
Learning Others’ Intentional Models in Multi-Agent Settings Using Interactive
POMDPs

Yanlin Han Piotr Gmytrasiewicz
Department of Computer Science
University of Illinois at Chicago

Chicago, IL 60607

Abstract
Interactive partially observable Markov decision processes
(I-POMDPs) provide a principled framework for planning
and acting in a partially observable, stochastic and multi-
agent environment, extending POMDPs to multi-agent set-
tings by including models of other agents in the state space
and forming a hierarchical belief structure. In order to pre-
dict other agents’ actions using I-POMDP, we propose an ap-
proach that effectively uses Bayesian inference and sequen-
tial Monte Carlo (SMC) sampling to learn others’ intentional
models which ascribe them beliefs, preferences and rational-
ity in action selection. For problems of various complexities,
empirical results show that our algorithm accurately learns
models of other agents and has superior performance in com-
parison with other methods. Our approach serves as a gener-
alized reinforcement learning algorithm that learns over other
agents’ transition, observation and reward functions. It also
effectively mitigates the belief space complexity due to the
nested belief hierarchy.

Introduction
Partially observable Markov decision processes (POMDPs)
(Kaelbling, Littman, and Cassandra 1998) provide a princi-
pled, decision-theoretic framework for planning under un-
certainty in a partially observable, stochastic environment.
An autonomous agent operates rationally in such settings
by maintaining a belief of the physical state at any given
time, in doing so it sequentially chooses the optimal ac-
tions that maximize the future rewards. Therefore, solutions
of POMDPs are mappings from an agent’s beliefs to ac-
tions. Although POMDPs can be used in multi-agent set-
tings, it is doing so under strong assumptions that the effects
of other agents’ actions are implicitly treated as noise and
folded in the state transitions, such as recent Bayes-adaptive
POMDPs (Ross, Draa, and Pineau 2007), infinite general-
ized policy representation (Liu, Liao, and Carin 2011), in-
finite POMDPs (Doshi-Velez et al. 2013). Therefore, an
agent’s beliefs about other agents are not in the solutions
of POMDPs.

Interactive POMDP (I-POMDP) (Gmytrasiewicz and
Doshi 2005) are a generalization of POMDP to multi-agent
settings by replacing POMDP belief spaces with interac-
tive hierarchical belief systems. Specifically, it augments the
plain beliefs about the physical states in POMDP by includ-
ing models of other agents, which forms a hierarchical belief

structure that represents an agent’s belief about the physical
state, belief about the other agents and their beliefs about
others’ beliefs. The models of other agents included in the
new augmented state space consist of two types: the inten-
tional models and subintentional models. The sophisticated
intentional model ascribes beliefs, preferences, and rational-
ity to other agents (Gmytrasiewicz and Doshi 2005), while
the simpler subintentional model, such as finite state con-
trollers (Panella and Gmytrasiewicz 2016), does not. So-
lutions of I-POMDPs map an agent’s belief about the en-
vironment and other agents’ models to actions. Therefore,
it is applicable to all important agent, human, and mixed
agent-human applications. It has been clearly shown (Gmy-
trasiewicz and Doshi 2005) that the added sophistication
for modeling others as rational agents results in a higher
value function which dominates the one obtained from sim-
ply treating others as noise, which implies the modeling su-
periority of I-POMDPs for multi-agent systems over other
approaches.

However, the interactive belief modification for I-
POMDPs results in a drastic increase of the belief space
complexity, adding to the curse of dimensionality: the com-
plexity of the belief representation is proportional to be-
lief dimensions due to exponential growth of agent mod-
els with increase of nesting level. Since exact solutions
to POMDPs are proven to be PSPACE-complete for fi-
nite horizon and undecidable for infinite time horizon (Pa-
padimitriou and Tsitsiklis 1987), the time complexity of the
more generalized I-POMDPs, which may contain multiple
POMDPs and I-POMDPs of other agents, is greater than
or equal to PSPACE-complete for finite horizon and unde-
cidable for infinite time horizon. Due to this severe space
complexity, currently no complete belief update has been ac-
complished using the sophisticated intentional models over
entire interactive belief space. There are only partial up-
dates on other agents’ sole beliefs about the physical states
(Doshi and Gmytrasiewicz 2009) and indirect approach such
as subintentional finite state controllers (Panella and Gmy-
trasiewicz 2016). Therefore, in order to unleash the full
modeling power of intentional models and apply I-POMDPs
to more realistic settings, a good approximation algorithm
for computing the nested interactive belief and predicting
other agents’ actions is crucial to the trade-off between so-
lution quality and computation complexity.

Yanlin Han and Piotr Gmytrasiewicz MAICS 2017 pp. 69–76

69

To address this issue, we propose a Bayesian approach
that utilizes customized sequential Monte Carlo sampling
algorithms (Doucet, De Freitas, and Gordon 2001) to ob-
tain approximating solutions to interactive I-POMDPs and
implement the algorithms in a software package1. Specifi-
cally, We assume that models of other agents are unknown
and learned from imperfect observations of the other agents’
behaviors. We parametrize other agents’ intentional mod-
els and maintain a belief over them, making sequential
Bayesian updates using only observations from the environ-
ment. Since this Bayesian inference task is analytically in-
tractable, to approximate the posterior distribution, we de-
vise a customized sequential Monte Carlo method to de-
scend the belief hierarchy and sample all model parameters
at each nesting level, starting from the interactive particle
filter (I-PF) (Doshi and Gmytrasiewicz 2009) for I-POMDP
belief update.

Our approach, for the first time, successfully learns oth-
ers’ models over the entire intentional model space which
contains their initial belief, transition, observation and re-
ward functions, making it a generalized reinforcement learn-
ing method for multi-agent settings. Our algorithm accu-
rately predicts others’ actions on various problem settings,
therefore enables the modeling agent to make corresponding
optimal action to maximize its own rewards. By approximat-
ing Bayesian inference using a customized sequential Monte
Carlo sampling method, we significantly mitigate the belief
space complexity of the I-POMDPs.

Background
POMDP
A Partially observable Markov decision process (POMDP)
(Kaelbling, Littman, and Cassandra 1998) is a general re-
inforcement learning model for planning and acting in a
single-agent, partially observable, stochastic domain. It is
defined for a single agent i as:

POMDPi = hS,Ai,⌦i, Ti, Oi, Rii (1)

Where the meaning for each element in the 6-tuple is:
• S is the set of states of the environment.
• Ai is the set of agent i’s possible actions
• ⌦i is the set of agent i’s possible observations
• Ti : S ⇥Ai ⇥ S ! [0, 1] is the state transition function
• Oi : S ⇥Ai ⇥ ⌦i ! [0, 1] is the observation function
• Ri : S ⇥Ai ! Ri is the reward function.

Given the definition above, an agent’s belief about the
state can be represented as a probability distribution over
S. The belief update can be simply done using the following
formula, where ↵ is the normalizing constant:

b (s0) = ↵O(o, s, a)
X

s2S

T (s0, a, s)b(s) (2)

Given the agent’s belief, then the optimal action, a⇤, is sim-
ply part of the set of optimal actions, OPT (bi), for the belief
state defined as:

1https://github.com/solohan22/IPOMDP.git

OPT (bi) =argmax
ai2Ai

n

X

s2S

bi(s)R(s, ai) (3)

+ �
X

oi2⌦i

P (oi|ai, bi)⇥ U(SE(bi, ai, oi))
o

Particle Filter
The Markov Chain Monte Carlo (MCMC) method (Gilks
et al., 1996) is widely used to approximate probability dis-
tributions when they are unable to be computed directly. It
generates samples from a posterior distribution ⇡(x) over
state space x, by simulating a Markov chain p(x0|x) whose
state space is x and stationary distribution is ⇡(x). The sam-
ples drawn from p converge to the target distribution ⇡ as
the number of samples goes to infinity.

In order to make MCMC work on sequential inference
task, especially sequential decision makings under Markov
assumptions, sequential versions of Monte Carlo methods
have been proposed and some of them are capable of deal-
ing with high dimensionality and/or complexity problems,
such as particle filters (Del Moral and Pierre 1996). At each
time step, particle filters draw samples (or particles) from
a proposal distribution, commonly p(xt|xt�1

), which is es-
sentially the conditional distribution of the current state xt

given the previous xt�1

, then use the observation function
p(yt|xt) to compute the importance weight for each particle
and resample all particles according to the weights.

The Model
I-POMDP framework
An interactive POMDP of agent i, I-POMDP i, is defined
as:

I-POMDPi = hISi,l, A,⌦i, Ti, Oi, Rii (4)
where ISi,l is the set of interactive states of the environ-
ment, defined as ISi,l = S ⇥ Mi,l�1

, l � 1, where S is
the set of states and Mi,l�1

is the set of possible models
of agent j, and l is the strategy level. A specific class of
models are the (l� 1)th level intentional models, ⇥j,l�1

, of
agent j: ✓j,l�1

= hbj,l�1

, A,⌦j , Tj , Oj , Rj , OCji, bj,l�1

is
agent j’s belief nested to level (l� 1), bj,l�1

2 �(ISj,l�1

),
and OCj is j’s optimality criterion. The intentional model
✓j,l�1

, sometimes is referred to as type, can be rewritten as
✓j,l�1

= hbj,l�1

, ✓̂ji, where ✓̂j includes all elements of the
intentional model other than the belief and is called the agent
j’s frame.

The ISi,l could be defined in an inductive manner (note
that when ✓̂j is usually known, ✓̂j reduces to bj):

ISi,0 = S, ✓j,0 = {hbj,0, ✓̂ji : bj,0 2 �(S)}
ISi,1 = S ⇥ ✓j,0, ✓j,1 = {hbj,1, ✓̂ji : bj,1 2 �(ISj,1)}
...... (5)

ISi,l = S ⇥ ✓j,l�1

, ✓j,l = {hbj,l, ✓̂ji : bj,l 2 �(ISj,l)}

And all other remaining components in an I-POMDP are
similar to those in a POMDP:

Learning Others Intentional Models in Multi-Agent Settings Using Interactive POMDPs pp. 69–76

70

• A = Ai ⇥Aj is the set of joint actions of all agents.
• ⌦i is the set of agent i’s possible observations.
• Ti : S ⇥Ai ⇥ S ! [0, 1] is the state transition function.
• Oi : S ⇥Ai ⇥ ⌦i ! [0, 1] is the observation function.
• Ri : IS ⇥Ai ! Ri is the reward function.

Interactive belief update
Given all the definitions above, the interactive belief up-date
can be performed as follows:

bti(is
t) = Pr(ist|bt�1

i , at�1

i , oti) (6)

= ↵
X

ist�1

b(ist�1)
X

at�1
j

Pr(at�1

j |✓t�1

j)T (st�1, at�1, st)

⇥Oi(s
t, at�1, oti)

X

otj

Oj(s
t, at�1, otj)⌧(b

t�1

j , at�1

j , otj , b
t
j)

Unlike plain belief update in POMDP, the interactive be-
lief update in I-POMDP takes two additional sophistica-
tions into account. Firstly, the probabilities of other’s actions
given its models (the second summation) need to be com-
puted since the state of physical environment now depends
on both agents’ actions. Secondly, the agent needs to update
its beliefs based on the anticipation of what observations the
other agent might get and how it updates (the third summa-
tion).

Then the optimal action, a⇤, for the case of infinite hori-
zon criterion with discounting, is part of the set of optimal
actions, OPT (✓i), for the belief state defined as:

OPT (✓i) = argmax
ai2Ai

n

X

is2IS

bis(s)ERi(is, ai) (7)

+ �
X

oi2⌦i

P (oi|ai, bi)⇥ U(hSE✓i(bi, ai, oi), ✓̂ii)
o

Sampling Algorithms
The Interactive Particle Filter (I-PF) (Doshi and Gmy-
trasiewicz 2009) was proposed as a filtering algorithm for
interactive belief update in I-POMDP. It generalizes the clas-
sic particle filter algorithm to multi-agent settings and uses
the state transition function as the proposal distribution,
which is usually used in a specific particle filter algorithm
called bootstrap filter (Gordon, ect 1993). However, due to
the enormous belief space, I-PF assumes that other agent’s
frame ✓̂j is known to the modeling agent, therefore simpli-
fies the belief update process from S ⇥ ⇥j,l�1

to a signifi-
cantly smaller space S ⇥ bj,l�1

.
The intuition of our algorithm is to assign appropriate

prior distributions over agent j’s all possible models ✓j =<
bj(s), Aj ,⌦j , Tj , Oj , Rj , OCj > and sample from each di-
mension of them. At each time step, we update all samples
using perceived observations, namely computing and assign-
ing weights to each sample, and resample them according to
the weights. At last, since it is a randomized Monte Carlo
method, to prevent the learning algorithm from converging

to incorrect models, we add another resampling step to sam-
ple from the neighboring similar models given the current
samples. Consequently, our algorithm is able to maintain a
probability distribution of the most possible models of other
agents and eventually learn the optimal actions of them.

Algorithm 1: Interactive Belief Update

b̃tk,l = InteractiveBeliefUpdate(b̃t�1

k,l , at�1

k , otk, l > 0)
1 For is(n),t�1

k =< s(n),t�1, ✓
(n),t�1

�k >2 b̃t�1

k,l ,
2 sample at�1

�k ⇠ P (A�k|✓(n),t�1

�k)
3 sample s(n),t ⇠ Tk(St|S(n),t�1, at�1

k , at�1

�k)
4 for ot�k 2 ⌦�k:
5 if l = 1:
6 b

(n),t
�k,0 = Level0BeliefUpdate(b(n),t�1

�k,0 , at�1

�k

, ot�k, ✓
(n),t�1

�k)
7 ✓

(n),t
�k =< b

(n),t
�k,0, ✓̂

(n),t�1

�k >

8 is
(n),t
k =< s(n),t, ✓

(n),t
�k >

9 else:
10 b

(n),t
�k,l�1

= InteractiveBeliefUpdate(b̃t�1

�k,l�1

, at�1

�k , ot�k, l�1)
11 ✓

(n),t
�k =< b

(n),t
�k,l�1

, ✓̂
(n),t�1

�k >

12 is
(n),t
k =< s(n),t, ✓

(n),t
�k >

13 w
(n)
t = O

(n)
�k (o

t
�k|s(n),t, a

t�1

k , at�1

�k)

14 w
(n)
t = w

(n)
t ⇥Ok(otk|s(n),t, a

t�1

k , at�1

�k)

15 b̃temp
k,l =< is

(n),t
k , w

(n)
t >

16 normalize all w(n)
t so that

PN
n=1

w
(n)
t = 1

17 resample from b̃temp
k,l accroding to normalized w

(n)
t

18 resample ✓
(n),t
�k according to neighboring similar

models
19 return b̃tk,l = is

(n),t
k

The interactive belief update described in Algo-
rithm 1 is similar to I-PF in terms of the recur-
sive Monte Carlo sampling and nesting hierarchy, but
it has three major differences. Firstly, the belief up-
date is over the entire intentional model space of other
agents, therefore the initial set of N samples b̃t�1

k,l =<

b
(n),t�1

�k,l�1

, A�k,⌦�k, T
(n)
�k , O

(n)
�k , R

(n)
�k , OCj >, where k here

denotes the modeling agent and �k denotes all other mod-
eled agents. We only assume that the actions A�k, ob-
servations ⌦�k and optimal criteria OCj are known, as
in a multi-agent game the rules are usually known to
all agents or could be obtained through intelligence. Sec-
ondly, it is intuitive to see that the observation function
O

(n)
�k (o

t
�k|s(n),t, a

t�1

k , at�1

�k) in line 13 is now randomized
as well, as each of them is a particular observation function
of that agent. Lastly, we add another resampling step in line
18 in order to avoid divergence, by resampling each dimen-
sion of the model samples from a Gaussian distribution with
the mean of current sample value. Intuitively, similar models
are resampled from a relatively tight neighboring region of

Yanlin Han and Piotr Gmytrasiewicz MAICS 2017 pp. 69–76

71

the current model samples to maintain the learning accuracy.
Algorithm 1 can be viewed as two major steps. The impor-

tance sampling step (line 1 to line 16) samples from belief
priors b̃t�1

k,l and propagates forward using related proposal
distributions and computes the weights of all samples. And
the selection or resapmling step (line 17 to line 18) resam-
ples according to weights and similar models. Specifically,
the algorithm starts from a set of initial priors is(n),t�1

k , for
each of them, it samples other agents’ optimal action at�1

�k

from its policy P (A�k|✓(n),t�1

�k), which is solved using a
very efficient POMDP solver called Perseus2 (Spaan and
Vlassis 2005). Then it samples the physical state st using
the state transition Tk(St|S(n),t�1, at�1

k , at�1

�k). Once at�1

�k

and st are sampled, the algorithm calls for the 0-level be-
lief update (line 5 to 8), described in Algorithm 2, to update
other agents’ plain beliefs bt�k,0 if the current nesting level l
is 1, or recursively calls for itself at a lower level l � 1 (line
9 to 12) if the current nesting level is greater than 1. The
sample weights w(n)

t are computed according to observation
likelihoods of modeling and modeled agents (line 13, 14),
and then got normalized so that they sum up to 1 (line 16).
Lastly, the algorithm resamples the intermediate samples ac-
cording to the computed weights (line 17) and resamples an-
other time from similar neighboring models (line 18).

Algorithm 2: Level-0 Belief Update

btk,0 =Level0BeliefUpdate(bt�1

k,0 ,at�1

k ,otk, T (n)
k ,O(n)

k)
1 P (at�1

�k) = 1/at�1

�k

2 for st 2 S:
3 for st�1:
4 for a(t�1)

�k 2 A�k:
5 P (n)(st|st�1, at�1

k) =

T
(n)
k (st|st�1, at�1

k , at�1

�k)⇥P (at�1

�k)
6 sum(n)+ = P (n)(st|st�1, at�1

k)bt�1

k,0 (s
t�1)

7 for a(t�1)

�k 2 A�k:
8 P (n)(otk|st, a

t�1

k)+ =

O
(n)
k (otk|st, a

t�1

k , at�1

�k)P (at�1

�k)
9 btk,0 = sum(n) ⇥ P (n)(otk|st, a

t�1

k)
10 normalize and return btk,0

The 0-level belief update, described in Algorithm 2, is
similar to POMDP belief update but treats other agents’
actions as noise and randomized the state transition func-
tion and observation function as input parameters. It assume
other agents in the environment choose their actions accord-
ing to a uniform distribution (line 1), therefore is essentially
a no-information model. For each possible action a

(t�1)

�k , it
computes the actual state transition (line 5) and actual ob-
servation function (line 8) by marginalizing over others’ ac-
tions, and returns the normalized belief btk,0. Notice that the

2http://www.st.ewi.tudelft.nl/˜mtjspaan/
pomdp/index_en.html

transition function T
(n)
k (st|st�1, at�1

k , at�1

�k) and observa-
tion function O

(n)
k (otk|st, a

t�1

k , at�1

�k) are now both samples
from input arguments, depending on model parameters of
the actual agent on the 0th level.

Figure 1: An illustration of interactive belief update for two
agents and 1 level nesting.

In figure 1, we illustrate the interactive belief update us-
ing the problem discussed in the following section . Suppose
there are two agents i and j in the environment, the sample
size is 8 and the nesting level is 2, the subscripts in figure 1
denotes the corresponding agents and each dot represents a
particular belief sample. The propagate step corresponds to
line 2 to 12 in Algorithm 1, the weight step corresponds to
line 13 to 16, the resample step corresponds to line 17 and
18. The belief update for a particular level-0 model sam-
ple (✓j = hbj(s) = 0.5, pT1

= 0.67, pT2

= 0.5, pO1

=
0.85, pO2

= 0.5, pR1

= �1, pR2

= �100, pR3

= 10i) is
solved using Algorithm 2, and the optimal action is com-
puted by calling the Perseus POMDP solver.

Experiments
Setup
We present the results using the multi-agent tiger game
(Gmytrasiewicz and Doshi 2005) with various settings. The
multi-agent tiger game is a generalization of the classical
single agent tiger game (Kaelbling, Littman, and Cassandra
1998) with adding observations which caused by others’ ac-
tions. The generalized multi-agent game contains additional
observations regarding other players, while the state transi-
tion and reward function involve others’ actions as well.

Let’s see a specific game example with known parame-
ters: there are a tiger and a pile of gold behind two doors
respectively, two players can both listen for a growl of the
tiger and a creak caused by the other player, or open doors
which resets the tiger’s location with equal probability. Their
observation toward the tiger and the other player are both
relatively high (0.85 and 0.9 respectively). No matter trig-
gered by which player, the reward for listening action is -1,
opening the tiger door is -100 and opening the gold door is
10.

Learning Others Intentional Models in Multi-Agent Settings Using Interactive POMDPs pp. 69–76

72

Table 1: Parameters for transition functions

S A TL TR
TL L pT1

1� pT1

TR L 1� pT1

pT1

* OL pT2

1� pT2

* OR 1� pT2

pT2

Table 2: Parameters for observation functions

S A GL GR
TL L pO1

1� pO1

TR L 1� pO1

pO1

* OL pO2

1� pO2

* OR 1� pO2

pO2

Table 3: Parameters for reward functions

S A R
* L pR1

TL OL pR1

TR OR pR2

TL OR pR3

TR OL pR3

For the sake of brevity, we restrict the experiments to
a two-agent setting and nesting level of one, but the sam-
pling algorithm is extensible to any number of agents and
nesting levels in a straightforward manner. Recall that an
interactive POMDP of agent i is defined as a six tuple
I-POMDPi = hISi,l, A,⌦i, Ti, Oi, Rii. Thus for the spe-
cific setting of multi-agent tiger problem:
• ISi,1 = S ⇥ ✓j,0, where S = {tiger on the

left (TL), tiger on the right (TR)} and ✓j,0 =<
bj(s), Aj ,⌦j , Tj , Oj , Rj , OCj >}.

• A = Ai ⇥ Aj is a combination of both agents’ possi-
ble actions: listen (L), open left door (OL) and open right
door(OR).

• ⌦i is all the combinations of each agent’s possible ob-
servations: growl from left (GL) or right (GR), combined
with creak from left (CL), right (CR) or silence (S).

• Ti = Tj : S ⇥ Ai ⇥ Aj ⇥ S ! [0, 1] is a joint state
transition probability that involves both actions.

• Oi : S⇥Ai ⇥Aj ⇥⌦i ! [0, 1] becomes a joint observa-
tion probability that involves both actions. Oj is symmet-
ric of Oi with respect to the joint actions.

• Ri : IS ⇥ Ai ⇥ Aj ! Ri: agent i gets corresponding
rewards when he listens, opens the wrong door and opens
the correct door respectively. They are independent of j’s
actions.

Parameter Space
For the experiments of multi-agent tiger game, we want to
learn over all possible intentional models of the other agent
j: ✓j =< bj(s), Aj ,⌦j , Tj , Oj , Rj , OCj >. We only make

reasonable assumptions that Aj and ⌦j are known, OCj is
infinite horizon with discounting. Now what we really want
to learn are as follow:

• b0j : the initial belief of agent j about the physical state.
• Tj : the transition function of agent j, which can be

parametrized by two parameters pT1

and pT2

, as shown
in Table 1.

• Oj : the observation function of agent j, which can be
parametrized by two parameters pO1

and pO2

, as shown
in Table 2.

• Tj : the reward function of agent j, which can be
parametrized by three parameters pR1

, pR2

and pR3

, as
shown in Table 3.

We could easily see that it is a enormous 8-dimensional
parameter space to learn from: b0j⇥pT1

⇥pT2

⇥pO1

⇥pO2

⇥
pR1

⇥ pR2

⇥ pR3

, where bj 2 [0, 1] ⇢ R, pT1

2 [0, 1] ⇢ R,
pT2

2 [0, 1] ⇢ R, pO1

2 [0, 1] ⇢ R, pO2

2 [0, 1] ⇢ R,
pR1

2 [�1,+1] ⇢ R, pR2

2 [�1,+1] ⇢ R, pR3

2
[�1,+1] ⇢ R.

We mainly reduce this huge space by two means: utilizing
Monte Carlo sampling methods and giving them problem-
specific priors so that they are not over informative but pro-
vide enough information for the algorithm to learn from.

Results
For the actual experiments, we fix the number of samples
to be 2000 and run it on a two agent tiger game simulation
as described above. We run experiments for learning three
difference models of agent j:

1. ✓j1 =< 0.5, 0.67, 0.5, 0.85, 0.5,�1,�100, 10 >

2. ✓j2 =< 0.5, 1.00, 0.5, 0.95, 0.5,�1,�10, 10 >

3. ✓j3 =< 0.5, 0.66, 0.5, 0.85, 0.5, 10,�100, 10 >

These models are all very special cases and carefully cho-
sen in order to verify the correctness and evaluate the per-
formance of our algorithm. For instance, the first model is a
sophisticated one when the other agent is actually modeling
his opponent using a subintentional model, while the sec-
ond is a classic single-agent POMDP and the third is a very
simple one but contains a large model space. We want to in-
vestigate if our framework is able to correctly and efficiently
learn these models through these experiments.

Figure 2: Optimal policy of a no-information model.

Yanlin Han and Piotr Gmytrasiewicz MAICS 2017 pp. 69–76

73

The aim of first experiment to try to learn rela-
tively complicated models of agent j with ✓j =<
0.5, 0.67, 0.5, 0.85, 0.5,�1,�100, 10 >, who assumes oth-
ers’ actions are drawn from a uniform distribution. Equiv-
alently, agent j’s actual policy, as shown in figure 2, is to
look for three consecutive growls from same direction and
then open the corresponding door. For this particular exper-
iment, we simulated the observation history for agent i, for
the sake of firstly verifying the correctness of our algorithm,
excluding the impacts of uncertainties from hearing accu-
racy. The simulated observation history is as follows: {GL,S
GL,S GL,S GL,CR GL,S GL,S GL,S GR,CR GL,S GL,S
GL,S GR,CR GL,S GL,S GL,S GR,CR GR,S GR,S GR,S
GR,CL GR,S GR,S GR,S GR,CL GR,S GR,S GR,S GR,CL
GR,S GR,S GR,S GR,CL GR,S GR,S GR,S GR,CL GR,S
GR,S GR,S GL,CL GL,S GL,S GL,S GR,CR GL,S GL,S
GL,S GR,CR GR,S GR,S}

Figure 3: Assigned priors and learned posterior dis-
tributions over model parameters for model ✓j1 =<
0.5, 0.67, 0.5, 0.85, 0.5,�1,�100, 10 >.

The priors we assign to each parameters are shown in fig-

ure 3, specifically, they are uniform U(0,1) for b0j , Beta(5,3)
with mode 0.67 for pT1

, Beta(5,5) for pT2

, Beta(3.5,1.4)
with mode 0.85 for pO1

, Beta(5,5) for pO2

, Gaussian N(-
1,2) for pR1

, N(-100,4) for pR2

, and N(10,2) for pR3

.

Figure 4: 3D histogram of all model samples.

After 50 time steps, the algorithm converge to a posterior
distribution over agent j’s intentional models, the results are
also given in figure 3. Since the parameter space of agent j’s
models is 8-dimensional, here we only show the marginal
distributions of each parameter space in histograms. We can
easily see that the majority of samples are centered around
the true parameter values.

We use principal component analysis (PCA) (Abdi and
Williams 2010) to reduce sample dimensionality to 2-
dimensional and plot them out in a 3-dimensional histogram,
as shown in Figure 4. It starts from a Gaussian-like prior and
gradually converges to the most likely models. Eventually
the mean value of this cluster h 0.49, 0.69, 0.49, 0.82, 0.51, -
0.95, -99.23, 10.09 i is very close to the true model. Here
we give two examples from the big cluster after 50 time
steps: h0.56, 0.66, 0.49, 0.84, 0.59, -0.95, -101.37, 11.42i
and h0.51, 0.68, 0.52, 0.89, 0.56, -1.33, -98.39, 12.55i.
The former has a corresponding optimal policy of [0—
OL—0.10—L—1], while the latter has a [0—OL—0.09—
L–0.91—OR—1], which are both extremely close to the
optimal policy of the true model: [0—OL—0.1—L–0.9—
OR—1]. Consequently, the framework is able to predict
other agents’ actions with high accuracy.

We tested the performance of our algorithms in terms
of prediction accuracy towards others’ actions. We com-
pared the results with other modeling approaches, such as
a frequency-based approach, in which agent j is assumed
to choose his action according to a fixed but unknown dis-
tribution, and a no-information model which treats j’s ac-
tions purely as uniform noise. The results shown in figure
5 are averaged plots of 10 random runs, each of which has
50 time steps. It shows clearly that the intentional I-POMDP
approach has significantly lower error rates as agent i per-
ceives more observations. The subintenional model assume
j’s action is draw from a uniform distribution, therefore has

Learning Others Intentional Models in Multi-Agent Settings Using Interactive POMDPs pp. 69–76

74

Figure 5: Prediction error rate vs observation length.

a fixed high error rate. The frequency based approach has
certain learning ability but is far from enough sophisticated
for modeling a fully rational agent.

Figure 6: (a) optimal policy for ✓j = h 0.5, 1, 0.5, 0.95, 0.5,
-1, -10, 10 i. (b) optimal policy for ✓j = h0.5, 0.66, 0.5,
0.85, 0.5, 10, -100, 10i.

In the second experiment, we run our algorithm on ac-
tual observations for 30 time steps until it converges, and
try to learn models of a simpler classic POMDP with high
listening accuracy of 0.95 and small penalty of -10, e.g. the
agent j alternately opens door and listens as shown in Fig-
ure 6 left. The actual model of j is ✓j = h 0.5, 1, 0.5,
0.95, 0.5, -1, -10, 10 i, the priors assigned to b0j , pT1

, pT2

,
pO1

, pO2

, pR2

, pR3

are U(0,1), Beta(2,0.5), Beta(10,10),
Beta(19,1), Beta(10,10), N(-1,1), N(-10,2), N(10,2), and the
actual observation history is {GR,S GL,CR GL,S GL,CL
GL,S GL,CR GL,S GL,CL GL,S GR,S GR,CL GR,CL GL,S
GR,S GR,S GL,CL GR,S GL,CR GR,S GR,CR GR,CR
GR,CL GL,S GL,S GL,S GL,CR GL,S GL,CL GR,S GR,S}.

Similarly, we report the learned posterior distributions
over model parameters in figure 7. We observe an interest-
ing pattern that while some parameters, such as bj,0, pT2

and
pO2

are concentrated around the actual values, others like
pT1

and pO1

become more dispersed than initial priors. The
intuition behind is that the penalty and reward are -10 and
10, so one listening of reward -1 is enough for making deci-
sion of opening doors. That is to say, as long as tiger likely
remains behind the same door when agent listens (the mean-
ing of pT1

) and has a reliable hearing accuracy (the meaning
of pO1

), there are many models which satisfy this particular
observation sequence, hence our algorithm learns them all.

For conciseness, we show the average prediction error
rates for both second and third experiments in figure 9.
Both results are averaged among 10 random runs, each of
which has 30 time steps. In the second experiment in fig-
ure 9(a), the intentional I-POMDP approach still has signif-
icantly lower error rates than others.

In the last experiment, we wants to learn a model of ✓j=

Figure 7: Learned posterior distributions for model ✓j = h
0.5, 1, 0.5, 0.95, 0.5, -1, -10, 10 i.

h0.5, 0.66, 0.5, 0.85, 0.5, 10, -100, 10i, who always listens
since the listening penalty is now equal to the reward, as
shown in figure 6(b). For brevity, we only show the marginal
distributions over model parameters in figure 8. The priors
assigned to b0j , pT1

, pT2

, pO1

, pO2

, pR2

, pR3

are U(0,1),
Beta(5,3), Beta(10,10), Beta(3.5,1.4), Beta(10,10), N(10,1),
N(-100,2), N(10,2), and the actual observation history i
learns from is {GL,S GL,S GR,S GL,S GL,CL GR,S GR,S
GL,CL GR,S GL,S GL,S GR,S GL,S GL,S GL,S GL,CL
GR,S GL,S GL,S GL,S}. We can see that all three reward
parameters are correctly learned, while samples of pT1

, pT2

,
pO1

and pO2

are not very concentrated to their true values
but close to their corresponding priors, since intuitively they
become less important and can be in a relatively loose re-
gion due to the increased pR1

=10. Lastly, the performance
comparison is given in figure 9(b).

Yanlin Han and Piotr Gmytrasiewicz MAICS 2017 pp. 69–76

75

Figure 8: Learned posterior distributions for model ✓j =
h0.5, 0.66, 0.5, 0.85, 0.5, 10, -100, 10i.

Conclusions and Future Work

We have described a new approach to learn other agents’
models by approximating the interactive belief update us-
ing Bayesian inference and Monte Carlo sampling methods.
Our framework correctly learns others’ models over the en-
tire intentional model space and therefore is a generalized
reinforcement learning algorithm for multi-agent settings. It
also effectively mitigates the belief space complexity and
has a significant better performance than other approaches
in terms of predicting others’ actions.

In the future, in order to fully evaluate the practicability
on larger problem space, more multi-agent problems of var-
ious sizes could be tested. Due to computation complexity,
experiments on higher nesting levels are currently limited.
Thus, more efforts could be made on utilizing nonparametric
Bayesian methods which inherently deal with nested belief
structures.

Figure 9: (a) Prediction error rate vs observation length for
✓j = h 0.5, 1, 0.5, 0.95, 0.5, -1, -10, 10 i. (b) for ✓j = h0.5,
0.66, 0.5, 0.85, 0.5, 10, -100, 10i.

References
Abdi, H. and Williams, L.J., 2010. Principal component analy-
sis. Wiley interdisciplinary reviews: computational statistics, 2(4),
pp.433-459.
Doucet, A., De Freitas, N. and Gordon, N., 2001. An introduc-
tion to sequential Monte Carlo methods. In Sequential Monte Carlo
methods in practice (pp. 3-14). Springer New York.
Doshi, P., and Gmytrasiewicz, P. J. 2009. Monte Carlo sampling
methods for approximating interactive POMDPs. Journal of Artifi-
cial Intelligence Research 34: 297-337.
Doshi-Velez, F. and Konidaris, G., 2013. Hidden parameter Markov
decision processes: A semiparametric regression approach for dis-
covering latent task parametrizations. arXiv:1308.3513.
Del Moral, P., 1996. Non-linear filtering: interacting particle reso-
lution. Markov processes and related fields, 2(4), pp.555-581.
Doshi, P., Zeng, Y., and Chen, Q. 2009. Graphical models for
interactive POMDPs: representations and solutions. Autonomous
Agents and Multi-Agent Systems 18.3: 376-416.
Gilks, W.R., Richardson, S. and Spiegelhalter, D.J., 1996. Intro-
ducing markov chain monte carlo. Markov chain Monte Carlo in
practice, 1, p.19.
Gmytrasiewicz, P. J., and Doshi, P. 2005. A framework for sequen-
tial planning in multi-agent settings. Journal of Artificial Intelli-
gence Research 24(1): 49-79.
Gmytrasiewicz, P. J., and Doshi, P. 2005. A framework for sequen-
tial planning in multi-agent settings. Journal of Artificial Intelli-
gence Research 24(1): 49-79.
Gordon, N.J., Salmond, D.J. and Smith, A.F., 1993, April. Novel
approach to nonlinear/non-Gaussian Bayesian state estimation. In
IEE Proceedings F (Radar and Signal Processing) (Vol. 140, No. 2,
pp. 107-113). IET Digital Library.
Kaelbling, L.P., Littman, M.L. and Cassandra, A.R., 1998. Plan-
ning and acting in partially observable stochastic domains. Artifi-
cial intelligence, 101(1), pp.99-134.
Spaan, M.T. and Vlassis, N., 2005. Perseus: Randomized point-
based value iteration for POMDPs. Journal of artificial intelligence
research, 24, pp.195-220.
Liu, M., Liao, X. and Carin, L., 2011. The infinite regionalized pol-
icy representation. In Proceedings of the 28th International Confer-
ence on Machine Learning (ICML-11) (pp. 769-776).
Panella, A. and Gmytrasiewicz, P., 2016, March. Bayesian Learn-
ing of Other Agents’ Finite Controllers for Interactive POMDPs.
In Thirtieth AAAI Conference on Artificial Intelligence.
Pearl, J., 1988. Probabilistic reasoning in intelligent systems: Net-
works of plausible reasoning.
Ross, S., Chaib-draa, B. and Pineau, J., 2007. Bayes-adaptive
pomdps. In Advances in neural information processing systems
(pp. 1225-1232).

Learning Others Intentional Models in Multi-Agent Settings Using Interactive POMDPs pp. 69–76

76

