

Satisfiability for First-order Logic

as a Non-Modal Deontic Logic

Robert Kowalski

 Imperial College London, United Kingdom

rak@doc.ic.ac.uk

Abstract. In modal deontic logics, the focus is on inferring logical

consequences, for example inferring whether or not an obligation O mail, to

mail a letter, logically implies O [mail burn] ,an obligation to mail or burn

the letter. Here I present an alternative approach in which obligations are

sentences (such as mail) in first-order logic (FOL), and the focus is on

satisfying those sentences by making them true in some best model of the

world. To facilitate this task and to make it manageable in this alternative

approach, models are defined by a logic program (LP) extended by means of

action assumptions (A). The resulting combination of FOL, LP and A is a

variant of abductive logic programming (ALP).

1 Goal satisfaction in FOL

In the abductive logic programming (ALP) approach of [8, 10], candidate

assumptions (A), representing actions and other “abducibles”, and logic programs

(LP), representing an agent’s beliefs, are combined with first-order logic (FOL),

representing an agent’s goals. However, this characterisation of ALP is potentially

misleading, because it fails to identify the primary role of goals, and the supporting

role of beliefs and assumptions in helping to make goals true. Here is a more abstract

characterisation, which is formulated entirely in terms of FOL, and does not mention

A or LP at all:

A goal satisfaction problem is a tuple G, M0, W where:

G is a set of sentences in FOL, representing goals.

M0 is a classical FOL model-theoretic structure,

representing a partial history of the world.

W is a set of classical FOL model-theoretic structures,

representing alternative extensions of M0.

MW satisfies a goal satisfaction problem G, M0, W if and only if

G is true in M.

We will see that the models M0 and W can be defined constructively, by using a logic

program P to define M0, and by using a set of candidate actions A to specify

alternative ways of extending M0. We will also see that it is possible to satisfy goals

without generating complete models, by using backward reasoning.

 There can be many models that satisfy the same goal satisfaction problem, and

some models may be better than others. Usual formulations of ALP ignore this fact,

and are neutral with respect to the choice between different models satisfying the

same goals. In contrast, in deontic logic, an agent is obliged to satisfy its goals in the

best way possible.

 To capture this normative character of deontic logic in FOL/ALP, we introduce

a partial ordering between the models in W.

mailto:rak@doc.ic.ac.uk

A normative goal satisfaction problem is a tuple G, M0, W, < where:

< is a strict partial ordering over W,

where M < M’ represents M’ being better than M.

MW satisfies a normative goal satisfaction problem G, M0, W, < if and only if

M satisfies the goal satisfaction problem G, M0, W and

there does not exist M’W such that M’ satisfies G, M0, W and M < M’.

There is an obvious relationship with the possible world semantics of modal logics:

W is like a frame of possible worlds. The extension of M0 to M is like the

accessibility relation between possible worlds. The partial ordering < is like the

preference relation in preference-based deontic logics, such as those of [5] and [14].

 However, whereas preference-based deontic logics build the preference relation

into the semantics, complicating the logic, here the partial ordering is external to the

logic, which is simply FOL. Moreover, while in modal logics, actions and events are

normally represented by labels on the accessibility relation, here they are “reified”,

as part of the record of a partial history of the world.

 Deontic logic, the logic of obligation, contrasts with alethic logic, the logic of

necessity. In alethic logic, a necessary truth cannot be falsified. But in deontic logic,

an obligation is a normative ideal. If an obligation is violated, the world does not

end, but the resulting world is less than ideal.

 The focus on deriving logical consequences in modal logics makes it difficult to

deal with violations, conflicting norms, and contrary-to-duty obligations. In contrast,

the focus on goal satisfaction in FOL/ALP turns these problems into pragmatic

choices between alternative models. Moreover, it makes it possible for an agent,

aspiring towards the normative deal, to fall short, but nonetheless succeed in

generating a best model possible with the limited resources available.

2 Logic programs as constructive definitions of models.

These definitions of goal satisfaction imply that, for an agent to satisfy its goals G,

whether in some best way or not, the agent needs to search the space of alternative

world histories W, to find some model M W of G. For this to be feasible in practice,

the models M W must be constructible, and the space W itself must be searchable.

This is where ALP comes in. Logic programs in ALP provide a constructive

representation of models, and an efficient way to guarantee truth in a model without

necessarily generating the model in its totality.

 In our variant of ALP, the given model M0 is defined by a logic program P, and

the space of candidate models MW is defined by logic programs P , where

 A and A is a set of ground atomic sentences representing candidate assumptions.

 In ordinary abduction, the goals G represent observations, and A represents

candidate, hypothetical external events that can be used to explain G. In default

reasoning, A represents assumptions that conditions are normal, and G represents

constraints that ensure conditions are not assumed to be normal if they are

exceptional. In deontic applications, G represents obligations and prohibitions, and

A represents candidate actions that can be used to satisfy G.

 In the simplest case, a logic program is a set of definite clauses of the form

conclusion condition1 … conditionn, where conclusion and each conditioni

is an atomic formula. All variables are universally quantified with scope the entire

clause. Every such set of definite clauses P has a unique minimal model M [3]. The

minimal model M can be viewed as the intended model of P, and P can be regarded

as a constructive definition of M.

 In LP, it is convenient to represent models M as Herbrand interpretations, which

are sets of atomic sentences representing all the atomic sentences that are true in M.

A Herbrand interpretation M of a logic program P is then a minimal model of P if

and only if M M’ for any other Herbrand model M’ of P. Minimal models can be

constructed by forward reasoning: using modus ponens to exhaustively derive

atomic sentences that are instances of the conclusions of clauses from atomic

sentences that are instances of the conditions of clauses.

 Forward reasoning can also be used to satisfy a goal: guessing a set of candidate

assumptions A, adding them to P, generating the minimal model M of P ,

and then checking whether M is also a model of G. However, this kind of reasoning

is not computationally feasible. It is not feasible to generate candidate blindly and

independently of G; nor is it feasible to generate models in their totality.

 In contrast, backward reasoning using SLD resolution [9] is computationally

feasible. It reasons backwards from G, reducing goals that match the conclusion of

a clause in P to subgoals that are the instantiated conditions of the clause. It continues

this process of goal-reduction, until all subgoals are solved directly either by atomic

sentences in P or by assumptions in A. In this way, backward reasoning generates

only assumptions that are relevant to satisfying G. Moreover, backward reasoning

does not generate a complete model, but generates only the assumptions , which

together with P determine the minimal model of P .

 In the following three, simple examples, the logic program P is either an empty

set of clauses {} or a singleton set containing the clause X = X. Backward reasoning

only identifies those assumptions/actions in A or those instances of X = X that are

needed to satisfy the goal. Moreover, in the first two examples, the preference

relation {} is empty. So all models are equally good.

3 Map colouring as goal satisfaction

The classic map colouring problem illustrates the use of FOL/ALP for goal

satisfaction. However, it can also be formulated in deontic terms:

 It is obligatory that every country is painted with a colour.

 It is forbidden to paint the same country two different colours.

 It is forbidden to paint two adjacent countries the same colour.

In FOL, the problem has the form G, M0, W, < where:

 G = { X [country(X) C [colour(C) paint(X, C)]],

 X C1 C2 [paint(X, C1) paint(X, C2) C1 = C2],

 X Y C ¬ [adjacent(X, Y) paint(X, C) paint(Y, C)] }

 W = {M0 | A} where A = {paint(X, C) | country(X), colour(C)}

 < = {}. i.e. all models are equally good.

The initial model M0 is given by a logic program that specifies the countries, the

colours, the adjacency relation, and the identity relation. For a simple problem with

two adjacent countries and two colours, this is given by the program P and its

minimal model M0:

 P = {country(iz), country(oz), adjacent(iz, oz), colour(red), colour(blue), X = X}

 M0 ={country(iz), country(oz), adjacent(iz, oz), colour(red), colour(blue),

 iz = iz, oz = oz, red = red, blue = blue}

Because the program P is so simple, the only difference between P and M0 is that P

contains a general clause X = X, whereas M0 contains all variable free instances of

the clause.

 There are exactly two models that satisfy the goals G, and both are equal good:

 M1 = M0 { paint (iz, red), paint (oz, blue)} and

 M2 = M0 { paint (iz, blue), paint (oz, red)}

The map colouring problem can also be expressed in modal deontic logic,

formalising the English statement of the problem. It would then be possible to infer

the following logical consequence:

 O [paint (iz, red) paint (oz, blue)]

 O [paint (iz, blue) paint (oz, red)]

which describes all solutions of the problem. It is not obvious how to infer a single

solution, which would be more useful in practice.

4 Ross’s Paradox

SDL (Standard Deontic Logic) is commonly used as a basis for comparison between

different deontic logics. It is a propositional logic with a modal operator O

representing obligation. Among the many problems of SDL, which also affects many

other deontic logics, is Ross’s Paradox [12].

 It is obligatory that the letter is mailed.

 If the letter is mailed, then the letter is mailed or the letter is burned.

i.e. O mail, mail mail burn.

In SDL it is a logical consequence of O mail that O [mail burn].

 As McNamara [11] puts it, “it seems rather odd to say that an obligation to mail

the letter entails an obligation that can be fulfilled by burning the letter (something

presumably forbidden), and one that would appear to be violated by not burning it if

I don't mail the letter”.

 The “Paradox” can be understood as another example of the inadequacy of logical

consequence for dealing with problems of satisfying obligations. Here is a

formulation of the paradox as a goal satisfaction problem G, M0, W, <:

 G = {mail, burn}

 M0 = {}

 W = {M0 | A} where A = {mail, burn}

 = {{}, {mail}, {burn}, {mail, burn}}

 < = {}.

P = {} and M0 is the minimal model of P.

 M = {mail} is the only minimal model that satisfies G. But mail burn is true in

M. So satisfying G, entails satisfying mail burn. But, contrary to suggestions that

may be associated with the fact that O [mail burn] is a logical consequence of

O mail, satisfying the goal mail burn does not satisfy the goal mail.

 Viewed in this way, Ross’s Paradox is not a paradox at all, but rather, as Fox [4]

also argues, a confusion between satisfying an obligation and implying that one

obligation is a logical consequence of another.

5 Chisholm’s Paradox

Ross’s Paradox and the map colouring problem do not show the need for preferences

between alternative models. However, the need for preferences arises with

Chisholm’s Paradox [2]:

 It ought to be that Jones goes to assist his neighbours.

 It ought to be that, if Jones goes, then he tells them he is coming.

 If Jones doesn't go, then he ought not tell them he is coming.

 Jones doesn't go.

 i.e. O go

 O (go → tell)

 ¬go → O ¬tell

 ¬go

Much of the discussion [1] in the deontic logic literature concerns the problems that

arise with alternative representations of the conditional obligations in the second and

third sentences. I will not repeat this discussion here, but will present the example as

a normative goal satisfaction problem G, M0, W, <:

 G = {go → tell, ¬go → ¬tell}

 M0 = {}

 W = {M0 | A} where A = {go, tell}

 = {{}, {go}, {tell}, {go, tell}}

 M < M’ if go M and go M’.

Here the “obligation” for Jones to go is represented by the preference for models in

which go is true over models in which go is false. There are two models M1 = {}

and M2 = {go, tell} that make G true. But M2 is better than M1. So only M2 satisfies

G, M0, W, <. This means that Jones must go and tell.

 Now suppose that Jones doesn’t go. We can represent this simply by removing

go from the candidate actions A, updating the problem to G, M0, W’, < where W’

= {{}, {tell}}. The only (and best) candidate model that now satisfies the updated

problem is the less than ideal model M1 = {}, which means that Jones must not tell,

as is intuitively correct.

 In a more realistic representation with explicit time, when we discover that Jones

doesn’t go, we would update M0 to a new world history in which going is no longer

an option. Notice that, in any case, whether we update M0, W or both, the solution

of the updated problem changes, even though the goals remain the same. This gives

the satisfiability problem for FOL a non-monotonic character, even though logical

consequence itself is monotonic.

6 LPS (Logical Production System)

The logic and computer language LPS [6, 7], is a scaled-down implementation of

ALP, intended for practical applications of goal satisfaction. Goals in LPS have the

simplified logical form of rules antecedent consequent, which are similar to

condition-action rules in production systems [13]. All variables in the antecedent of

a rule are universally quantified with scope the entire rule, and all variables in the

consequent but not in the antecedent are existentially quantified with scope the

consequent of the rule. Variables include time variables, and all times in the

consequent are later than or equal to all times in the antecedent.

 Computation in LPS generates a sequence M0 … Mi-1 Mi …. of partial

histories, which in the limit determines a model M = M0 … Mi-1 Mi …. which

makes all the goals true. Each history Mi is obtained from the previous history Mi-1

by updating Mi-1 with the set of all actions and external events that take place between

Mi-1 and Mi. These updates are performed destructively, like change of state in the

real world, and like destructive updates in imperative computer languages.

 Computation in LPS gives rules both a logical and imperative interpretation.

Whenever any instance of an antecedent of a rule becomes true in Mi, forward

reasoning treats the corresponding instance of the consequent of the rule as a

command to perform actions, to make the instance of the consequent true in some

future Mj, j i+1.

 Clauses conclusion conditions in LP also have both a logical and imperative

interpretation. In addition to their purely logical interpretation, they have an

imperative interpretation as procedures, which use backward reasoning to

decompose a goal of determining whether a conclusion is true or of making a

conclusion true to the subgoal of determining or making the conditions true.

Conditions representing actions are made true by adding them to future histories Mj.

 Preference between models in the current implementation can be indicated only

by the order in which clauses are written. This gives preference to models generated

by clauses written earlier over models generated by clauses written later. There is

also an in-built preference for models that satisfy goals as soon as possible.

 An online implementation of LPS is accessible from http://lps.doc.ic.ac.uk/. The

LPS examples notebook in the examples menu contains executable links to the map

colouring problem, and to several other examples having a deontic goal satisfaction

interpretation. The first steps notebook goes through an example in which two agents

have conflicting goals. Agent bob wants the light on whenever he is in a room, and

agent dad wants the light off in any room where the light is on. It may be natural to

think of bob’s goal as a personal goal, and dad’s goal as an obligation. But LPS

makes no distinction between the two kinds of goals.

7 Conclusions

In this short paper, I have formulated deontic reasoning in ALP as goal satisfaction

in FOL, with the A and LP components of ALP used to define the space of candidate

models. I have argued that backward reasoning with LP overcomes the need to

generate complete models, and makes it possible to avoid generating candidate

actions blindly without relevance to the goals that need to be satisfied. I have also

argued that, for philosophical applications, the focus on goal satisfaction in ALP is

more useful than the focus on logical consequence in modal deontic logic.

References

1. Carmo, J. and Jones, A. J. (2002) Deontic logic and contrary-to-duties.

Handbook of philosophical logic. Springer.

2. Chisholm, R. M. (1963) Contrary-to-Duty Imperatives and Deontic Logic.

Analysis.

3. van Emden, M. H., & Kowalski, R. A. (1976) The semantics of predicate logic

as a programming language. JACM.

4. Fox, C. (2015) The Semantics of Imperatives. The Handbook of Contemporary

Semantic Theory, 3, 433-469.

5. Hansson, B. (1969) An analysis of some deontic logics. Nous.

6. Kowalski, R. and Sadri, F. (2014) A logical characterization of a reactive system

language. Proceedings of RuleML 2014, Springer Verlag.

7. Kowalski, R. and Sadri, F. (2016) Programming in logic without logic

programming. Theory and Practice of Logic Programming, 16(3), 269-295.

8. Kowalski, R. and Satoh, K. (2017) Obligation as optimal goal satisfaction.

Journal of Philosophical Logic, Springer.

https://link.springer.com/article/10.1007/s10992-017-9440-3

9. Kowalski, R. (1974) Predicate logic as programming language. In IFIP

congress Vol. 74, 569-544.

10. Kowalski, R. (2011) Computational logic and human thinking: how to be

artificially intelligent. Cambridge University Press.

http://lps.doc.ic.ac.uk/
https://link.springer.com/article/10.1007/s10992-017-9440-3

11. McNamara, P. (2006) Deontic logic. Handbook of the History of Logic, 7, 197-

289.

12. Ross, A. (1941) Imperatives and Logic. Theoria, 7, 53–71.

13. Simon, H. (2001) Production systems. In The MIT encyclopedia of the cognitive

sciences. MIT press.

14. van Benthem, J., Grossi, D. and Liu, F. (2014) Priority structures in deontic logic.

Theoria

