
Identifying Avatar Aliases in Starcraft 2?

Olivier Cavadenti, Victor Codocedo, Mehdi Kaytoue, Jean-François Boulicaut

Université de Lyon. CNRS, INSA-Lyon, LIRIS. UMR5205, F-69621, France.
contact:firstname.name@insa-lyon.fr

Abstract. In electronic sports, cyberathletes conceal their online train-
ing using different avatars (virtual identities), allowing them not being
recognized by the opponents they may face in future competitions. In
this article, we propose a method to tackle this avatar aliases identifi-
cation problem. Our method trains a classifier on behavioural data and
processes the confusion matrix to output label pairs which concentrate
confusion. We experimented with Starcraft 2 and report our first results.

1 Introduction

In most of online competitive games, players need an “avatar” (an online iden-
tity) to log in the game network. Nothing forbids a player to have several avatars
and actually, it is a very common practice for cyberathletes. Players generally
have one official avatar for official tournaments, and several others to conceal
their game tactics without being recognized by other players they may meet
online: global rankings and leagues are public just as in chess and tennis, while
game logs are available and prone to analysis by means of visualization and ma-
chine learning just as in standard sport analytics. Accordingly, we are facing a
set of players, generating behavioural data, in an unknown one-to-many relation-
ship with avatars (handling many-to-many relationships is left to future work).
In this context, the avatar aliases identification problem aims at discovering the
group of avatars belonging to the same player. Solving this problem is motivated
by the growing need of e-sport structures to study the games and strategies of
the opponents (match preparation), and the security challenges of game editors
(detecting avatar usurpers).

Yan et al. showed that a classifier can be trained to predict with high accu-
racy the avatars involved in a game play of Starcraft 2 [5]. Nevertheless, they
purposely considered datasets without players having several avatars (what we
call avatar aliases): in presence of such avatar aliases, the prediction accuracy
drastically degrades, since prediction models fail at differentiating two avatars
of the same player. We extend this work and answer the avatar aliases identifi-
cation problem: it relies on mining the confusion matrix yielded by a supervised
classifier using Formal Concept Analysis [1], and exploits the confusion a clas-
sifier has in presence of avatar aliases when they belong to the same player.
Experimental evaluation shows promising results.

? This research has been partially funded by the French National Project FUI AAP
14 Tracaverre 2012-2016.

2 Basic notations and general intuition

Let A be a set of avatars and T be a set of traces such as for a given avatar
a ∈ A, the set Ta ⊆ T is the set of all traces generated by a. Consider a classifier
ρ where labels are the avatars to predict. A classifier is a function ρ : T → A
that assigns the avatar ρ(t) ∈ A to a given trace t ∈ T . Let n = |A| be the
number of avatars in A, from any classifier ρ, one can derive a confusion matrix
Cρn×n = (ci,j) where ci,j = |{t ∈ Tai s.t. ρ(t) = aj}|. Each row and column of
Cρ correspond to an avatar, while the value cij is the number of traces of avatar
ai that are classified by ρ as of avatar aj . The normalized confusion matrix is

given by C̃ρ = [ci,j/|Tai |] where C̃ρi,i = 1 for any i ∈ [1, |A|] means all the traces
of avatar ai are correctly classified by ρ.

a1 a2 a3 a4 a5
a1 0.6 0.4 0 0 0
a2 0.4 0.55 0.05 0 0
a3 0 0 0.8 0.15 0.05
a4 0 0.05 0 0.7 0.25
a5 0 0 0 0.5 0.5

Fig. 1. Confusion matrix

Our goal is to discover the group of avatars
that belong to the same player. Our intuition is
that a classifier will hardly differentiate these avatar
aliases, hence the confusion matrix values should be
high and concentrated around them. This is exem-
plified in Figure 1: avatars {a1, a2} are candidates
to belong to the same player, {a4, a5} shall belong
to another player, while a3 stays as singleton with a diagonal high value. A
reasonable clustering of avatars would be given by {{a1, a2}, {a3}, {a4, a5}}.

More formally, given a normalized confusion matrix C̃ρ, we would like to find
pairs of avatars ai, aj ∈ U such that C̃ρij ' C̃ρji ' C̃ρii ' C̃ρjj and C̃ρij + C̃ρji +

C̃ρii + C̃ρjj ' 2. These conditions come from the fact that, if ai, aj correspond to
the same player, traces in Tai have the same probability of being classified as
ai or aj (the same for traces in Taj). Furthermore, for a trace of avatar ai, it is
required that the probability of classification is spread between ai and aj only,

meaning that C̃ρij + C̃ρii ' 1 (similarly for aj).

3 Method

Our method firstly extracts fuzzy concepts from the confusion matrix, scores
and post-processes them to generate avatar pairs, candidates to be aliases.

Fuzzy concepts in a confusion matrix. Let us define the fuzzy set of mem-
bership degrees LA where L = [0, 1], such as the mapping function δ : A → LA

assigns membership values for the avatar ai in the fuzzy set LA based on the
normalized confusion matrix. Simply, this is a mapping that assigns to ai its
corresponding row in C̃ρ which we denote C̃ρi . We model a confusion matrix
C̃ρ as a pattern structure (A, (LA,u), δ) [2]. The operator u is a meet operator
in a semi-lattice (idempotent, commutative and associative), and is defined as
follows, given two avatars ai, aj ∈ A:

δ(ai) u δ(aj) = 〈min(C̃ρik, C̃
ρ
jk)〉, k ∈ [1, |A|]

δ(ai) v δ(aj) ⇐⇒ δ(ai) u δ(aj) = δ(ai)

Example. The Figure 1 illustrates a confusion matrix obtained from a classifier
ρ. We have δ(a1) = {a0.6

1 , a0.4
2 , a0

3, a
0
4, a

0
5}, δ(a2) = {a0.4

1 , a0.55
2 , a0.05

3 , a0
4, a

0
5} and

δ(a1) u δ(a2) = {a0.4
1 , a0.4

2 , a0
3, a

0
4, a

0
5}.

Actually, u corresponds to the fuzzy set intersection and (LA,v) is a partial
order over the elements of LA which can be represented as a semi-lattice. The
pattern structure (A, (LA,u), δ) is provided with two derivation operators, form-
ing a Galois connection [2]. Formally, we have, for a subset of avatars A ⊆ A and
a fuzzy set d ∈ LA such as: A� =

d
a∈A δ(a) and d� = {a ∈ A | d v δ(a)}.

The pair (A, d) is a pattern concept iff A� = d and d� = A. Pattern con-
cepts are ordered by extent inclusion such that for (A1, d1) and (A2, d2) we have:
(A1, d1) ≤ (A2, d2) ⇐⇒ A1 ⊆ A2 (or d1 w d2). A pattern concept (A, d) contains
a fuzzy set d which can be represented as a vector d = 〈dj〉 with length |A|
where each value dj is the minimum for all rows i in column j of matrix C̃ρ s.t.
ai ∈ A.

Computing and scoring concepts. From the confusion matrix we compute all
possible pattern concepts using the addIntent algorithm [4]. Pattern concepts
are then ranked according to a score and converted into a list of pairs. For
example, if a pattern concept extent contains three avatars a1, a2 and a3, we
convert this concept into pairs (a1, a2), (a1, a3) and (a2, a3). The scoring function

s : LA → [0, 1] is given as follows: for a pattern d, s(d) = Σ
|A|
j=1d

j .

Example. In Figure 1, we have: s({a1, a2}�) = 0.8, s({a4, a5}�) = 0.75 and
s({a1, a2, a4}�) = 0.05.

It is clear that the function s is decreasing w.r.t. the order of pattern concepts,
i.e. (A1, d1) ≤ (A2, d2) =⇒ s(d1) ≤ s(d2). Thus, pattern concepts can be mined
up to a given score threshold analogously as formal concepts can be mined up
to a given minimal support. We can appreciate that the higher the score of a
given pattern, the more confused is the classification of traces of avatars a ∈ A

by ρ in C̃ρ and thus, they become candidates for merging. This property directly
follows from the choice of our similarity operator u as a fuzzy set intersection,
which behaves as a pessimistic operator (returning minimum values).

Ranking avatar aliases. Consider the clustering condition previously formal-
ized as C̃ρij ' C̃

ρ
ji ' C̃

ρ
ii ' C̃

ρ
jj and C̃ρii + C̃ρij + C̃ρji + C̃ρjj ' 2. Consider that the

pair of avatars (ai, aj) respects these conditions. It is easy to see that (ai, aj)
will necessarily be a candidate pair highly ranked from the previous step.

C̃ρij ' C̃
ρ
jj ' min(C̃ρij , C̃

ρ
jj) and C̃ρii ' C̃

ρ
ji ' min(C̃ρii, C̃

ρ
ji)

=⇒ min(C̃ρij , C̃
ρ
jj) +min(C̃ρii, C̃

ρ
ji) ' 1

Thus, the set of avatar clusters we are looking for are contained within the set
of candidate pairs and moreover, they are highly ranked. In order to remove
pairs from the list of candidates that do not hold the avatar cluster definition,
we propose a cosine similarity measure between a couple of vectors calculated
for each avatar as follows. Let (ai, aj) be a candidate pair, the cluster score is

defined as: cluster score(ai, aj) = cosine(〈C̃ρii, C̃
ρ
ij〉, 〈C̃

ρ
jj , C̃

ρ
ji〉).

ai aj
ai 1 0
aj 1 0

The cluster score establishes a measure of how close is a candi-
date pair from being an avatar cluster. The logic comes from the
following scenario. Consider that the traces of avatar ai were all
correctly classified meaning that C̃ρii = 1 and that the traces of avatar aj were

all incorrectly classified as ai, meaning that C̃ρji = 1, thus we have the section
of the normalized confusion matrix illustrated on the right hand side. We can
observe that the pair (ai, aj) will be contained in the set of candidate pairs and
will be highly ranked, even though it is not an avatar cluster since it violates
the first condition. The cluster score for this particular case can be calculated
as: cluster score(ai, aj) = cosine(〈1, 0〉, 〈0, 1〉) = 0, meaning that this candidate
pair is not an avatar cluster. Notice that for the pair of avatars such that aii = 1
and ajj = 1, the cluster score is 1 (cosine between parallel vectors) while the
pair is not an avatar cluster. However this pair would have a score s equal to 0
and would be at the bottom of the ranked candidate pairs. A third kind of pair
occurs when the traces of ai and aj are all incorrectly classified as a third avatar
ak. In such a case, the cluster score is 0. The post processing step is executed
as follows. Given a ranked list of candidate pairs yielded from the previous step,
each pair is evaluated using the cluster score. Given an arbitrary threshold λ, if
the cluster score of the candidate pair is below this threshold, then it is rejected.
Candidate pairs are re-ranked into a final list of avatar clusters.

4 Experiments

Data collections and objectives. We constructed two collections of Starcraft
2 replays to test our method. A replay contains all data necessary for the game
engine to replay the game. Replays are shared on dedicated websites1 and can
be parsed to extract relevant features2. The first collection has been chosen
for studying the accuracy of classifiers to recognize avatars from their traces: we
have selected 955 professionals games of 171 unique players which cannot contain
avatar aliases3. The second collection, which have possible avatar aliases, is built
with all replays available on SpawningTool.com in July 2014, for a total 10,108
one-versus-one games and 3,805 players. This collection corresponds to a real
world situation, and is used for evaluating our avatar alias resolution approach.

Classifying avatars. Our method analyses the confusion matrix of a given
classifier ρ. Good features, as well as a prediction method, should first be chosen.
As features, we use the hotkey usage count [5] during the τ first seconds of the
game: there are 30 of such features ({0, ..., 9} × {assign, remove, select}). We
also consider the faction of the player, the game outcome (winner or loser)
and actions per minutes in average (APM). We generated several datasets given
the τ parameter, and introduced also a minimum number θ of games an avatar
should have to be considered in the dataset. Each dataset is classified using the

1 http://wiki.teamliquid.net/starcraft2/Replay_Websites
2 http://sc2reader.readthedocs.org/
3 http://wcs.battle.net/sc2/en/articles/wcs-2014-season-2-replays

Weka machine learning software 4 and evaluated using 10-fold cross validation
from which we obtain a confusion matrix. We chose four different classifiers,
namely K Nearest Neighbours (knn), Naive Bayes (nbayes), J48 decision tree
(j48) and Sequential Minimization Optimization (smo). Parameters for each of
the classifier were left as default. Figure 2 shows the ROC area and the precision
obtained for 92 datasets created for Collection 1. The parameter τ ranged over
23 values in an exponential scale, initially from 10 to 90 seconds then from 100
to 900 and finally from 1000 to 5000 seconds (the longest game in this collection
has around 5300 seconds) and thus, the x axis of each figure is in logarithmic
scale. For each measure, four figures corresponding to four different settings of θ
are presented. Each line corresponds to a different classifier. The figures present
an empirical evaluation that the initial assumption, that avatars are very easily
recognizable based in the signatures left in the traces they generate while playing,
is true. For each different setting, ROC area is always around 100% showing the
robustness of the approach under different parametrizations. Precision is always
maintained over 60%, achieving its minimal value for the SMO classifier with
θ = 5 and τ > 1000. Actually, this also supports the following assumptions.
Firstly, it is hard to recognize users that have played a few games, meaning that
the larger the value of the θ threshold, the more discriminative power has the
classifier. Secondly, users are recognizable in the first few minutes of the game.
The precision curves show a slight concave behaviour hinting a maximum of the
precision w.r.t. the time cut used for traces. Users can be efficiently discovered by
their hotkeys binding settings. As the game progresses, traces may differ given
that the number of options in the game greatly increase and vary in execution
regarding different opponents.

101 102 103 104
0.5

0.6

0.7

0.8

0.9

1.0

A
U

C

θ=5

j48

smo

nbayes

knn

101 102 103 104
0.5

0.6

0.7

0.8

0.9

1.0
θ=10

j48

smo

nbayes

knn

101 102 103 104

log(τ)

0.5

0.6

0.7

0.8

0.9

1.0

A
U

C

θ=15

j48

smo

nbayes

knn

101 102 103 104

log(τ)

0.5

0.6

0.7

0.8

0.9

1.0
θ=20

j48

smo

nbayes

knn

AUC

101 102 103 104
0.5

0.6

0.7

0.8

0.9

1.0

P
re

ci
si

o
n

θ=5

j48

smo

nbayes

knn

101 102 103 104
0.5

0.6

0.7

0.8

0.9

1.0
θ=10

j48

smo

nbayes

knn

101 102 103 104

log(τ)

0.5

0.6

0.7

0.8

0.9

1.0

P
re

ci
si

o
n

θ=15

j48

smo

nbayes

knn

101 102 103 104

log(τ)

0.5

0.6

0.7

0.8

0.9

1.0
θ=20

j48

smo

nbayes

knn

Precision

Fig. 2. Classification results for Collection 1: ROC area under the curve (AUC) and precision
distribution on 23 points of τ for four θ values.

4 http://www.cs.waikato.ac.nz/ml/weka/

Main method evaluation strategy. As we do not have information about the
users behind the avatars, it is not possible to evaluate the avatar pairs candidates
using a “ground truth”. Hence we performed an evaluation of our approach
using three different strategies. First consider that an avatar of Starcraft 2 is
given by its Battle.net account URL, made of a server name (Europe, America,
etc.), a unique identifier, and an avatar name. We use the whole URL as avatar
class labels in our classifiers. Note now that players have several accounts, on
different servers, that may share the name. Players can also change the name of
their avatar: it does not affect the ID and server that identify their account. As
our method returns an ordered list of pairs candidates merging, we consider the
following indicators, for each pair.

– Avatar names. Two avatars may have the same name but different battle
net id. It is weak indicator as it can be a common name (e.g. Batman).

– Battle.net account unique ID. Two avatars may have two different names
but the same unique identifier. This is a strong indicator.

– Surrogates. We create surrogate avatars a1, a2 from an avatar a ∈ A by gen-
erating a partition in two different subsets of traces for each avatars. Our
goal is to retrieve that a1 and a2 are avatar aliases. For splitting traces of
an avatar into surrogates, we introduce a parameter β as a balance between
the traces distributed over the surrogate avatars (β = 0.5 yields that both
surrogate avatars will have half associated traces). We introduce others pa-
rameters: γ is the proportion of avatars who are converted in surrogates
aliases. We assume that professionals play a lot of games then we select the
avatar which have played more than θ games. As we have observed, it is
not necessary to analyse the entire replay to discriminate an avatar then we
select the first τ either actions or seconds.

0.6 0.7 0.8 0.9 1.0 1.1
Score

0

5

10

15

20

R
a
n
ki

n
g

EGaLive - aLiveRC

SMO Top 20 : γ=0.05, θ=5, λ=0.9

SUG
URL
NAMES
FP

Fig. 3. Candidate pairs ranking.

To evaluate our approach we will mea-
sure the precision, recall and f-measure
of the first 100 ranked avatar clusters.
Given the ranking r, we consider TP, FP
and FN stand for true positives, false
positives and false negatives respectively.
A pair is a false positive when we do
not have enough information to consider
them as true positives, meaning that their
avatar names do not match, their URL is
different and they are not part of our own
set of surrogate avatars. They are in fact
the kind of pairs we are looking for. As
an example, the Figure 3 shows the initial candidate pairs extracted from a
confusion matrix generated by a Sequential Minimization Optimization (SMO)
classification with γ = 0.05, θ = 5 and λ = 0.9. Within the figure, a point
represent a pair of avatars with a red circle if the avatars are surrogates, a green
triangle if they have the same account, a yellow star if they have the same name
and in the other cases a blue cross, annotated with the nick-names of the avatars.

The only FP in this list is a couple of avatars that belong to the player known as
aLive5. We also report on other three measures, namely P@10 (precision in the
first 10 elements of the ranking), mean average precision (MAP), the receiver
operating characteristic (ROC) and the ROC area under the curve (AUC).

Identifying multiple aliases. The goal of these experiments is to assess our
approach for finding avatar aliases based of the evaluation introduced above.
For generating datasets, we have selected three different τ values, namely 30, 60
and 90 seconds. We have picked the same values for θ as in the previous exper-
iments. Surrogates were generated for the first 5, 10, 15 and 20 percent of the
most active users in the dataset (γ) and we have set the balance β = 0.5. For
each of the previously selected classifiers, the confusion matrix was processed
by the Sephirot addIntent implementation6 to obtain a set of pattern concepts.
Scoring and post processing were implemented in ad-hoc python scripts. Table 1
shows a summary for the evaluation results using the top 100 pairs of avatar
clusters. Results indicate that our approach is very efficient at identifying sur-
rogate avatars, particularly for KNN and the J48 classifiers achieving very high
recall values. In the upper part of the table, while precision is low it is worth
noticing that in the top 100, there are only 41 surrogates meaning that the max-
imum achievable precision is 0.41. The classifier KNN is particularly good in
this measure achieving an almost perfect value (0.4 of 0.41). All four classifiers
achieve a very high precision in the first 10 results (P@10) while two of them get
a perfect score. Indeed, one of the main characteristics of our approach is the
good ranking it generates over the avatar pairs. This fact is confirmed by the
good MAP and ROC area under the curve (AUC) values achieved by all four
classifiers. Both these measures slightly degrade when including in the set of true
positives URLs and names. This can be understood since not all avatars with
the same name necessarily belong to the same user. Thus, pairs of avatars with
the same name will be more evenly distributed over the ranking or can even be
found at the bottom indicating that they do not belong to the same user. This
fact is reflected in the gap between the high growth of precision and low degra-
dation of recall, i.e. avatars with the same name are distributed between the
pairs retrieved and those that were not. As we have discussed, avatars with the
same URL necessarily belong to the same user. Hence, we would have expected
that in the first 10 pairs retrieved we could find an even distribution of surro-
gates and URLs. Instead, for all classifiers, P@10 is more than 80% surrogates
(while the rest is always URLs - P@10 in the medium part of the table). Table 2
shows a summary of results when looking for just surrogates while varying the
balance in the distribution of traces between them. We can clearly observe that
the performance of the approach quickly degrades as more imbalanced gets the
distribution (the higher the β value). Actually, for some classifiers it is not pos-
sible to obtain a single good result, even when we have lowered the λ threshold
to 0.8. As URLs are not necessarily balanced, classifiers tend to predict the label
of a trace belonging to an avatar with less traces to one with more traces. Issues

5 http://wiki.teamliquid.net/starcraft2/ALive
6 https://code.google.com/p/sephirot/

related to learning from imbalanced datasets are reviewed in [3] and need to be
considered when selecting a proper classifier for our particular application.

Parameters: γ = 0.2, θ = 20, λ = 0.9, τ = 90

SUG
Cl F1 MAP Recall AUC Prec. P@10
j48 0.468 0.824 0.805 0.904 0.33 1.0
nbayes 0.226 0.740 0.390 0.915 0.16 0.8
smo 0.312 0.971 0.536 0.993 0.22 1.0
knn 0.567 0.822 0.976 0.882 0.4 0.9

SUG & URLS
Cl F1 MAP Recall AUC Prec. P@10
j48 0.588 0.907 0.606 0.866 0.57 1.0
nbayes 0.443 0.857 0.457 0.864 0.43 1.0
smo 0.257 0.912 0.266 0.945 0.25 1.0
knn 0.670 0.937 0.691 0.874 0.65 1.0

SUG & URLS & Names
Cl F1 MAP Recall AUC Prec. P@10
j48 0.689 0.983 0.606 0.935 0.8 1.0
nbayes 0.560 0.943 0.492 0.906 0.65 1.0
smo 0.258 0.949 0.227 0.960 0.3 1.0
knn 0.758 0.967 0.667 0.792 0.88 1.0

Table 1. Main results

Parameters: γ = 0.2, θ = 20, λ = 0.8, τ = 90

J48
Balance F1 MAP Recall AUC Prec. P@10
β = 0.5 0.925 0.996 0.929 0.955 0.920 1.0
β = 0.6 0.545 0.927 0.632 0.921 0.480 1.0
β = 0.7 0.053 0.695 0.077 0.977 0.040 0.3

Naive Bayes
Balance F1 MAP Recall AUC Prec. P@10
β = 0.5 0.472 0.902 0.475 0.953 0.470 0.9
β = 0.6 0.273 0.923 0.316 0.973 0.240 1.0
β = 0.7 0.197 0.9 0.288 0.978 0.150 0.9
β = 0.8 0.048 0.533 0.120 0.983 0.030 0.3

SMO
Balance F1 MAP Recall AUC Prec. P@10
β = 0.5 0.392 0.983 0.394 0.992 0.390 1.0

KNN
Balance F1 MAP Recall AUC Prec. P@10
β = 0.5 0.905 0.964 0.909 0.732 0.9 1.0
β = 0.6 0.750 0.957 0.868 0.929 0.660 1.0
β = 0.7 0.184 0.706 0.269 0.949 0.140 0.7

Table 2. Varying surrogate balance (β)

5 Conclusion

We introduced the problem of avatar aliases identification when there exists no
mapping between individuals and their avatars. This is an important problem
for game editors, but also for e-sport structures. Our method relies on the fact
that behavioural data hide individual characteristic patterns, which allows mak-
ing predictive approaches very accurately. Nevertheless, this good performance
quickly degrades when data hides avatar aliases, which is why we based our anal-
ysis on confusion matrices. As future work, we plan to study other competitive
games, and how biclustering could tackle the problem. We also believe that our
approach can be used to solve other application problems, such as identifying
users on different devices (smart-phones, tablet, computer, etc.) regarding the
usage traces they left.

References

1. Benhard Ganter and Rudolph Wille. Formal Concept Analysis. Springer, 1999.
2. Bernhard Ganter and Sergei O. Kuznetsov. Pattern structures and their projections.

In International Conference on Conceptual Structures (ICCS). Springer, 2001.
3. Haibo He and Edwardo A. Garcia. Learning from imbalanced data. IEEE Trans.

on Knowl. and Data Eng., 2009.
4. Dean van der Merwe, Sergei Obiedkov, and Derrick Kourie. AddIntent: A New

Incremental Algorithm for Constructing Concept Lattices. In Concept Lattices.
Berlin/Heidelberg, 2004.

5. Eddie Q. Yan, Jeff Huang, and Gifford K. Cheung. Masters of control: Behavioral
patterns of simultaneous unit group manipulation in starcraft 2. In ACM Conference
on Human Factors in Computing Systems (CHI), 2015.

