
Verification of Non-Functional Requirements
Using Formal Semantics

Danielle Gaither
Department of Computer Science and Engineering

University of North Texas
Denton, Texas USA
dcg0063@unt.edu

Abstract—Studies have shown that finding defects in a software
system is much cheaper in terms of both money and time spent
when done during requirements analysis, as opposed to devel-
opment or testing. To this end, significant advances have been
made in the early detection of system defects. However, research
on exposing unexpected system behaviors is relatively scant,
especially regarding to non-functional requirements (NFRs). We
propose a model-driven approach grounded in formal semantics
to expose unexpected behaviors in a set of NFRs and propose
future work for evaluating the effectiveness of such an approach.

I. INTRODUCTION

Boehm and Basili [1] claim that remedying software defects
can be 100 times more expensive during testing than dur-
ing requirements gathering. Requirements engineering (RE)
involves eliciting natural language requirements from system
stakeholders and trying to impose a structure on that informa-
tion [2]. Most approaches to the RE process rely on using the
requirements to derive one or more models of some aspect of
the system, such as data or behavior.

One such requirements analysis solution is the Causal
Component Model (CCM) [3], which attempts to expose un-
expected behaviors in a system. Although Foyle and Hooey [4]
raised concerns about the lack of accounting for unexpected
behaviors in RE tools in 2003, very little work has been done
in this area since then. We believe that a requirements analysis
tool in this domain should be able to analyze non-functional
requirements such as timing and security properties. Many re-
quirements analysis methods either focus solely on functional
requirements, or on later stages of system implementation [3].

The remainder of this paper will be structured as follows:
first will be discussions of CCM and a survey of related work
in the area, including an explanation of how our proposed
work improves upon existing approaches. The next section
includes a discussion of the approaches and goals intended
for the proposed work, including the research questions to be
answered. An overview of preliminary and remaining work
will follow, as well as a discussion of the merit and impact of
the proposed work. The paper will end with a brief conclusion.

II. BACKGROUND AND RELATED WORK

In this section we provide background on the causal com-
ponent model (CCM), first proposed by Aceituna and Do [3],
and provide a survey of related work in the field.

A. The Causal Component Model

The purpose of CCM is to analyze a given set of require-
ments for the purpose of detecting potential unexpected system
behaviors [3]. Further details about the CCM method are
described in Section III.

B. Related Work

Many approaches to the RE process are model-based in
some form, such as goal-oriented and scenario-based ap-
proaches. Goal-oriented approaches consider a system from
the perspective of the goals intended to be satisfied by that
system [5]. The goals are often expressed in terms of an
ontology specific to the domain of the problem at hand
[6]. A scenario-based approach considers the system as an
aggregation of potential use-cases [7]. Both approaches can be
and have been used at varying levels of abstraction to construct
system models. However, Carrillo de Gea et al. [8] note that
requirements modeling is one of the least supported features
among current RE tools. Combining a model-based approach
with the detection of unexpected behaviors and the addition
of NFRs can therefore contributing to advancing the state of
RE as a whole.

Bryant et al. [9] discussed some of the benefits and chal-
lenges of formalizing the semantics of domain-specific model-
ing languages. One benefit is amenability to formal verification
methods, which is well-suited to safety- and security-critical
systems. Hessel et al. [10] used timed automata via the
UPPAAL model checker [11] to generate test cases for a real-
time system. Lee and Bryant [12] implemented a two-level
grammar using VDM++, the Vienna Development Method
meta-language [13].

III. APPROACHES AND GOALS

This section will outline the goals of the intended work
and the approaches to be studied. The goals of our work
are: creating a formal semantics for quantifiable NFRs, and
applying the created semantics to a requirements analysis tool.
Our approach is explained in Figure 1.

A. Establishing a Formal Semantics for Quantifiable NFRs

The approach for creating the formal semantics will be
based on a timed denotational semantics, and the requirements
analysis process will use the CCM tool as an example. These



Fig. 1: An overview of the proposed approach.

are represented by the external inputs in the diagram in Figure
1.

The process begins with requirements elicitation (Step 1
in Figure 1). The elicited requirements will then be used to
create a CCM instance (Step 2 in Figure 1). This information
will serve as an input to create specific semantics for that
CCM instance based on the larger semantic specification (Step
3 in Figure 1). Step 3a is optional, involving Coq’s code
generation capabilities, which can be combined with other
code for analysis purposes.

The analysis will attempt to detect unexpected behaviors in
NFRs for real-time embedded systems. If unexpected behav-
iors are found, the process returns to the elicitation phase for
clarification. The whole process is repeated until all parties

are satisfied with the quality of the CCM instance (Step 4 in
Figure 1).

There is some precedent in the literature for creating and
using a formal semantics for timed operations. Li [14] used
duration calculus to extend the RAISE specification language
to support timed operations. Duration calculus is an extension
of interval logic [15].

B. Applying Formal Semantics to the Requirements Analysis
Process

Since the idea of the CCM approach is to find system defects
in the requirements-analysis phase, the lack of an actual
system presents particular difficulties with regard to NFRs.
An alternative approach is to verify such properties logically



by creating a formal semantic specification and analyzing said
specification with currently existing tools.

The proposed changes to the CCM involve expanding the
rule application and analysis phases. A formal semantics will
be created for quantifiable NFRs, and the semantics will be
used to check the validity of the NFRs. Note that the basic
CCM approach does not change. The proposed updates merely
broaden its scope. While the change might appear cosmetic,
the implementation will require structural change in the CCM
tool, as representing timed operations adds some complexity
to the implementation [16], [17], [18].

C. Research Questions

The intent is to establish a formal denotational semantics
for CCM for the purpose of supporting non-functional re-
quirements, including timing information. The research should
answer the following questions:

RQ1. How can we add formal semantics to a requirements
analysis system, such as CCM, to incorporate NFRs?

RQ2. How does adding formal semantics and timed oper-
ations increase the expressiveness of a requirements
analysis system?

RQ3. What properties can be proven about NFRs once a
formal semantics is established?

D. Evaluation Methods and Metrics

For a tool or approach to be useful, it generally has to satisfy
two main criteria. First, it needs to perform the tasks it claims
to perform, and second, it needs to do so in a way that offers
some sort of advantage over competing methods. To satisfy the
first criterion, we intend to implement the formal semantics we
create in a theorem-proving tool such as Coq [19]. This will
allow the correctness and completeness of the semantics to
be established. To satisfy the second criterion, we expect the
main advantage our approach will offer will be time savings
compared to similar analysis methods. A human study will
be necessary to evaluate the truth of this claim. One possible
experiment could involve groups being given the same set of
requirements and constructing analysis models using various
methods. It is important to have a large enough sample size
to control for variations in individual ability.

IV. COMPLETED AND REMAINING WORK

This section will describe preliminary work that has already
been performed, to include: formalizing the semantics of
a domain-specific modeling language, establishing the link
between domain-specific modeling and requirements analysis,
and domain analysis with respect to requirements engineering.

A. Establishing a Formal Semantics for a Domain-Specific
Modeling Language

Preliminary work has been done in the area of creating
and implementing semantics for a domain-specific modeling
language. As a proof-of-concept, the MicroRPG modeling
language was created to model a simple game. The abstract
syntax of MicroRPG was established using a metamodel.

A denotational semantics was created for the MicroRPG
metamodel and implemented in Haskell [20]. Current work
is focused on establishing a denotational semantics based on
statecharts that can then be applied to analysis frameworks
such as CCM.

B. Summary of Preliminary and Remaining Work

Our preliminary work in this area has shown the potential
benefits of providing a formal denotational semantics for a
domain-specific model. We have taken the following steps:
created a modeling language for a sample domain, created
and implemented a denotational semantics for a modeling
language, and analyzed appropriate domains for a formal
semantics-based requirements analysis tool.

We have recently completed a pilot study that uses state-
charts as the basis for a formal semantics. The results of this
pilot study have been accepted for publication [21].

The following work remains to be done: establish a larger-
scale denotational semantics for NFRs for real-time em-
bedded systems, implement the denotational semantics in
a manner consistent with a CCM implementation, use the
newly-enhanced CCM to verify timing properties and other
quantifiable NFRs for a sample real-time embedded system,
and perform empirical studies to evaluate the effectiveness of
proposed CCM improvements.

V. MERIT AND IMPACT

Since many real-world operations are time-sensitive in some
fashion, a robust requirements analysis system needs to be
able to support such operations. Adding support for timed
operations to CCM will make it more expressive and allow
it to be used for more applications than is currently possible.
Since functional requirements and nonfunctional requirements
cannot be completely separated, it makes sense for a compre-
hensive requirements analysis solution to handle both. Another
benefit is that formal analysis tools can be especially useful
for mission-critical applications. Finally, a particular benefit
of the denotational semantics-based approach is independence
from a particular implementation.

VI. CONCLUSIONS AND FUTURE WORK

We proposed a model-based approach for detecting unex-
pected behaviors of requirements, particularly non-functional
requirements, which have not received the same attention in
research as functional requirements have to date.

This work is in its early stages, so there is significant poten-
tial for future work. While timing and security requirements
are important, there are also things like safety requirements
to be considered. Also, we would like to build on our current
work to analyze more complex sets of non-functional require-
ments. Integration with existing requirements analysis tools is
also another priority for future work.



REFERENCES

[1] B. Boehm and V. R. Basili, “Software defect reduction top 10 list,”
Computer, vol. 34, no. 1, pp. 135–137, 2001.

[2] R. Dömges, S. Jacobs, M. Jarke, H. W. Nissen, K. Pohl, N. Maiden,
A. Sutcliffe, C. Taylor, D. Till, P. Constantopoulos, G. Spanoudakis,
Y. Vassiliou, G. Grosz, V. Plihon, C. Rolland, J. R. Schmitt, S. Schwer,
S. Si-Said, C. Souveyet, J. Bubenko, R. Gustas, P. Holm, P. Johannesson,
J. Ljungberg, and B. Wangler, “Defining visions in context: Models,
processes and tools for requirements engineering,” Information Systems,
vol. 21, no. 6, pp. 515–547, 1996.

[3] D. Aceituna and H. Do, “Exposing the Susceptibility of Off-Nominal
Behaviors in Reactive System Requirements,” in Proceedings of the
IEEE International Requirements Engineering Conference, vol. 23.
IEEE, 2015, pp. 136–145.

[4] D. Foyle and B. Hooey, “Improving Evaluation and System Design
Through the Use of Off-Nominal Testing: A Methodology for Scenario
Development,” in of the Twelfth International Symposium on Aviation
Psychology, 2003.

[5] A. van Lamsweerde, “Goal-oriented requirements engineering: a guided
tour,” Proceedings Fifth IEEE International Symposium on Requirements
Engineering, pp. 249–262, 2001.

[6] E. Yu and J. Mylopoulos, “Why Goal-Oriented Requirements Engineer-
ing,” in Proceedings of the 4th International Workshop on Requirements
Engineering, 1998, pp. 15–22.

[7] A. G. Sutcliffe, “Supporting scenario-based requirements engineering,”
IEEE Transactions on Software Engineering, vol. 24, no. 12, pp. 1072–
1088, 1998.

[8] J. M. Carrillo De Gea, J. Nicolás, J. L. Fernández Alemán, A. Toval,
C. Ebert, and A. Vizcaı́no, “Requirements engineering tools: Capabil-
ities, survey and assessment,” Information and Software Technology,
vol. 54, no. 10, pp. 1142–1157, 2012.

[9] B. R. Bryant, J. Gray, M. Mernik, P. J. Clarke, R. B. France, and
G. Karsai, “Challenges and directions in formalizing the semantics
of modeling languages,” Computer Science and Information Systems,
vol. 8, no. 2, pp. 225–253, 2011.

[10] A. Hessel, K. G. Larsen, M. Mikucionis, B. Nielsen, P. Pettersson, and
A. Skou, “Testing real-time systems using UPPAAL,” in Lecture Notes

in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), vol. 4949 LNCS,
2008, pp. 77–117.

[11] G. Behrmann, A. David, and K. Larsen, A Tutorial on Uppaal. Springer-
Verlag Berlin Heidelberg, 2004, vol. 3185.

[12] B.-s. Lee and B. R. Bryant, “Automated conversion from requirements
documentation to an object-oriented formal specification language”,”
Proceedings of the 2002 ACM symposium on Applied computing, pp.
932–936, 2002.

[13] E. Dürr and J. van Katwijk, “VDM++, a formal specification language
for object-oriented designs,” in Computer Systems and Software Engi-
neering. The Hague, Netherlands: IEEE, 1992, pp. 214 –219.

[14] L. Li, “Towards a denotational semantics of timed RSL using Duration
Calculus,” Journal of Computer Science and Technology, vol. 16, no. 1,
pp. 64–76, 2001.

[15] M. R. Hansen and Z. Chaochen, “Duration Calculus : Logical Foun-
dations,” Formal Aspects of Computing - Springer, vol. 9, no. 3, pp.
283–330, 1997.

[16] R. Alur and D. L. Dill, “A theory of timed automata,” Theoretical
Computer Science, vol. 126, no. 2, pp. 183–235, 1994.

[17] J. Bengtsson and W. Yi, “Timed automata: Semantics, algorithms and
tools,” Lecture Notes in Computer Science, vol. 3098, no. 316, pp. 87–
124, 2004.

[18] Ø. Haugen, K. E. Husa, R. K. Runde, and K. Stølen, “Why timed
sequence diagrams require three-event semantics,” in International
Workshop on Scenarios: Models, Transformations and Tools, vol. 3466,
2005, pp. 1–25.

[19] INRIA, “The Coq proof assistant,” 2016. [Online]. Available:
https://coq.inria.fr

[20] D. Gaither and B. R. Bryant, “Toward Denotational Semantics of
Domain-Specific Modeling Languages for Automated Code Generation,”
in Presented at the International Workshop on the Globalization of
Modeling Languages, Miami, 2013.

[21] D. Gaither, H. Do, and B. R. Bryant, “Toward detection of abnormal
behaviors in timing and security requirements,” in 24th Asia-Pacific
Software Engineering Conference (to be published), 2017.


