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Abstract—Through model refinement, system developers can
build a system model incrementally and gradually unveil the
details of the system. While the process of incrementally building
a model can help developers master the complexity of the system,
even small modifications to a model may lead to a loss of initially
present desirable behavior and properties. Furthermore, the
impact of such changes on the model behavior becomes difficult
to detect once the model size increases. We propose a formal
approach to compare pairs of models in which the second model
is the result of an incremental modification of the first. The results
have shown that the approach helps verify that the modification
is behavior preserving, i.e., that it is a refinement in the sense of
the formal methods literature.

I. INTRODUCTION

Model-Driven Engineering (MDE) designates approaches in
which models are created to describe a system, and from which
a concrete implementation can be derived [9]. MDE provides
a means to handle system complexity with abstraction and
automation. A model is a representation of what is perceived
as the relevant characteristics of the system [23], and it can
be used for a variety of purposes such as understanding,
communication, analysis, and code generation.

There are limits to the human ability to understand complex-
ity [14]. Gradually adding details to the model is one way to
master system complexity. MDE development often proceeds
by incrementally adding details into the model. One starts with
a very high level model in which, e.g., complex states are
summarized by just one state, and then, once the developers
are satisfied with this high-level model (e.g., certain tests are
passed, certain properties are satisfied, etc.), they can unveil
this complex state by adding detail to it. It would be helpful for
developers to be able to check that these kinds of development
steps are behavior preserving, i.e., that the new model is indeed
equivalent in some sense to the previous model, because then
it may not be necessary to run the same tests again and check
that properties are preserved.

Although models aim to abstract system complexity, they
can become very complex too, making it difficult to inspect
them manually. Such analysis can be done using formal
methods, which are techniques strongly rooted in mathematics
and which rely on formal models. Formal models are written in

a formal specification language, i.e., a language with a clearly
defined and unambiguous semantics. Formal verification tools
provide a rigorous way for analyzing a model by exhaustively
exploring its state space, which can be used to evaluate the
impact when the model changes.

Despite their acceptance, formal techniques are not trivial to
use as formal languages are complex to master and to integrate
with semi-formal languages. The challenge is to integrate
formal techniques with MDE [9], in order to benefit from the
rigorousness and automation provided by formal verification
tools to support the analysis of non-formal models and to make
formal verification amenable to MDE practitioners [29].

Although several approaches have been proposed to bridge
this gap using model checking techniques, less attention has
been paid to the comparison of models related with each other
by an abstraction-refinement relation. This paper proposes
an approach based on formal methods to compare UML-RT
models in order to show behavioral preservation when one
model is the evolution of another one. For this, UML-RT
models are automatically translated into a formal specification,
and a well-known refinement pattern is implemented using a
UML profile. The approach is tool supported and integrated
into the Eclipse platform.

II. MDE AND FORMAL METHOD CONTEXT

This section introduces the main concepts of the MDE
language we use in this work, the refinement technique we
apply, as well as the formal methods background needed to
understand the approach.

A. UML-RT

UML-RT is a language that integrates constructs suitable for
modeling complex, event-driven, and potentially distributed
real-time systems. A UML-RT model consists of five basic
concepts: capsules, ports, protocols, connectors, and state ma-
chines (as illustrated in the example of an ATM in Figure 1).

Capsules are the central modeling construct of the for-
malism. They are used to represent the major architectural
elements of real-time systems [27]. Capsules are UML active
classes with composite structure that communicate through



Fig. 1. An example of an ATM

ports typed by protocols. Communication is done by message
passing. Protocols specify the messages that can be exchanged
between capsules. Ports fully isolate a capsule’s implementa-
tion from its environment, all the communication being done
through connectors that link the capsule ports. Connectors
model communication channels, and each connector supports a
single protocol. Capsules can have an internal behavior, which
is described using state machines. Using the aforementioned
concepts, UML-RT allows one to create models of real-time
systems at different levels of detail.

B. Abstraction Patterns

In [28], the author presents a catalog of abstraction patterns
for model-based software engineering. These patterns can be
seen as model transformation patterns, and they can be applied
in both directions: to obtain a more abstract version of the
model as well as to obtain a more refined one (called, in
this case, refinement patterns). This catalog proposes and
groups 13 patterns into three classes: structural, behavioral,
and temporal patterns. The first one contains 5 patterns, the
second one contains 4 patterns, and the last one contains 4
patterns.

In this paper, we describe an example in which the Summary
State behavioral pattern is studied. In this pattern, a certain
detailed-level behavior, described by a state machine, is ab-
stracted into a state at a higher level (Figure 2). Two concepts
are then introduced: glass state and cross-over transitions. The
former to represent the set of states and transitions that are
being abstracted, the latter to represent transitions that cross
in or out of the glass state, and which have corresponding
representatives in the abstract graph.

The primary focus of [28] is on the syntactic aspects of
the transformations. The semantic conformance between a
refinement and its abstraction is not discussed in the paper.
According to the author, “semantic conformance is the prop-
erty that an abstraction is phenomenologically consistent with
its corresponding refinement”. We move the work described
in [28] forward by providing a way to verify the semantic
conformance of the refinement transformations, in the sense
that the relevant structural and behavioral properties of the
abstraction are retained in the refinement. We verify such
behavioral-preserving refinement using equivalence checking.

C. Equivalence Checking

Equivalence checking is a formal technique that provides a
means to show whether two systems exhibit exactly the same
behavior. It can be used in this case to show the semantic
conformance between an abstract and a refined model. First,
a formal model for each system to be compared is created.
Then, LTSs (labeled transition systems) representing the state
space of the formal models are automatically generated, which
represent all possible evolution of the system. Such LTSs can
then be automatically compared using a given equivalence
relation. For instance, strong bisimulation [22] is the most
restrictive relation: two systems are strongly bisimulation
equivalent whenever they can perform the same actions to
reach strongly bisimulation equivalent states, i.e., they agree
on each step they take.

There are cases in which some transitions may be skipped in
the analysis. These transitions are considered “non observable”
and hidden by receiving a special label (τ ) in the LTS, allowing
weaker bisimulation relations to bypass them when checking
equivalence between models. One of the most important
features in process algebra is that of abstraction, since it
provides us with a mechanism to hide actions that are not
observable, or not interesting for any other reason [30]. By
abstraction, some of the actions in a LTS are made invisible
or silent (τ -actions). Consequently, any consecutive execution
of hidden (τ ) steps cannot be recognized since they are not
observable [30]. Several bisimulation relations exist that can
deal with τ transitions. Branching bisimulation [30] is one of
the most commonly used.

The numerous equivalence relations available in the litera-
ture can be used to show equivalence between two systems
at different levels of abstraction. The choice of the equiva-
lence relation depends on the abstraction level of the models
and the verification goals. In case of non-equivalent models,
the equivalence checker generates a counter example, i.e., a
sequence of steps that leads both systems into a state where
they are not equivalent. Finally, the results of the analysis can
help to find anomalies in the modeled systems.

D. LNT Formal Specification Language

In order to compare two UML-RT models using equivalence
checking, they should first be described by means of a formal
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language. We chose LNT [4] to describe the original models,
because LNT and UML-RT have similar features, as described
in Section IV-C.

LNT is a language derived from the E-LOTOS [16] standard.
It improves LOTOS [15] and can be translated to LOTOS
automatically. LOTOS was originally devised to support stan-
dardization of OSI (Open Systems Interconnection), but has
been used now more widely to model concurrent systems.
LNT inherits from LOTOS the way a system is represented:
with a data part, based on algebraic abstract data types, and
with a control part, based on process calculus. In LNT, both
parts (data and control) share a common syntax close to
the imperative programming style [10]. In LNT, a system
is described by means of blocks of code called modules.
Modules can contain types, channels, functions, and processes.
A process is an object which denotes a behavior; it can be
parameterized by a list of formal gates (or channels), through
which the process can communicate with other processes.

LNT it is strongly typed, and types such as int, char,
boolean, string, etc. are available. Besides, the language
provide constructs such as conditional statements, iteration,
assignment, sequential composition, etc. The language can
also handle concurrency, communication, non-determinism,
signaling, exceptions, etc. An example of a LNT specification
is illustrated in Figure 6 and it will be detailed in the
Subsection IV-C.

III. RUNNING EXAMPLE

To introduce our verification approach, consider a simplified
ATM whose model is illustrated in Figure 1. It contains two
communicating capsules called UserInterface and Function-
alCore, each one containing a state machine modeling part
of a transaction validation behavior of an ATM: the user
interface models some user interactions with the ATM, and
the functional core describes a simplified representation of
the validation process of the ATM. The capsules exchange
messages through a port, which will trigger state transitions
in the corresponding state machine.

The state machine of the FunctionalCore is in the state Idle
until a card has been inserted in the ATM (which is detected
by the user interface). It triggers the transition to the Validating
state, and back to the Idle state. On the UserInterface side, the
state machine alternates between the Waiting for validation
state and the Done state, according to the messages received
from the functional core.

Suppose that developers now want to add more detail to
this abstract model by explaining what the complex states
Validating and Waiting for validation are, and they produce
a new model (Figure 3). In the UserInterface’s state machine,
the Waiting for card validation state is activated once a card
is inserted in the ATM, staying in this state until the card
has been validated by the functional core. Next, the Wait-
ing for code validation state becomes active, followed by the
Waiting for transaction validation state once the code has
been validated. Once the transaction has been validated, the
state machine transits to the Done state, and returns to the

Fig. 3. New ATM model after adding details to the complex states

Waiting for card validation state once a confirmation is re-
ceived from the functional core capsule. In the FunctionalCore
side, the original Validating state is also further developed to
include some details of the validation process.

For the sake of simplicity, the logic for validating the card,
the code and the transactions are out of scope of this paper,
and we focus on the messages exchanged by the capsules. We
do not consider either the case of invalid cards, codes, and
transactions. In this context, developers may wonder whether
this new version of the model preserves its initial behavior,
i.e., whether it is a refinement of the original model.

IV. COMPARING UML-RT MODELS

Our approach to compare pairs of UML-RT models is illus-
trated in Figure 4. The comparison first requires the UML-RT
models to be expressed in a formal specification language.
With this goal, we wrote an automatic translation from the
UML-RT models into LNT formal models using ATL [17]
(ATLAS Transformation Language). This step consists of an
M2M (model-to-model) transformation, and both the source
and the target model should conform to their respective
metamodels.

Equivalence 
Checking
(CADP)

Formal model 2
(LNT)

Formal model 1
(LNT)

M

H

UML-RT model 1 
(Papyrus-RT)

UML-RT model 2
(Papyrus-RT)

UML 
Metamodel

UML 
Metamodel

LNT
Metamodel 

(XText)

LNT
Metamodel 

(XText)



 



ATL
program

ATL
program

Eclipse Platform

(SVL)

(SVL)

Fig. 4. Equivalence checking of UML-RT models



From the formal models, LTSs are automatically generated
(i.e., the graphs M and H in Figure 4), which are compared
with each other using equivalence checking. Finally, the results
of the comparison can be used to modify the original UML-RT
models. For instance, if the models are said non-equivalent,
an counter-example is generated by the tool. This counter-
example identifies why the models are not equivalent, which
may help to identify anomalies in the UML-RT models.
A transformation from (part of) UML-RT into LNT, and a
specification of the LNT metamodel were implemented in the
context of this work.

A. LNT Metamodel

As illustrated in Figure 4, the UML-RT models are con-
forming to the UML metamodel, whereas for the target model,
no metamodel is currently available for the LNT models to
be conform with. We specified in XText [7] a subset of the
LNT language grammar. As a result, we can assure that the
generated LNT specification is conform to its grammar.

B. Modeling the Glass State

In this work we focus on the summary state abstraction
pattern [28] (cf. Section II-B). This pattern introduces the
concept of glass state, a state containing some states and
transitions in the refined version of the model. Our approach
allows one to tag some elements in the UML-RT diagrams
(states and transitions of the state machine), in order to identify
the elements added in the model, and to allow verification that
the remaining part of the detailed model behaves exactly as
the abstract version of the model.

We use UML stereotypes in order to identify in the detailed
version of the UML-RT models the states and transitions
which compose the glass state. Stereotype is a UML concept
that permits extending the semantics of UML to a particular
domain. Equations 1 and 2 illustrate the idea. The abstract
version of the UML-RT model MUMLRTAbs

is translated into
a LNT model MLNT using an ATL program P (Equation 1).
For the detailed version of the model (Equation 2), the
elements of the glass state are first annotated in the model
HUMLRTRef

using the hidden stereotype. Then, this annotated
model HUMLRTAbs

is translated into another model HLNT

using the same ATL program P . Finally, the equivalence
checker is used to verify equivalence between MLNT and
HLNT .

MUMLRTAbs

P−→MLNT (1)

HUMLRTRef

annotations−−−−−−−−→ HUMLRTAbs

P−→ HLNT (2)

Figure 3 illustrates the use of the hidden stereotype to tag
the states and transitions which compose the glass state in the
detailed version of the ATM model. When the ATL program
generates the LNT model HLNT from this annotated UML-RT
model HUMLRTAbs

, these annotated elements will generate
special labels in the LNT specification too. This labeling will
be used afterwards by the equivalence checker to ignore these

TABLE I
FROM STRUCTURAL ELEMENTS OF UML-RT TO LNT

UML-RT LNT

capsule module
state machine process

connector channel
protocol type, channel type

hidden elements and to focus on the remaining parts of the
models during the analysis.

The summary state pattern is implemented in this work
using the abstraction technique called Omission, introduced
in [21]. In this abstraction technique, transitions can be tagged
with a special label τ in a state machine, allowing the
equivalence verification to bypass these transitions during the
analysis.

C. Transforming UML-RT into LNT

The ATL transformations from UML-RT to LNT cover a
subset of both languages. Table I illustrates how the main
structural concepts of UML-RT are mapped into elements of
the LNT language. A capsule in UML-RT becomes a module in
LNT, and a state machine becomes a process. A state machine
in UML-RT describes the behavioral part of the model, and a
process in LNT mainly describes the behavior of the modeled
system. Connectors linking UML-RT capsules are translated
into LNT channels through which processes can communicate.
Since channels in LNT are typed (to indicate which kind of
value is exchanged in the channel), protocols in UML-RT are
translated into regular types and channel types in LNT. Regular
types allow variables which will receive the messages sent to
the channel to be declared.

UML-RT and LNT share some characteristics regarding the
behavioral modeling of systems. In UML-RT each capsule
evolves independently and concurrently, exchanging messages
with each other from time to time through connectors linking
the capsules’ ports. On the other hand, LNT was designed
to model asynchronous concurrent systems: systems whose
components may operate at different speeds, without a global
clock to synchronize them [4]. These processes exchange
messages with each other from time to time through channels.
In order to translate UML-RT into LNT, UML-RT capsules
linked by a connector are translated into LNT by processes
whose executions are put in parallel by means of the par-
allel composition operator par / end par of LNT. This
operator allows one to compose and execute processes in
parallel, and to define through which channel the processes
communicate.

For the ATM example, the two capsules UserInterface
and FunctionalCore (linked by a connector) are expressed
in LNT by the parallel composition of two processes:
userinterfacesm and functionalcoresm (Figure 5),
corresponding to the state machines of the UML-RT capsules
in Figure 1. These processes exchange values through the
channel ATMProt_connector, of type ATMProt.



Fig. 5. Example of a parallel composition in LNT

In UML-RT, messages received through ports can trigger
state transitions, which execute a chain of actions in the model.
A chain of actions of a transition is composed of the exit action
of the source state (if present), the action code of the transition
(if present), and the entry action of the target state (if present).

We translate chains of actions into LNT as if-then-else
statements for each state of the state machine (lines 10-27 of
Figure 6) following the template illustrated in Listing 1. First
the transition chain of actions of the initial pseudo state is en-
coded, followed by an update of a currentState variable,
which keeps track of the current state of the state machine
(lines 1-3 in Listing 1). Then an unbounded loop envelops the
other transition chain of actions of the state machine (lines
4-20). According to the current state of the state machine
(lines 6-19), a series of if-then-else verifies whether the
received message (line 5) triggers a transition in the current
state (e.g. lines 6-7), and executes the corresponding chain of
actions (e.g. lines 8-11).

For this work, the action code of either the exit of a state,
the transition, or the entry of a state consists of message-
passing actions. For instance, the sending of the message
cardInserted through the connector connector in line
10 of Figure 6. More sophisticated action codes with assign-
ments or guards are out of scope of this paper and a topic for
future work.

Figure 6 illustrates how the body of a state machine is
translated to LNT. This LNT specification corresponds to the
UserInterface state machine of the detailed version of the ATM
example (Figure 3). First, an enumerated type containing all

Listing 1. Template of transition chain of actions
1 e x e c u t e a c t i o n code of e x i t t r a n s . o f i n i t i a l s t a t e
2 e x e c u t e e n t r y a c t i o n o f s t a t e A
3 c u r r e n t S t a t e := s t a t e A
4 s t a r t l oop
5 r e c e i v e message t h r o u g h a c h a n n e l
6 i f c u r r e n t S t a t e = s t a t e A
7 i f messageRece iv t r i g g e r s t r a n s i t i o n A of s t a t e A
8 e x e c u t e e x i t a c t i o n o f s t a t e A
9 e x e c u t e a c t i o n code of t r a n s i t i o n A

10 e x e c u t e e n t r y a c t i o n o f t a r g e t s t a t e B
11 c u r r e n t S t a t e := s t a t e B
12 e l s i f messageRece iv t r i g g e r s t r a n s B of s t a t e A
13 e x e c u t e e x i t a c t i o n o f s t a t e A
14 e x e c u t e a c t i o n code of t r a n s B
15 e x e c u t e e n t r y a c t i o n o f t a r g e t s t a t e C
16 c u r r e n t S t a t e := s t a t e C
17 e l s i f . . .
18 e l s i f c u r r e n t S t a t e = s t a t e B
19 i f messageRece iv . . .
20 end loop

Fig. 6. State machine coding in LNT

the states of the state machine is declared (lines 3-6). Secondly,
a process implements the behavior of the state machine (lines
8-29). The process is parameterized by one channel called
connector of type ATMProt (line 8), corresponding to the
connector and the port protocol of the UserInterface UML-RT
capsule through which the state machine receives messages.
The process contains two variables (line 9), one to receive
messages that are sent to the connector channel (line 13),
and another one to keep track of the current state of the
state machine. Finally, the template described in Listing 1 is
implemented (lines 10-27).

A UML-RT state machine receives messages from capsule
ports. This is translated to LNT as a non-deterministic choice
operator select (lines 13-14 in Figure 6) with one channel
called connector (since on the example the capsule has only
one port). This operator allows the process to communicate
with other processes which synchronize on the same channel,
and to receive messages in the variable ATMProt_var.

We acknowledge that ideally it would be good to prove
the correctness of the translation. However, this is outside the
scope of this work. Instead, we rely on extensive testing and
manual inspection.

Such formal specification of a UML-RT model behavior can
also have other purposes such as a better understanding of the
semantics of UML-RT, which is useful for instance to teach
the language.

D. Hiding Elements in the Model

When the UML-RT model is translated into LNT, its hidden
elements (e.g., Figure 3) are also labeled in the LNT model
with a tag called hidden. Such information is transmitted to
the LTSs automatically generated from the formal models, and
an SVL [11] (Script Verification Language) program is used to
tag the “hidden”-labeled transitions with the special label τ ,



allowing branching bisimulation equivalence to take this into
account when comparing the models.

V. TOOL SUPPORT

Figure 4 also illustrates the languages and tools used in our
approach. We used Papyrus-RT1 [24] for creating the UML-RT
models. Papyrus-RT is a domain-specific modeling language
tool based on Papyrus, an Eclipse-based environment for
UML. Papyrus-RT provides an implementation of the UML-RT
modeling language, together with editors, code generator for
C++, and a run-time system.

The translation of the UML-RT models into the formal
model was done using an program written in ATL2 [17], a
model transformation language and toolkit developed on top
of the Eclipse platform, which provides ways to produce a set
of target models from a set of source models. Sharing both a
declarative and an imperative syntax, an ATL transformation
program is composed of rules that define how source model
elements are matched and navigated to create and initialize
the elements of the target models [8].

A grammar of the LNT language was partially defined using
XText3 [7], a framework for development of programming
languages, allowing one to define languages by specifying
its grammar. As a result, XText provides an infrastructure
including parser, linker, typechecker, compiler, and editing
support for Eclipse, providing a fully featured, customizable
Eclipse-based IDE. Once the grammar of a language has been
defined with XText, Eclipse can be used as a smart editor
for the language, providing the developer with many features
such as syntax highlighting, content-assist, auto-completion,
folding, and jump-to-declaration [7]. One of the benefits of
our approach is that Eclipse can now be used as an editor for
LNT specifications.

CADP4 [13] (Construction and Analysis of Distributed Pro-
cesses) is the formal verification toolbox we used. The choice
of the toolbox was mainly motivated by its maturity, contin-
uous evolution, support, and the numerous tools available.
CADP is a toolbox for verifying asynchronous concurrent
systems: systems whose components may operate at different
speeds, without a global clock to synchronize them. Such
components are described by modules, and they communicate
through channels. CADP implements several kinds of analysis:
model checking, equivalence checking, reachability analysis,
on-the-fly verification, simulation, compositional verification,
distributed verification, static analysis, etc. It contains tools to
create a graph-representation from the formal model (LTS),
and the reasoning is performed over this graph. The more
complex the system under evaluation is, the larger its graph
will be. CADP handle large graphs using different techniques,
such as compositional verification [12]. This technique handle
state-space explosion by creating an equivalent graph for
each component of the model, replacing a state space by an

1http://www.eclipse.org/papyrus-rt/
2http://www.eclipse.org/atl/
3http://www.eclipse.org/Xtext
4http://cadp.inria.fr

TABLE II
CURRENT STATE OF THE FRAMEWORK

Description #loc Details

LNT XText grammar 243 27 rules
ATL program 565 18 rules, 11 helpers
SVL program 8 1 rule

equivalent but smaller one. In practice, bigger models can be
handled, so that one can create more realistic models.

In this work, the BISIMULATOR5 [20] and BCG CMP6

equivalence checkers, and the OCIS7 simulator (Open/Caesar
Interactive Simulator) are used, the last one for step-by-step
simulation with backtracking. Although LNT is the main input
language of CADP, the tool supports other input languages
such as SVL8 [11] (Script Verification Language). SVL offers
means to describe operations over LTSs, which are difficult to
perform by hand on large LTSs. It can be seen as a process
calculus extended with operations on LTSs, e.g., minimiza-
tion (also called reduction), abstraction, comparison, deadlock
detection, as well as orchestration of calls to the CADP tools.

The creation of the UML-RT models, the transformation
into the formal model, and the editing of the LNT formal
model provided by the XText grammar are integrated into the
Eclipse platform. This provides a means to build a bridge be-
tween the formal verification tool CADP and the model-driven
engineering tool Papyrus-RT, allowing the MDE community
to benefit from the analyses provided by formal methods tools.

Table II illustrates the current state of our verification
framework. The XText grammar covers a subset of the LNT
language, and the ATL program covers some elements of
UML-RT. Finally, the SVL program performs one single
transformation in the LTS: hiding the transitions tagged with
the hidden label.

VI. VALIDATION

We use this approach to analyze both the abstract and
detailed versions of the ATM described in this paper. Both
models are created in Papyrus-RT, then the glass state is
identified in the detailed model using the hidden stereotype (cf.
Figure 3). The ATL transformations generate one LNT model
for each version of the ATM, with the information about the
hidden elements in them. Then, the SVL program hides the
elements that are to be hidden in the generated LTSs. Finally,
the LTSs of the models are compared with each other using
the equivalence checker of CADP.

Specifically, branching bisimulation is used to check
whether the abstract version of the model and the detailed
one (tagged with hidden elements) are equivalent. The verifi-
cation shows that the two models are branching bisimulation
equivalent, which means that the detailed version of the ATM
model behaves exactly like its abstract version, in the sense of

5http://cadp.inria.fr/man/bisimulator.html
6http://cadp.inria.fr/man/bcg cmp.html
7http://cadp.inria.fr/man/ocis.html
8http://cadp.inria.fr/man/svl.html



TABLE III
RESULTS - SOME FIGURES

Model #loc Details

UML-RT (abstract) - 3 capsules, 2 state machines,
6 states, 6 transitions

UML-RT (detailed) - 3 capsules, 2 state machines,
10 states, 10 transitions

LNT (abstract) 78 3 modules, 3 processes, 4 types
LNT (detailed) 98 3 modules, 3 processes, 4 types

branching bisimulation equivalence relation. In other words,
the modifications done to the original model did not change
its behavior (disregarding its hidden elements and focusing on
the observable behavior of the models), the new version is a
refinement of the previous one, and the pattern used to refine
the model is the summary state pattern.

Table III illustrates the size of both the source model and the
generated target models of the ATM example, and the number
of lines of code generated in LNT.

VII. RELATED WORK

Several approaches [1]–[3], [5], [6], [18], [19], [25], [26],
[31] have been proposed to analyze UML or UML-RT models
using formal methods. Some approaches [5], [6], [25], [26]
are partially similar to the one presented in this paper. Other
approaches are based on UML profiles [3], [18], [19], or are
supported by different tools [1], [2], [31].

Similar to the Eclipse-based editor for LNT we propose
in this paper (as a result of the XText grammar for LNT),
an Eclipse-based editor for LOTOS is proposed in [5]. Even
though LOTOS and LNT share some constructs, since LNT is
derived from E-LOTOS which enhances LOTOS, an editor for
LOTOS would not be entirely suitable for a LNT specification.

The transformation from UML-RT to LNT presented in this
paper is inspired by some of the ideas presented in [6], [25],
[26]. In [6] the authors present a translation from UML-RT to
CSP (Communicating Sequential Processes), a process algebra
formalism which shares some constructs with LNT such as
the representation of system behavior by processes. This work
inspired our own translation to LNT in some aspects; however,
our work is specific to LNT. On the other hand, in [26]
(resp [25]), the formal semantics of UML-RT is defined using
the OhCircus (resp kiltera) formalism, which helped us
to better understand the semantics of UML-RT before mapping
some of its elements into LNT.

Closer to our work, AVATAR [18] is a SysML environment
defined to take into account both security and safety properties
in graphical models, and to automatically prove both kinds
of properties from the system models. It does not cover,
however, equivalence verification of models. Alternatively,
DIPLODOCUS [19] is a UML profile intended for the mod-
eling and the formal verification of real-time and embedded
applications. However, DIPLODOCUS mainly focuses on im-
plementing architectural elements (e.g., CPUs, bus, memories)
of the embedded applications, while our concern is mainly

with the behavior of the system. Finally, TURTLE [3] (Timed
UML and RT-LOTOS Environment) is a UML 1.5 profile
dedicated to the modeling and formal verification of real-
time systems. Its main strength lies on its formal semantics
defined in a variation of LOTOS: RT-LOTOS. However, it does
not seem that the approach has been applied to equivalence
verification either.

In TTool [2] (the Turtle Toolkit), UML models may be
automatically transformed into a LOTOS specification, in order
to evaluate properties of the system by model checking.
TTool is an open-source toolkit that supports several UML2
/ SysML profiles, including TURTLE and DIPLODOCUS.
Alternatively, CTTool [1] can generate LOTOS specifications
that implement a (synchronous) semantics of UML2 compo-
nent diagrams and state-machines, and analyze this LOTOS
code with CADP. CTTool provides a number of menus for
controlling the CADP functions. However, the approach mainly
focuses on distributed components, while our work focuses on
real-time systems, and targets the LNT language. Another tool-
supported approach is provided in [31], which also uses ATL
to translate UML-RT into a formal notation, here, functional
finite state machines. However, the focus of the formal analysis
is on symbolic execution and model checking.

In summary, the advantage of our work compared with the
previous work is that our approach benefits from equivalence
checking to compare UML-RT models and to verify behavior-
preserving refinement between models, with the ultimate goal
of providing better support to MDE developers. Besides, while
previous work mainly targets the LOTOS language, we cover
the LNT language and provide a syntax-highlighting Eclipse
editor for LNT developers.

VIII. CONCLUSION

In this paper we propose an approach to support model
refinement, i.e., the process of gradually adding details to the
model in an incremental development. Our approach provides
a framework to verify whether this process preserves the model
behavior. With this goal, the initial model and its detailed
version are first translated into two formal models, and later
compared with each other using equivalence checking.

The contributions of the paper are: (a) the use of equivalence
checking to support the verification of behavioral-preserving
refinement in the MDE context; (b) an automatic translation
from UML-RT into the LNT formal language, which relieves
practitioners from having to be familiar with the formal
language; (c) the implementation of the summary state pattern,
which is a first step to automatize the verification of the pattern
catalog proposed in [28]; (d) the integration of Papyrus-RT
(an MDE tool) with CADP (a formal verification tool), making
formal methods more accessible to non-experts in the domain;
and finally (e) the approach is tool supported.

The approach has been validated by the application in
two case studies: First, in a PingPong model, in which two
capsules (Pinger and Ponger) exchange messages with each
other. Secondly, in the ATM example described in this paper,
in which the summary state pattern has been implemented and



an abstract and a detailed versions of the model are compared
with each other. Equivalence between the models has been
shown, which means that the detailed version of the model is
a refinement of the abstract one.

We plan to improve the readability of the counter exam-
ples in case of non-equivalent models, since these counter
examples are expressed as states and transitions of the formal
specification, making it hard to identify to which states and
transitions they correspond in the original UML-RT models.
We also plan to investigate the potential use of the simulation
tools of CADP to simulate UML-RT models. Besides, a plugin
could be developed to invoke the CADP tools directly from
Eclipse. CADP provides both a graphical user interface and a
command line interface that can be easily integrated within
Eclipse. Finally, a natural improvement would be to enlarge
the coverage of the UML-RT language, and to implement
other patterns of the catalog in [28]. For this, enhancements
in the LNT grammar and in the ATL transformations would
be necessary.
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