails. We
can require this by stating that

P3 ⌘
D���
��!
dN

⌧

���
E
� 0. (9)

Together, equations (8) and (9) determine our swarm con-

dition. As the vector of distances is all positive,
��!
dN

⌧

must
have negative components. Moreover, the product of the
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negative components and the associated distances must ex-
ceed the product of the positive components and their asso-
ciated distances. If the number of free agents is relatively
unchanged, this means that the negative changes must be
associated with longer distances than the positive changes.
With exactly two paths, the condition becomes

d

⌧1�N

⌧1 < �d

⌧2�N

⌧2 . (10)

In any swarm in which the number of active agents is con-
served so that �N

⌧1 = ��N

⌧2 , this condition is satisfied
whenever distance d

⌧1 < d

⌧2 . Since this is exactly the condi-
tion generally found in an ant colony, we see that the colony
is able to achieve this “choice”. Therefore, we can guarantee
the system’s choice with a behavior in which the number
of agents is conserved, and the product is negative. Alter-
nately, we can generate the opposite “choice” if we require
the product to be positive.

3.2 Locust swarms
Locusts are a completely di↵erent kind of swarm, though

their behaviors are no less astounding. Unlike ants, locusts
maintain an internal state that only individual agents can
experience. Experiments with locusts have demonstrated
that the transition from grasshopper to locust is caused by
serotonin levels which are triggered by excessive leg con-
tact with objects. The serotonin builds up until it reaches
a point that it initiates irreversible morphological changes
to the grasshopper. The more aggressive locusts then in-
teract with other grasshoppers, hastening their transition to
locusts.
The entire transition can be viewed as a decision at the

swarm level. The swarm is responding to the concentra-
tion of grasshoppers in a small space. When the number of
grasshoppers in the space becomes small enough, the swarm
initiates a change in overall behavior and moves the agents
from that space. Since the swarm is undergoing a tran-
sition in which the agents undergo an irreversible change,
the swarm itself is not capable of reacting to changes in the
new space that agents find themselves. Therefore, when the
swarm is not crowded any more, there is no change in behav-
ior. However, this kind of swarm-based decision-making can
be applied to a set of agents with reversible state changes.1

We begin examining the way in which locust swarms make
this decision by modeling the internal state s of the locust
as having a numerical value and an update rule

ds

dt

= �k1s+R (e
s

) (11)

where k1 is some decay rate and R (e
s

) is the reaction to an
external state e

s

. We can define a global variable P as

P =
NaX

i=1

s

i

. (12)

The swarm is considered to have made a decision to move
to a new state if P changes from one attractor to a second.
Therefore, the behavior of the swarm must be such that it

1This kind of decision making can be applied to bee hives
making decisions about what food sources to exploit, the
growth of ideas in a swarm of individuals, the collective de-
cision to go to war, etc.

maintains an orbit around one attractor. Clearly,

dP

dt

=
NaX

i=1

{�k1si +R (e
si)} = �k1P +

NaX

i=1

R (e
si) . (13)

Therefore, if the magnitude of the sum of the agent reactions
is low, this has an attractor at P = 0. In order to create
a situation where a second attractor exists, we must have a
case where a positive feedback occurs under the right condi-
tions, overwhelming the decay. Note that actual locusts with
irreversible changes have a mechanism which eliminates the
decay mode, thereby enhancing the e↵ect of the trigger on a
single agent.

In order for the system to move rapidly to its new equi-
librium state, we must have

dP

dt

> 0

for longer than a spurious change. In such a case, this would
require that

P <

1
k1

NaX

i=1

R (e
si) . (14)

If R is bounded, this would require that at least N

trigger

agents are state 1. This means that

k1P

R

max

< N

trigger

. (15)

Therefore, such a system would be triggered when the num-
ber of agents exceeds that trigger amount.

In order for this swarm to make the decision we’re inter-
ested in, the minimal requirement is the condition given in
(15). This is our swarm condition. Interestingly, if the exter-
nal state being measured is the proximity of other agents or
local density of agents, the swarm is, in totality, measuring
deciding whether the space it inhabits is above a threshold
size.

4. PERFORMANCE OF SIMULATED SWARMS
In this section, we present performance of simulated swarms.

These swarms are designed according to the swarm require-
ments developed in Section 3. We then evaluate their per-
formance on their ability to correctly execute the desired
decisions according to their design.

4.1 Shortest Distance to Food
We are interested in testing the theory described in Section

3.1 using an embodied ant swarm simulation. The simulation
is depicted in Figure 4.1 and contains a home, food sources,
and agents passing between them.
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Figure 4.1: The simulated ant swarm. The gray circles

are agents that are searching for food. Green circles are

agents that are following a pheromone trail. Red circles

are agents moving back toward home. The black circle is

the home, the dark blue circle is an inactive food source

(invisible to the agents), and the pink circle is an active

(visible to the agents) food source.

Our simulation comprises a set of autonomous agents that
move in a discrete 2-dimensional grid. The grid contains the
ant home as well as two food locations. Each grid element
is defined in part by a non-negative quantity of pheromone.
Each iteration, agents may add to the pheromone at a given
location. After each set of updates by the agents, the amount
of pheromone on each location is updated. The pheromone
evaporates according to an update rule

⇢ (t+ 1) = ✏⇢ (t) (16)

where ✏ is a pre-determined evaporation rate.
The agents are defined by their position, direction of mo-

tion, active state, and their sensory state. The agents’ active
state is one of three possible states:

• random wandering in which they move forward in one
direction and then randomly change their direction of
travel,

• food tracking during which they move directly outward
from their home, depositing pheromone as they move,
and

• homebound state during which they move directly to-
ward their home after picking up food.

The internal state defines the behavior of the agent. Agents
begin in the random wandering state. Once they find a
food source, they acquire a food item and transition to the
homebound state. While in the homebound state, agents
drop pheromone on the ground. The rate that pheromone
is dropped is initially set to some maximum rate. As they
move toward home, however, the rate falls o↵ as the inverse
of the distance traveled toward home.
If the agent is in the wandering state and it encounters a

detectable pheromone trail they transition to the food track-
ing state and move directly away from their home.
When an agent makes it back to home, it deposits the

food item and then decides which of possibly many paths it
will follow. This entails measuring pheromones of all paths
reaching home. A uniformly generated random number is
used to decide which of the trails to take, with the proba-
bility of taking any specific trail linearly dependent on the

ratio of the pheromone at the end of the trail and the to-
tal amount of pheromone detectable at the home. It can be
shown that this methodology satisfies the swarm condition
given in equations (8) and (9).

Figure 4.2 illustrates the performance of the simulation
over a run in which the swarm shifts from an initially longer
path to a shorter path. Initially, an active food item (dark
blue) and an inactive food item (light blue) are in the system.
Only the active food can be detected by the agents, and
a path forms between the food and the home. After the
inactive food item becomes active, the swarm generates a
path to it as well. Eventually, the swarm shifts its resources
from the longer path to the shorter.

Figure 4.2 The simulation proceeds with an initial path

which then develops into a shorter path when the second

food item becomes active.

While the simulation proceeds, the value of P1 changes. Ini-
tially it settles at a high value, but eventually it transitions
to a lower value, as desired. The data can be seen in Figure
4.3 below.
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Figure 4.3: The evolution of the value of P1over the

lifetime of the simulation.

4.2 Density determination
We now describe our second, quite di↵erent embodied sim-

ulation. Agents are represented by circles and move around
in a two dimensional bounded space. The agents have a size
and cannot overlap one another. The simulation is illus-
trated in Figure 4.4.
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Figure 4.4: The simulated locust swarm, which can

measure the size of the space.

The agents are characterized by a direction of motion, and
internal state which is represented by a positive real number,
and a position. The state is initialized at a value of zero. At
each iteration, the state is updated according to

s (t+ 1) = ✏s (t) (17)

where the ✏ is the decay rate of the state. When moving
around, if they agents come into contact with a boundary,
they change direction and begin moving in another direc-
tion. If the agents come into contact with another agent,
they change direction but also increase the state by adding
a quantity to it. If the state of the agent exceeds a given
value, its color changes from white to red; dropping below
the same value returns it to white. At this point the agent
is said to be in the excited state.
A transition of the swarm state is considered to have hap-

pened if more than 90% of the swarm is in the excited state.
Such a transition is illustrated in Figure 4.5. Figure 4.6 il-
lustrates the change in the property given in (12). As can
be seen, the property changes from one in which the state
is completely o↵ to one in which it is completely on as a
distributed response to the global size of the swarm.

Figure 4.5: This set of screenshots illustrates the state

transition of the swarm during a decision event.

Figure 4.6: We provide the evolution of the property

given in (12) as the swarm decides on the size of the

space. This is the phase transition that is a hallmark of

the decision.

We are interested in how well this swarm can discern the
size of an area. Figure 4.7 provides the performance of the
swarm in discerning the size of the area in which it is located.
As can be seen, the swarm not only reliably determines the
size of the space, but does so by reacting to the density of
the swarm in the space. This approach to determining a
space’s size might be useful in a variety of situations when
rapid measurements of irregular spaces are required.

Figure 4.7: The performance of the swarm on the space

size/density decision. The swarm not only reliably tran-

sitions state at and beyond a specific size, it also triggers

when the swarm is beyond a specific density in spaces of

di↵erent sizes.

5. DISCUSSION AND CONCLUDING REMARKS
In this study we’ve examined the design and implementa-

tion of swarms designed to carry out specific decisions. This
extremely interesting area of swarm research represents one
of the defining aspects of swarms that originally brought
people to the field. How can it be that a group of simple
agents can elicit complex behavior, generating group actions
that are, to the untrained eye, complex and sometimes in-
telligent?

Our basic assertion is that the behaviors are basically the
dynamics of the system, and it is that dynamics that we’re
after. In the case of swarms generating behaviors that mimic
the kinds of decisions that intelligent beings might make,
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the question becomes how can the behaviors be generated?
That is, rather than trying to understand the behavior as
a model of intelligence, we are trying to develop a behavior
that generates the “intelligent” behavior. In so doing, we
are seeking to develop a tool that enables the subsequent
generation of a variety of adaptive behaviors that can be
implemented at the swarm level.
We have demonstrated that, using the Hamiltonian Method

of Swarm Design, we are able to create, from basic principles,
the very kinds of swarm systems that exhibit “intelligent”
behavior. The swarms dynamically respond to the environ-
ment in ways that would seem to, if they were living systems,
enhance their ability to survive. We have demonstrated that
using one- and two-dimensional systems (number of defining
global properties), we are able to create swarm requirements
that lead to the development of swarms of the desired goals.
We have demonstrated this with the archetypal decision-

making swarm modeled after biological ants. However, un-
like other studies, we have motivated the design require-
ments by using a mathematical analysis rooted in the agents’
measurables and the global properties. We demonstrated
that this is a two-dimensional swarm, as it is defined by two
global properties. We found that, once the agents’ defining
behavioral conditions were satisfied, the swarm behaved as it
should. This right-out-of-the-box design is significant, short
circuiting typical parameter setting which could take quite
a bit of e↵ort.
We have further used a swarm based on locusts, with en-

tirely internal state. This swarm consists of circular agents
moving in a bounded space and colliding with one another
as they move around. Excessively packed in agents generate
a transition from an internal unexcited state to a second,
excited state. A positive feedback in the interactions drives,
under the right conditions, a reliable transition of the whole
swarm.
The key to the adaptive capability of the swarm seems to

be the maintenance of the state of the system and the mea-
surable transition in the system’s dynamics. The ant swarm
maintains its state in the external state of the pheromones
in the system. The locust-inspired swarm maintains state
internally in each of the agents. In both cases, the state
invokes behavioral changes in the agents and a positive feed-
back in the system. Both state changes can be tracked by
monitoring the global properties that are used to define the
system.
Future work will examine the role of state in generating

distributed decision or adaptation. We will also examine
additional swarms that are capable of making decisions be-
tween several potential outcomes.
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