
Long-Term Memory Networks for Question Answering

Fenglong Ma1∗, Radha Chitta2∗, Saurabh Kataria3∗

Jing Zhou2∗, Palghat Ramesh4, Tong Sun5∗, Jing Gao1

1SUNY Buffalo, 2Conduent Labs US, 3LinkedIn
4PARC, 5United Technologies Research Center

{fenglong, jing}@buffalo.edu, {radha.chitta, jing.zhou}@conduent.com
saurabh.cse05@gmail.com, palghat.ramesh@parc.com, sunt@utrc.utc.com

Abstract

Question answering is an important and dif-
ficult task in the natural language process-
ing domain, because many basic natural lan-
guage processing tasks can be cast into a ques-
tion answering task. Several deep neural net-
work architectures have been developed re-
cently, which employ memory and inference
components to memorize and reason over text
information, and generate answers to ques-
tions. However, a major drawback of many
such models is that they are capable of only
generating single-word answers. In addition,
they require large amount of training data to
generate accurate answers. In this paper, we
introduce the Long-Term Memory Network
(LTMN), which incorporates both an exter-
nal memory module and a Long Short-Term
Memory (LSTM) module to comprehend the
input data and generate multi-word answers.
The LTMN model can be trained end-to-end
using back-propagation and requires minimal
supervision. We test our model on two syn-
thetic data sets (based on Facebook’s bAbI
data set) and the real-world Stanford ques-
tion answering data set, and show that it can
achieve state-of-the-art performance.

1 Introduction

Question answering (QA), a challenging problem
which requires an ability to understand and analyze

∗Work carried out while at PARC, a Xerox Company.

Copyright c© by the paper’s authors. Copying permitted for
private and academic purposes.

In: Proceedings of IJCAI Workshop on Semantic Machine
Learning (SML 2017), Aug 19-25 2017, Melbourne, Australia.

the given unstructured text, is one of the core tasks in
natural language understanding and processing. Many
problems in natural language processing, such as read-
ing comprehension, machine translation, entity recog-
nition, sentiment analysis, and dialogue generation,
can be cast as question answering problems.

Traditional question answering approaches can
be categorized as: (i) IR-based question answering
[Paş03] where the question is formulated as a search
query, and a short text segment is found on the Web
or similar corpus for the answer; (ii) Knowledge-based
question answering [GJWCL61, BCFL13], which aims
to answer a natural language question by mapping it
to a semantic query over a database.

The traditional approaches are simple query-based
techniques. It is difficult to establish the relationships
between the sentences in the input text, and derive a
meaningful representation of the information within
the text using these traditional question-answering
systems.

Figure 1 shows an example of question answering
task. The sentences in black are facts that may be
relevant to the questions, questions are in blue, and
the correct answers are in red. In order to correctly
answer the question “What did Steve Jobs offer Xerox
to visit and see their latest technology?”, the model
should have the ability to recognize that the sentence
“After hearing of the pioneering GUI technology being
developed at Xerox PARC, Jobs had negotiated a visit
to see the Xerox Alto computer and its Smalltalk de-
velopment tools in exchange for Apple stock options.”
is a supporting fact and extract the relevant portion of
the supporting fact to form the answer. In addition,
the model should have the ability to memorize all the
facts that have been presented to it until the current
time, and deduce the answer.

The authors of [WCB15] proposed a new class of
learning models named Memory Networks (MemNN),
which use a long-term memory component to store

1: Burrel’s innovative design, which
combined the low production cost of an
Apple II with the computing power of
Lisa’s CPU, the Motorola 68K, received
the attention of Steve Jobs, co-founder
of Apple.
2: Realizing that the Macintosh was
more marketable than the Lisa, he began
to focus his attention on the project.
3: Raskin left the team in 1981 over a
personality conflict with Jobs.
4: Why did Raskin leave the Apple team
in 1981? over a personality conflict
with Jobs
5: Team member Andy Hertzfeld said that
the final Macintosh design is closer to
Jobs’ ideas than Raskin’s.
6: According to Andy Hertzfeld, whose
idea is the final Mac design closer to?
Jobs
7: After hearing of the pioneering GUI
technology being developed at Xerox
PARC, Jobs had negotiated a visit to
see the Xerox Alto computer and its
Smalltalk development tools in exchange
for Apple stock options.
8: What did Steve Jobs offer Xerox to
visit and see their latest technology?
Apple stock options

Figure 1: Example of a question answering task.

information and an inference component for reason-
ing. [KIO+16] proposed the Dynamic Memory Net-
work (DMN) for general question answering tasks,
which processes input sentences and questions, forms
episodic memories, and generates answers. These two
approaches are strongly supervised, i.e., only the
supporting facts (factoids) are fed to the model as in-
puts for training the model for each type of question.
For example, when training the model with the ques-
tion in the fourth line of Figure 1, strongly supervised
methods only use the sentence in line 3 as input. Thus,
these methods require a large amount of training data.

To tackle this issue, [SWF+15] introduced a weakly
supervised approach called End-to-End Memory
Network (MemN2N), which uses all the sentences that
have appeared before this question. For the above ex-
ample, the inputs are the sentences from line 1 to line
3 when training for the question in the fourth line.
MemN2N is trained end-to-end and uses an attention
mechanism to calculate the matching probabilities be-
tween the input sentences and questions. The sen-
tences which match the question with high probability
are used as the factoids for answering the question.

However, this model is capable of generating only
single-word answers. For example, the answer of the
question “According to Andy Hertzfeld, whose idea is

the final Mac design closer to?” in Figure 1 is only
one word “Jobs”. Since the answers of many questions
contain multiple words (for instance, the question
labeled 4 in Figure 1), this model cannot be directly
applied to the general question answering tasks.

Recurrent neural networks comprising Long Short
Term Memory Units have been employed to gener-
ate multi-word text in the literature [Gra13, SVL14].
However, simple LSTM based recurrent neural net-
works do not perform well on the question-answering
task due to the lack of an external memory compo-
nent which can memorize and contextualize the facts.
We present a more sophisticated recurrent neural net-
work architecture, named Long-Term Memory Net-
work (LTMN), which combines the best aspects of
end-to-end memory networks and LSTM based recur-
rent neural networks to address the challenges faced
by the currently available neural network architectures
for question-answering. Specifically, it first embeds the
input sentences (initially encoded using a distributed
representation learning mechanism such as paragraph
vectors [LM14]) in a continuous space, and stores them
in memory. It then matches the sentences with the
questions, also embedded into the same space, by per-
forming multiple passes through the memory, to obtain
the factoids which are relevant to each question. These
factoids are then employed to generate the first word
of the answer, which is then input to an LSTM unit.
The LSTM unit is used to generate the subsequent
words in the answer. The proposed LTMN model can
be trained end-to-end, requires minimal supervision
during training (i.e., weakly supervised), and gener-
ates multiple words answers. Experimental results on
two synthetic datasets and one real world dataset show
that the proposed model outperforms the state-of-the-
art approaches.

In summary, the contributions of this paper are as
follows:

• We propose an effective neural network architec-
ture for general question answering, i.e. for gen-
erating multi-word answers for questions. Our ar-
chitecture combines the best aspects of MemN2N
and LSTM and can be trained end-to-end.

• The proposed architecture employs distributed
representation learning techniques (e.g. para-
graph2vec) to learn vector representations for sen-
tences or factoids, questions and words, as well as
their relationships. The learned embeddings con-
tribute to the accuracy of the answers generated
by the proposed architecture.

• We generate a new synthetic dataset with multiple
word answers based on Facebook’s bAbI dataset

[WBC+16]. We call this the multi-word answer
bAbI dataset.

• We test the proposed architecture on two syn-
thetic datasets (the single-word answer bAbI
dataset and the multi-word answer bAbI dataset),
and the real-world Stanford question answering
dataset [RZLL16]. The results clearly demon-
strate the advantages of the proposed architecture
for question answering.

2 Related Work

In this section, we review literature closely related to
question answering, particularly focusing on models
using memory networks to generate answers.

2.1 Question Answering

Traditional question answering approaches mainly
include two categories: IR-based [Paş03] and
Knowledge-based question answering [GJWCL61,
BCFL13]. IR-based question answering systems use
information retrieval techniques to extract information
(i.e., answers) from documents. These methods first
process questions, i.e., detect named entities in ques-
tions, and then predict answer types, such as cities’
names or person’s names. After recognizing answer
types, these approaches generate queries, and extract
answers from the web using the generated queries.
These approaches are easy, but they ignore the seman-
tics between questions and answers.

Knowledge-based question answering systems
[ZC05, BL14, ZHLZ16] consider the semantics and use
existing knowledge bases, such as Freebase [BEP+08]
and DBpedia [BLK+09]. They cast the question
answering task as that of finding one of the missing
arguments in a triple. Most of knowledge-based
question answering approaches use neural networks,
dependency trees and knowledge bases [BGWB12] or
sentences [IBGC+14].

Using traditional question answering approaches, it
is difficult to establish the relationship between sen-
tences in the input text, and thereby identify the rel-
evance of the different sentences to the question. Of
late, several neural network architectures with memo-
ries have been proposed to solve this challenging prob-
lem.

2.2 Memory Networks

Several deep neural network models use memory archi-
tectures [SWF+15, KIO+16, WCB15, GWD14, JM15,
MD93] and attention mechanisms for image captioning
[YJW+16], machine comprehension [WGL+16] and

healthcare data mining [MCZ+17, SMC+17]. We fo-
cus on the models using memory networks for natural
language question answering.

Memory networks (MemNN), proposed in
[WCB15], first introduced the concept of an ex-
ternal memory component for natural language
question answering. They are strongly supervised,
i.e., they are trained with only the supporting facts
for each question. The supporting input sentences are
embedded in memory, and the response is generated
from these facts by scoring all the words in the
vocabulary in correlation with the facts. This scoring
function is learnt during the training process and
employed during the testing phase. MemNN are
capable of producing only single-word answers, due
to this response generation mechanism. In addition,
MemNN cannot be trained end-to-end.

The authors of [KIO+16] improve over MemNN
by introducing an end-to-end trainable network called
Dynamic Memory Networks (DMN). DMN have four
modules: input module, question module, episodic
memory module and answer module. The input mod-
ule encodes raw text inputs into distributed vector rep-
resentations using a gated recurrent network (GRU)
[CVMBB14]. The question module similarly encodes
the question using a recurrent neural network. The
sentences and question representations are fed to the
episodic memory module, which chooses the sentences
to focus on using the attention mechanism. It itera-
tively produces a memory vector, representing all the
relevant information, which is then used by the answer
module to generate the answer using a GRU. How-
ever, DMN are also strongly supervised like MemNN,
thereby requiring a large amount of training data.

End-to-End Memory Networks (MemN2N)
[SWF+15] first encode sentences into continuous
vector representations, then use a soft attention mech-
anism to calculate matching probabilities between
sentences and questions and find the most relevant
facts, and finally generate responses using the vocab-
ulary from these facts. Unlike the MemNN and DMN
architectures, MemN2N can be trained end-to-end
and are weakly supervised. However, the drawback of
MemN2N is that it only generates answers with one
word. The proposed LTMN architecture improves
over the existing network architectures because (i) it
can be trained end-to-end, (ii) it is weakly supervised,
and (iii) can generate answers with multiple words.

3 Long-Term Memory Networks

In this section, we describe the proposed Long-Term
Memory Network, shown in Figure 2. It includes four
modules: input module, question module, memory
module and answer module. The input module en-

Burrel's innovative

design … co-founder

of Apple.

Realizing that … his

attention on the

project.

Raskin left the team

in 1981 over a

personality conflict

with Jobs.

Sentence

representation

Matching Probability Vector

Word Embeddings

Why did Raskin leave the Apple team in

1981?

Sentence

representation

sentence

representation

Question

representation

LSTM

over

LSTM LSTM LSTM

a Jobs <EOS>
Output of

MemN2N

L

L

Input Module Question Module

Memory Module Answer Module

Figure 2: The proposed LTMN model.
codes raw text data (i.e., sentences) into vector rep-
resentations. Similarly, the question module also en-
codes questions into vector representations. The input
and question modules can use the same or different
encoding methods. Given the input sentences’ repre-
sentations, the memory module calculates the match-
ing probabilities between the question representation
and the sentence representations, and then outputs
the weighted sum of the sentence representations and
matching probabilities. Using this weighted sum vec-
tor and the question representation, the answer mod-
ule finally generates the answer for the question.

3.1 Input Module and Question Module

Let {xi}ni=1 represent the set of input sentences. Each
sentence xi ∈ R|V | contains words belonging to a dic-
tionary V , and ends with an end-of-sentence token
<EOS>. The goal of the input module is to encode
sentences into vector representations. The question
module, like the input module, aims to encode each
question q ∈ R|V | into a vector representation. Specif-
ically, we use a matrix A ∈ Rd×|V | to embed sentences
and B ∈ Rd×|V | for questions.

Several methods have been proposed to encode the
input sentences or questions. In [SWF+15], an em-
bedding matrix is employed to embed the sentences in
a continuous space and obtain the vector representa-
tions. [KIO+16, Elm91] use a recurrent neural network
to encode the input sentences into vector representa-
tions. Our objective is to learn the co-occurrence and
sequence relationships between words in the text in
order to generate a coherent sequence of words as an-
swers. Thus, we employ a distributed representation
learning technique, such as paragraph vectors (para-
graph2vec) model [LM14] to pre-train A and B (with
A = B) for the real-word SQuAD dataset, which takes
into account the order and semantics among words to
encode the input sentences and questions1. For syn-
thetic datasets, which are based on a small vocabulary,

1We use paragraph2vec in our implementation. Other repre-
sentation learning mechanisms may be employed in the proposed
LTMN model.

the embedding matrices A and B are learnt via back-
propagation.

3.2 Memory Module

The input sentences {xi}ni=1 are embedded using the
matrix A as mi = Axi, i = 1, 2, . . . , n;mi ∈ Rd and
stored in memory. Note that we use all the sentences
before the question as input, which implies that the
proposed model is weakly supervised. The question
q is also embedded using the matrix B as u = Bq;u ∈
Rd. The memory module then calculates the matching
probabilities between the sentences and the question,
by computing the inner product followed by a softmax
function as follows:

pi = softmax(uTmi), (1)

where softmax(zi) = ezi/
∑

j e
zj . The probability pi

is expected to be high for all the sentences xi that are
related to the question q.

The output of the memory module is a vector
o ∈ Rd, which can be represented by the sum over in-
put sentence representations, weighted by the match-
ing probability vector as follows:

o =
∑
i

pimi. (2)

This approach, known as the soft attention mecha-
nism, has been used by [SWF+15, BCB15]. The ben-
efit of this approach is that it is easy to compute gra-
dients and back-propagate through this function.

3.3 Answer Module

Based on the output vector o from the memory mod-
ule and the word representations from input module,
the answer module generates answers for questions.
As our objective is to generate answers with mul-
tiple words, we employ Long Short Term Memory
Networks (LSTM) [HS97] to generate answers.

The core of the LSTM neural network is a mem-
ory unit whose behavior is controlled by a set of three
gates: input, output and forget gates. The memory

unit accumulates the knowledge from the input data
at each time step, based on the values of the gates,
and stores this knowledge in its internal state. The
initial input to the LSTM is the embedding of the
begin-of-answer (<BOA>) token and its state. We
use the output of the memory module o, the question
representation u, a weight matrix W (o) and bias bo to
generate the embedding of <BOA> a0 as follows:

a0 = softmax(W (o)(o+ u) + bo). (3)

Using a0 and the initial state s0, LSTM can generate
the first word w1 and its corresponding predicted out-
put y1 and state s1. At each time step t, LSTM takes
the embedding of word wt−1 and last hidden state st−1
as input to generate the new word wt.

vt = [wt−1] (4)

it = σ(Wivvt +Wimyt−1 + bi) (5)

ft = σ(Wfvvt +Wfmyt−1 + bf) (6)

ot = σ(Wovvt +Womyt−1 + bo) (7)

st = ft � st−1 + it � tanh(Wsvvt +Wsmyt−1) (8)

yt = ot � st (9)

wt = argmax
[
softmax(W (t)yt + bt)

]
(10)

where [wt] is the embedding of word wt learnt from
the input module, σ and � denote the sigmoid func-
tion and Hadamard product respectively, and W (t) is
a weight matrix and bt is a bias vector.

The model is trained end-to-end with the loss de-
fined by the cross-entropy between the true answer
and the predicted output wt, represented using one-
hot encoding. The predicted answer is generated by
concatenating all the words generated by the model.

4 Experiments

In this section, we compare the performance of the
proposed LTMN model with the current state-of-the-
art models for question answering.

4.1 Datasets

We use three datasets: the real-world Stanford ques-
tion answering dataset (SQuAD) [RZLL16], the syn-
thetic single-word answer bAbI dataset [WBC+16],
and the synthetic multi-word answer bAbI dataset,
generated by performing vocabulary replacements in
the single-word answer bAbI dataset.

Stanford Question Answering Dataset
(SQuAD) [RZLL16] contains 100,000+ questions
labeled by crowd workers on a set of Wikipedia
articles. The answer for each question is a segment

of text from the corresponding paragraph. In order
to convert the format of the data to the input format
of our model (shown in Figure 1) , we use NLTK
to detect the boundary of sentences and assign an
index to each sentence and question, in accordance
with the starting index of the answer provided by the
crowd workers. The dataset is thus transformed to
a question answer dataset containing 18, 893 stories
and 69, 523 questions2. For our experiments, we
randomly selected 1, 248 questions for training and
1, 248 questions for testing. Each answer contains less
than or equal to five words.

The single-word answer bAbI
dataset [WBC+16] is a synthetic dataset cre-
ated to benchmark question answering models. It
contains 20 types of question answer tasks, and each
task is comprising a set of statements followed by a
single-word answer. For each question, only some of
the statements contain the relevant information. The
training and test data contains 1, 000 examples for
each task.

The multi-word answer bAbI dataset. As
the goal of the proposed model is to generate multi-
word answers, we manually generated a new dataset
from the Facebook bAbI dataset, by replacing few
words, such as “bedroom” and “bathroom” with
“guest room”, and “shower room”, respectively. The
replacements are listed in Table 1.

Table 1: Replacements made in the vocabulary of the
bAbI dataset to generate the multi-word answer bAbI
dataset.

Original word Replacement

hallway entrance way
bathroom shower room
office computer science office
bedroom guest room
milk hot water
Bill Bill Gates
Fred Fred Bush
Mary Mary Bush
green bright green
yellow bright yellow
hungry extremely hungry
tired extremely tired

4.2 Parameters and Baselines

We use 10% of the training data for model valida-
tion to choose the best parameters. The best per-
formance was obtained when the learning rate was set
to 0.002, the batch size set to 32, and the weights ini-
tialized randomly from a Gaussian distribution with

2The dataset can be downloaded from http://www.acsu.
buffalo.edu/˜fenglong/

zero mean and 0.1 variance. The model was trained
for 200 epochs. The paragraph2vec model was set to
generate 100-dimensional representations for the input
sentences and the questions.

We first compare the performance of the proposed
LTMN model with a simple Long Short Term Memory
network (LSTM) model, as implemented in [SVL14] to
predict sequences. The LSTM model works by reading
the story until it comes across a question and outputs
an answer, using the information obtained from the
sentences read so far. Unlike the LTMN model, it
does not have an external memory component. We
also compare its performance

On the single-word answer bAbI dataset, we also
compare our results with those of the attention based
LSTM model (LSTM + Attention) [HKG+15], which
propagates dependencies between input sentences us-
ing an attention mechanism, MemNN [WCB15],
DMN [KIO+16], and MemN2N [SWF+15]. These
models cannot be applied as-is to the SQuAD and
multi-word answer bAbI datasets because they are
only capable of generating single-word answers.

4.3 Evaluation Measures

In order to evaluate the performance of all the meth-
ods, the following measurements are used:

• Exact Match Accuracy (EMA) represents the ra-
tio of predicted answers which exactly match the
true answers.

• Partial Match Accuracy (PMA) is the ratio of gen-
erated answers that partially match the correct
answers.

• BLEU score [CC14], widely used to evaluate ma-
chine translation models, measures the quality of
the generated answers.

Table 2: Test accuracy on the SQuAD dataset.

Measure LSTM LTMN

EMA 8.3 10.6
BLEU 12.4 17.0
PMA 22.8 27.4

4.4 Results

The performance of the LTMN model is shown in Ta-
bles 2, 3, and 4 on the SQuAD, single-word answer
bAbI and multi-word answer bAbI datasets, respec-
tively.

We observe that LTMN performs better than LSTM
in terms of all three evaluation measures, on all the
datasets. On the SQuAD dataset, as the vocabu-
lary is large (8, 969), the LSTM model cannot learn

the embedding matrices accurately, leading to its poor
performance. However, as the LTMN model employs
paragraph2vec, it learns richer vector representations
of the sentences and questions. In addition, it can
memorize and reason over the facts better than the
simple LSTM model. On the multi-word answer bAbI
dataset, the LTMN model is significantly better than
the LSTM model, especially on tasks 1, 4, 12, 15, 19,
and 20. The average EMA, BLEU, and PMA scores of
LTMN are about 30% higher than those of the LSTM
model. The single-word answer bAbI dataset’s vo-
cabulary is small (about 20), so we learn the embed-
ding matrices A and B using back-propagation, in-
stead of using paragraph2vec to obtain the vector rep-
resentations. In Table 3, we observe that the LTMN
model achieves accuracy close to the strongly super-
vised MemNN and DMN models on 4 out of the
20 bAbI tasks, despite being weakly supervised, and
achieves better accuracy than the weakly-supervised
LSTM+Attention and MemN2N on 7 tasks. The pro-
posed LTMN model also offers the additional capa-
bility of generating multi-word answers, unlike these
baseline models.

5 Conclusions

Question answering is an important and challenging
task in natural language processing. Traditional ques-
tion answering approaches are simple query-based ap-
proaches, which cannot memorize and reason over the
input text. Deep neural networks with memory have
been employed to alleviate this challenge in the liter-
ature.

In this paper, we proposed the Long-Term Memory
Network, a novel recurrent neural network, which can
encode raw text information (the input sentences and
questions) into vector representations, form memories,
find relevant information in the input sentences to an-
swer the questions, and finally generate multi-word an-
swers using a long short term memory network. The
proposed architecture is a weakly supervised model
and can be trained end-to-end. Experiments on both
synthetic and real-world datasets demonstrate the re-
markable performance of the proposed architecture.

In our experiments on the bAbI question & answer-
ing tasks, we found that the proposed model fails to
perform as well as the completely supervised memory
networks on certain tasks. In addition, the model per-
forms poorly when the input sentences are very long
and the vocabulary is large, as it cannot calculate the
supporting facts efficiently. In the future, we plan to
expand the model to handle long input sentences, and
improve the performance of the proposed network.

Table 3: Test accuracy (EMA) on the single-word answer bAbI dataset

Task
Weakly Supervised Strongly Supervised

LSTM LSTM + Attention MemN2N LTMN MemNN DMN

1: Single Supporting Fact 50 98.1 96 98.2 100 100
2: Two Supporting Facts 20 33.6 61 41.6 100 98.2
3: Three Supporting Facts 20 25.5 30 23.8 100 95.2
4: Two Argument Relations 61 98.5 93 98.1 100 100
5: Three Argument Relations 70 97.8 81 79.5 98 99.3
6: Yes/No Questions 48 55.6 72 81.8 100 100
7: Counting 49 80.0 80 80.2 85 96.9
8: Lists/Sets 45 92.1 77 72.6 91 96.5
9: Simple Negation 64 64.3 72 65.4 100 100
10: Indefinite Knowledge 46 57.2 63 87.0 98 97.5
11: Basic Coreference 62 94.4 89 84.7 100 99.9
12: Conjunction 74 93.6 92 97.9 100 100
13: Compound Coreference 94 94.4 93 90.3 100 99.8
14: Time Reasoning 27 75.3 76 74.3 99 100
15: Basic Deduction 21 57.6 100 100 100 100
16: Basic Induction 23 50.4 46 43.5 100 99.4
17: Positional Reasoning 51 63.1 57 57.0 65 59.6
18: Size Reasoning 52 92.7 90 90.7 95 95.3
19: Path Finding 8 11.5 9 11.4 36 34.5
20: Agent’s Motivations 91 98.0 100 100 100 100

Mean (%) 48.8 71.7 73.9 73.9 93.4 93.6

Table 4: Test accuracy on the multi-word answer bAbI dataset.

Task
LSTM LTMN

EMA BLEU PMA EMA BLEU PMA

1: Single Supporting Fact 36.5 38.8 41.1 97.0 97.2 97.3
2: Two Supporting Facts 26.6 29.7 32.7 31.3 34.5 37.6
3: Three Supporting Facts 17.1 20.3 23.6 24.5 27.2 29.8
4: Two Argument Relations 48.2 50.1 51.9 97.9 98.0 98.0
5: Three Argument Relations 45.3 49.3 53.2 77.9 80.1 82.2
6: Yes/No Questions 53.8 53.8 53.8 66.1 66.1 66.1
7: Counting 69.5 69.5 69.5 78.4 78.4 78.4
8: Lists/Sets 62.1 66.7 71.8 82.1 85.6 89.3
9: Simple Negation 57.4 57.4 57.4 69.2 69.2 69.2
10: Indefinite Knowledge 44.4 44.4 44.4 84.7 84.7 84.7
11: Basic Coreference 33.1 35.1 37.0 83.3 83.7 84.0
12: Conjunction 33.1 35.7 38.2 99.3 99.3 99.4
13: Compound Coreference 33.6 35.8 37.9 87.7 88.5 89.2
14: Time Reasoning 24.6 24.6 24.6 74.4 74.4 74.4
15: Basic Deduction 46.4 46.4 46.4 100 100 100
16: Basic Induction 46.8 51.6 56.3 42.4 47.0 51.6
17: Positional Reasoning 55.1 55.1 55.1 55.5 55.5 55.5
18: Size Reasoning 51.9 51.9 51.9 89.6 89.6 89.6
19: Path Finding 8.1 35.1 56.4 11.3 59.1 100
20: Agent’s Motivations 83.3 84.6 85.3 100 100 100

Mean (%) 42.2 46.8 49.4 72.6 75.9 78.8

References

[BCB15] Dzmitry Bahdanau, Kyunghyun Cho, and
Yoshua Bengio. Neural machine translation
by jointly learning to align and translate. In
ICLR, 2015.

[BCFL13] Jonathan Berant, Andrew Chou, Roy
Frostig, and Percy Liang. Semantic parsing
on freebase from question-answer pairs. In
EMNLP, 2013.

[BEP+08] Kurt Bollacker, Colin Evans, Praveen Par-

itosh, Tim Sturge, and Jamie Taylor.
Freebase: a collaboratively created graph
database for structuring human knowledge.
In SIGMOD, 2008.

[BGWB12] Antoine Bordes, Xavier Glorot, Jason We-
ston, and Yoshua Bengio. Joint learning of
words and meaning representations for open-
text semantic parsing. In AISTATS, 2012.

[BL14] Jonathan Berant and Percy Liang. Semantic
parsing via paraphrasing. In ACL, 2014.

[BLK+09] Christian Bizer, Jens Lehmann, Georgi Kobi-
larov, Sören Auer, Christian Becker, Richard
Cyganiak, and Sebastian Hellmann. Dbpedia
- a crystallization point for the web of data.
Web Semant, 2009.

[CC14] Boxing Chen and Colin Cherry. A system-
atic comparison of smoothing techniques for
sentence-level bleu. In SMT, 2014.

[CVMBB14] Kyunghyun Cho, Bart Van Merriënboer,
Dzmitry Bahdanau, and Yoshua Bengio. On
the properties of neural machine translation:
Encoder-decoder approaches. arXiv preprint
arXiv:1409.1259, 2014.

[Elm91] Jeffrey L Elman. Distributed representations,
simple recurrent networks, and grammatical
structure. Machine learning, 1991.

[GJWCL61] Bert F Green Jr, Alice K Wolf, Carol Chom-
sky, and Kenneth Laughery. Baseball: an au-
tomatic question-answerer. In Western joint
IRE-AIEE-ACM computer conference, 1961.

[Gra13] Alex Graves. Generating sequences with
recurrent neural networks. arXiv preprint
arXiv:1308.0850, 2013.

[GWD14] Alex Graves, Greg Wayne, and Ivo Dani-
helka. Neural turing machines. arXiv
preprint arXiv:1410.5401, 2014.

[HKG+15] Karl Moritz Hermann, Tomas Kocisky, Ed-
ward Grefenstette, Lasse Espeholt, Will
Kay, Mustafa Suleyman, and Phil Blunsom.
Teaching machines to read and comprehend.
In NIPS, 2015.

[HS97] Sepp Hochreiter and Jürgen Schmidhuber.
Long short-term memory. Neural computa-
tion, 1997.

[IBGC+14] Mohit Iyyer, Jordan L Boyd-Graber,
Leonardo Max Batista Claudino, Richard
Socher, and Hal Daumé III. A neural
network for factoid question answering over
paragraphs. In EMNLP, 2014.

[JM15] Armand Joulin and Tomas Mikolov. Inferring
algorithmic patterns with stack-augmented
recurrent nets. In NIPS, 2015.

[KIO+16] Ankit Kumar, Ozan Irsoy, Peter Ondruska,
Mohit Iyyer, James Bradbury, Ishaan Gul-
rajani, Victor Zhong, Romain Paulus, and

Richard Socher. Ask me anything: Dynamic
memory networks for natural language pro-
cessing. In ICML, 2016.

[LM14] Quoc V Le and Tomas Mikolov. Distributed
representations of sentences and documents.
In ICML, 2014.

[MCZ+17] Fenglong Ma, Radha Chitta, Jing Zhou,
Quanzeng You, Tong Sun, and Jing Gao.
Dipole: Diagnosis prediction in healthcare
via attention-based bidirectional recurrent
neural networks. In KDD, 2017.

[MD93] Michael C Mozer and Sreerupa Das. A con-
nectionist symbol manipulator that discovers
the structure of context-free languages. In
NIPS, 1993.

[Paş03] Marius Paşca. Open-domain question an-
swering from large text collections. Compu-
tational Linguistics, 2003.

[RZLL16] Pranav Rajpurkar, Jian Zhang, Konstantin
Lopyrev, and Percy Liang. Squad: 100,000+
questions for machine comprehension of text.
arXiv preprint arXiv:1606.05250, 2016.

[SMC+17] Qiuling Suo, Fenglong Ma, Giovanni Canino,
Jing Gao, Aidong Zhang, Pierangelo Veltri,
and Agostino Gnasso. A multi-task frame-
work for monitoring health conditions via
attention-based recurrent neural networks. In
AMIA, 2017.

[SVL14] Ilya Sutskever, Oriol Vinyals, and Quoc V
Le. Sequence to sequence learning with neu-
ral networks. In NIPS, 2014.

[SWF+15] Sainbayar Sukhbaatar, Jason Weston, Rob
Fergus, et al. End-to-end memory networks.
In NIPS, 2015.

[WBC+16] Jason Weston, Antoine Bordes, Sumit
Chopra, Alexander M Rush, Bart van
Merriënboer, Armand Joulin, and Tomas
Mikolov. Towards ai-complete question an-
swering: A set of prerequisite toy tasks. In
ICLR, 2016.

[WCB15] Jason Weston, Sumit Chopra, and Antoine
Bordes. Memory networks. In ICLR, 2015.

[WGL+16] Bingning Wang, Shangmin Guo, Kang Liu,
Shizhu He, and Jun Zhao. Employing exter-
nal rich knowledge for machine comprehen-
sion. In IJCAI, 2016.

[YJW+16] Quanzeng You, Hailin Jin, Zhaowen Wang,
Chen Fang, and Jiebo Luo. Image captioning
with semantic attention. In CVPR, 2016.

[ZC05] Luke S. Zettlemoyer and Michael Collins.
Learning to map sentences to logical form:
Structured classification with probabilistic
categorial grammars. In UAI, 2005.

[ZHLZ16] Yuanzhe Zhang, Shizhu He, Kang Liu, and
Jun Zhao. A joint model for question answer-
ing over multiple knowledge bases. In AAAI,
2016.

