
Hierarchical Model Exploration for Exposing
Off-Nominal Behaviors

Kaushik Madala
Computer Science and Engineering

University of North Texas
kaushik.madala@my.unt.edu

Hyunsook Do
Computer Science and Engineering

University of North Texas
hyunsook.do@unt.edu

Daniel Aceituna
DISTek Integration, Inc.

Daniel.Aceituna@distek.com

Abstract—Finding and addressing off-nominal behaviors in
the later phases of the software development life cycle is costly
and time consuming. In our previous work, we proposed the
causal component model (CCM), a semi-automated approach
that can expose off-nominal behaviors in requirements. The
empirical study with CCM showed promising results, but CCM
has limitations with scalability. To reduce the scalability issues,
in particular because of hierarchical relationships, we propose
an enhanced causal component model that uses hierarchical
model exploration. The results of our case study indicate that
the proposed approach reduces the state/rule explosion problem
and detects off-nominal behaviors.

I. INTRODUCTION

Embedded systems provide enormous benefits[1]. However,
most embedded systems are susceptible to off-nominal behav-
iors (ONBs) [2], [3] that can lead to system failure. ONBs
are unexpected or unintended behaviors [2], [3]. ONBs can
be caused by various reasons such as a user performing an
operation or triggering an event without following the correct
procedure, two components of system being in contradictory
states of operation, or environmental factors affecting the
system’s operations. For example, in a microwave oven, an
unexpected behavior would be the oven cooking while the door
is open.

To date, various approaches for detecting and correcting
ONBs have been proposed, but many of these approaches
require product implementation [4], [5], [6] and only a few of
them are at requirements level [2], [7]. However, catching and
correcting defects in the later phase of software development
is usually more time consuming and costly than catching them
in an early phase (e.g., requirements engineering phase) [8],
[9].

To address this lack, our previous work proposed the causal
component model (CCM) [7], which generates a model from the
rules created from natural language requirements and performs
a model analysis against undesired behaviors. While empirical
studies with the CCM approach showed promising results,
the approach has limitations with scalability. CCM suffers
from state explosion and rule explosion problems, and cannot
handle sub-states without performing state flattening [10]. State
flattening removes hierarchical relationships and results in
atomic states, which can affect dependencies in a hierarchy
and lead to a large number of state transitions in CCM. To
handle these limitations, we improved the CCM approach and

implemented the enhanced causal component model (ECCM)
by considering hierarchical model exploration to reduce the
state and rule explosion problem [11]. The main intention
of proposed approach is to reduce scalability issues because
of sub-states. The main idea of our approach is that, as the
component state transitions among super-states do not require
the details of sub-states, when they are analyzed separately, the
number of system-states and system transition rules generated
are small, and thus it simplifies the model analysis. To evaluate
our proposed approach, we performed a case study using the
pacemaker requirements document [12]. Our results indicate
that the ECCM can reduce the state and rule explosion problem
and detect ONBs.

The rest of paper is organized as follows. Section II provides
background information on the CCM, and Section III presents
the proposed approach. Sections IV and V present a case study
and discuss the results of the study. Sections VI and VII present
related work, and conclusions respectively.

II. BACKGROUND

The causal component model (CCM) [7] is generated from
requirements to expose ONBs. It models the system behavior
using three model elements: component, state, and transition
condition. A component is an entity that is a part of the
system’s composition that can change states or trigger a state
change in other components. In the case of embedded systems,
components can be both hardware and associated software
functional units. For example, in a robot system, components
might include the motor, gyroscope and ultrasonic sensor. Each
component has its own set of possible states, such as a motor
in a robot having off and on states. These states are component
states. Components’ states can be grouped together to form a
system state. For example, in a robot system, while motor in
its ‘on’ state is referred as component state, the state of robot
when motor is ‘on’, gyroscope is ‘on’ and ultrasonic sensor is
‘on’ represents the system state of robot . Transition condition
is the event or condition that trigger for a state transition.
These transition conditions can be environmental (i.e, a person
or environmental factor triggers events), or system related
(i.e, component states trigger state transitions). These model
elements are identified in natural language requirements and
transition rules are written. The transition rules are in the form



of mapping function Transition Condition: Component(current
state) → Component(next state).

The component states are combined into system states,
converting component state transition rules to system state
transition rules. The ONBs that could be caused by non-
recoverable and undesired states are found by checking the
model against undesired rules. Once the ONBs are determined,
the stakeholders can address the problems. The process is
repeated until the outcome satisfies the stakeholders. More
detailed discussion of CCM can be found in [7].

III. THE PROPOSED APPROACH: ECCM

To address the limitations of the CCM, we propose the
enhanced causal component model (ECCM). Figure 1 illustrates
an overview of the proposed approach. The ovals represent the
processes and the rectangles represent the software artifacts
(inputs and outputs of the processes). The numbers just outside
the ovals indicate step numbers. Each step is detailed as follows:
1: Convert natural language requirements to ECCM specifica-
tions: The first step is to convert natural language requirements
into ECCM specifications. To convert the requirements to
the input specification to generate ECCM, we identify model
elements: components, components’ states, and transition
conditions. The explanation on these model elements can
be found in Section II. The input specification of ECCM is
component state transition rules. A transition rule of ECCM
is in the form of Transition Condition: Component(current
state) → Component(next state). After identifying the model
elements, the transition rules are created. Because ECCM
considers sub-states differently than CCM approach (where
states are flattened), we represent sub-state as parent state
followed by dot (‘.’) followed by sub-state. For example, a
component motor has ‘off’ and ‘on’ states and ‘on’ state
has ‘accelerate’ and ‘decelerate’ states. ‘On’ state of motor
is represented as Motor(on), where as ‘accelerate’ sub-state
of ‘on’ state is represented as Motor(on.accelerate). If there
are multiple levels of sub-states, then the representation will
be the outer most state followed by dot (‘.’) followed by its
sub-state followed by dot followed by its sub-state and the
process is repeated until the inner-most sub-state which needs
to be represented is found.

2.) Partition rules into rule sets: The rules generated may
result in too many system states, and consequently the number
of system transition rules created may also be increased. In
order to reduce state explosion and rule explosion, we partition
the rules into rule sets based on hierarchy levels of sub-states
and components (see step 2 of Figure 1).

The advantages of partitioning are that we analyze only a
part of system at a time and if the users are not domain experts
or non-technical experts and need to understand the level of
operation at higher or abstract level, then they need to go
through only one rule set (first rule set) which represents the
abstract representation of system. In addition, the generation
on rule sets based on hierarchy eases the analysis process of
technical experts. They can consider only part of system which
has issues and analyze it easily. Because our approach uses

graph-based technique for analyzing off-nominal behaviors
(ONBs), the dependencies between the components are not
lost.

Algorithm 1: Generation of Rule Sets
input : A set of components in system C = {C1, C2, C3, ..., Cn}

A set of states at level 0 for each component
maxlevel, maximum level of sub-states
Sets of sub-states for each component at level 1, 2, 3, ..., maxlevel
Rules R = {R1, R2, R3, R4, ..., Rw}

output : Rulesets

1 rulesetnum = 0;
2 for currentlevel← 0 to maxlevel do
3 if currentlevel == 0 then
4 foreach Rule Ri in R do
5 if states in Ri ∈ any of component-states at level 0 then
6 Rulesets[rulesetnum] ← Rulesets[rulesetnum] ∪ Ri;

7 rulesetnum ← rulesetnum+1;

8 else
9 foreach Component Ci in C do

10 if Component Ci has sub-states at level = currentlevel
then

11 foreach Rule Ri in R do
12 if component in Ri == Ci then
13 if state in Ri ∈ sub-states of Ci at level =

currentlevel then
14 truncate states with lower level

sub-states;
15 Rulesets[rulesetnum] ←

Rulesets[rulesetnum] ∪ Ri;

16 else
17 if states in Ri ∈ any of states at level 0

then
18 Rulesets[rulesetnum] ←

Rulesets[rulesetnum] ∪ Ri;

19 rulesetnum ← rulesetnum+1;

Algorithm 1 partitions the rules into rule sets. The algorithm
generates rule sets until all levels of sub-states are covered. It
initially generates rule set containing the higher level (abstract)
representation of system. Once, this rule set is generated, each
component that has sub-states is taken, and for each level of sub-
states in component, treating states of other components to be at
abstract level, rule sets are generated. Once all the rule sets are
generated, each rule set is allocated to a thread in multithreading
environment to perform rule expansion concurrently.

3.) Rule expansion: To analyze ONBs, we generate the
system states from the component-states. We generate system
states from component-states because, at any given instance,
the state of system is dependent on all its components’ states. In
addition, we aim to find system states where components’ states
are conflicting or that might result in catastrophic behavior of
system.

To simplify the system state generation process, we converted
the rules into numerical form. The components are represented
as rows and the states as columns and the ordinal positions of
component and state are used to represent numerical values as
shown in the upper table of Figure 2. For example, if there
are 3 components in a system with 3 states each, then state
2 of component 3 is represented as (0, 0, 2) The sub-states

2



Fig. 1. Enhanced Causal Component Model Overview

are represented as sub-column within a column and the their
position in the sub-column is appended to the parent state
position with a separator ‘.’ as shown in the sub-state table
in Figure 2). For example, if state 1 of component 1 has 5
sub-states then we represent sub-state 2 of state 1 of component
1 as (1.2, 0, 0).

State 1 State 2 ………. State n

Component 1 1, 0, 0 2, 0, 0 ………. n, 0, 0

Component 2 0, 1, 0 0, 2, 0 ………. 0, n, 0

Component 3 0, 0, 1 0, 0, 2 ………. 0, 0, n

Sub-State 1 Sub-state 2 …… Sub-state k

0, 2.1, 0 0, 2.2, 0 …… 0, 2.k, 0

Fig. 2. Table for Numerical Representation of States and Sub-States of
Components

We also converted any transition conditions with component-
states into numerical form. These numerical states are used
to generate numerical rules. Once the numerical rules are
generated, the rules are expanded by performing absorption and
propagation operations similar to CCM. We perform absorption
and propagation to consider the component state information
in transition condition and transfer it to the current and next
system states. Absorption involves moving information from
transition condition to the state if the transition condition is a
system cause, system cause is the transition condition in which
a component state or set of components’ states result in state
transition of other component); for instance, if there is rule like

(0, 2, 0) : (2.1, 0, 0) → (2.4, 0, 0), it will be converted to (0, 2,
0) : (2.1, 2, 0) → (2.4, 0, 0). Propagation involves transferring
the information from the current state to the next state. That
is, after propagation, the above rule becomes (0, 2, 0) : (2.1,
2, 0) → (2.4, 2, 0). After the absorption and propagation,
we consider the 0 values in the state, which means that the
component-state can be any arbitrary state of that component.
This process is referred to as an expansion and is performed
to see all possible component state configurations possible for
that given transition. As a result, we replace all the zeroes with
possible component-states. We replace the system cause with
a notation, for example, cause (0, 2, 0) is now denoted as T1.
The rule (0, 2, 0) : (2.1, 2, 0) → (2.4, 2, 0) after expansion
becomes T1: (2.1, 2, 2) → (2.4, 2, 2) and T1: (2.1, 2, 1) →
(2.4, 2, 1).

4.) Undesired state detection: After the rules are expanded,
the model is generated and a state profiling algorithm [7] is
used to generate the number of incoming transitions due to
environmental causes (EID), and due to system causes (TID),
and the number of outgoing transitions due to environmental
causes(EOD), and due to system causes(TOD) of a state in
the model. The state profiling algorithm generates the above
mentioned values by going through each state in the rule
and creates or modifies corresponding profile. The algorithm
identifies difference between system causes and environmental
causes by looking over if the transition condition has any
component state information. We perform this by checking
the transition condition information with the database of
components and states that we collected while creating the
rules.

Based on the number of incoming transitions and the number
of output transitions of each system state, we classified states
as unrecoverable or unreachable.

3



Fig. 3. State Profile with In-Degree and Out-Degree

Unrecoverable states are system states which cannot recover
without external input, i.e, TOD = 0. These states can be
undesired because the system is stuck in these states till external
input is provided. Unreachable states are system states whose
TID and EID are zero, which means that no system state can
transition to this state. It is necessary to analyze such states
for off-nominal behaviors, because while those states might
be desired they can never be reached, leaving the system in a
problematic state. However, all unrecoverable states might nor
result in ONBs. Any unrecoverable state that does not lead to
ONB is considered as false positive. These unrecoverable and
unreachable states are used for finding ONBs.

5.) Analyze the detected undesired states: Not all unrecov-
erable/unreachable states are necessarily undesired states that
result in ONBs. The requirements engineers and stakeholders
should examine the detected off-nominal system states and
label them as undesired or not. After the undesired states are
finalized, their associated rules are examined to find ONBs.

6.) Correct requirements: The rules that result in ONBs
and respective requirements are examined by requirements
engineers and stakeholders, and corrective actions are taken
based on stakeholders decisions. The entire analysis process
is repeated with the corrected requirements until no undesired
states are found.

IV. CASE STUDY

To evaluate our proposed approach, we implemented the
ECCM tool. The tool allows users to enter information about
components, component states, component sub-states, and
ECCM specifications (rules of component-state transitions).
The tool utilizes a multi-threading environment to enhance
performance. We performed case study using pacemaker using
ECCM and compared it with CCM. The following subsections
present the details of the pacemaker requirements, the procedure
of the study, and the results.

A. Pacemaker Requirements
The pacemaker requirements document [12] is a 35-page

document that describes the device’s system requirements and
provides details about diagnostics and therapy. The pacemaker
system consists of a pulse generator (PG), a device controller
monitor (DCM), leads, and a magnet. In this paper, we analyze
the pulse generator, which plays a vital role in the system’s
operation; any malfunction of this component would result in
complications for the patient.

B. Procedure of the Study

This section describes the procedure for our study.

TABLE I
COMPONENTS AND STATES

Component States
Pulse Generator (PG) off, on
Device Controller-Monitor (DCM) off, on
Magnet outofplace, inplace
Printer off, on

1.) Convert natural language requirements to ECCM spec-
ifications: Two graduate students analyzed the pacemaker
requirements document and identified the elements of ECCM:
components, states, and transition conditions. Once the states
were identified, hierarchical relationship among them is de-
termined. Table I shows components and their higher level
states that we identified. The pulse generator component has
three levels of sub-states. The components, parent states, and
sub-states are shown in Table II. The meaning of the acronyms
of the sub-states of permanent, temporary, pace-now, magnet
and power-on-reset states can be found in Table III. These sub-
states represent the operating modes of the states of operation
of the pacemaker.

Once the hierarchy of states is determined, the rules were
created. In total, 71 rules are created, which serves as ECCM
specifications.

2.) Partition into rule sets: In this step, we generated rule
sets based on the sub-states generated in step 1. Using the rule
set generation algorithm detailed in Section III, 4 rule sets are
generated from 71 rules. Due to space limitations, we present
a subset of rules from the first two rule sets as follows:

Rule Set 1 - First Two Rules:
1) UserPress(on_PG) : PG(off) → PG(on)
2) UserPress(off_PG) : PG(on) → PG(off)

Rule Set 2 - First Two Rules:
1) Patient(chronic_incompetence) :

PG(on.preimplant) → PG(on.implant)
2) Patient(sick_sinussyndrome) :

PG(on.preimplant) → PG(on.implant)

While the two rules in rule set 1 refer to user switching on
and off the pulse generator (PG). The two rules in rule set
2 detail two conditions in which PG must be implanted into
person. We can observe that all the rules illustrated above
have environmental causes (Patient and UserPress are not
components of system).

The first rule set has 7 rules out of 71 rules and the second
rule set has 18 rules. The third and fourth rule sets contain 14
and 59 rules, respectively.

3.) Rule expansion: After the rule sets were generated, each
rule set was allocated to a thread and the rule expansion is
performed as explained in Section III to generate system states
and their transition rules. We converted our rules into numerical
rules, and the following are numerical rules created for the
first two rules in rule set 2:

Rule Set 2 - First Two Numerical Rules:
1) Patient(chronic_incompetence) : 2.1, 0, 0, 0 → 2.2, 0, 0, 0
2) Patient(sick_sinus_syndrome) : 2.1, 0, 0, 0 → 2.2, 0, 0, 0

4



TABLE II
COMPONENTS AND SUB-STATES

Component Parent state Parent state
level

Sub-states

PG on 0 pre-implant, implant, pre-discharge-follow-up, routine-follow-up, ambulatory, explant
PG ambulatory 1 permanent, temporary, pace-now, magnet, power-on-reset
PG permanent 2 off, DDDR, VDDR, DDIR, DOOR, VOOR, AOOR, VVIR, AAIR, DDD, VDD, DDI, DOO, VOO, AOO, VVI,

AAI, VVT, AAT
PG temporary 2 off, DDDR, VDDR, DDIR, DOOR, VOOR, AOOR, VVIR, AAIR, DDD, VDD, DDI, DOO, VOO, AOO, VVI,

AAI, VVT, AAT, OOO, OAO, OVO, ODO
PG pace-now 2 VVI
PG magnet 2 off, DDD, DOO, AOO, VOO, OOO
PG power-on-reset 2 VVI

TABLE III
EXPLANATION OF SUB-STATES WITH ACRONYMS IN PULSE GENERATOR

Category Chambers Chambers Response Rate
paced sensed to sensing modulation

Meaning O-None O-None O-None R-Rate
A-Atrium A-Atrium T-Triggered modulation
V-Ventricle V-Ventricle I-Inhibited
D-Dual D-Dual D-Tracked

Once the numerical rules are generated, absorption, propaga-
tion, and expansion are performed as explained in Section III.
The result of these operations are the expanded rules that
contain system states. The following are some of the expanded
rules from the rule set 2:

Rule Set 2 - First Four Expanded Rules:
1) Patient(chronic_incompetence) : 2.1, 1, 1, 1 → 2.2, 1, 1, 1
2) Patient(chronic_incompetence) : 2.1, 1, 1, 2 → 2.2, 1, 1, 2
3) Patient(chronic_incompetence) : 2.1, 1, 2, 1 → 2.2, 1, 2, 1
4) Patient(chronic_incompetence) : 2.1, 1, 2, 2 → 2.2, 1, 2, 2

4.) Undesired state detection: The expanded rules from each
rule set were analyzed to detect possible undesired states by
generating state profile for each state as mentioned in step 4
of Section III. Using these state profiles, we found undesired
states that aid in finding off-nominal behaviors (ONBs) using
the process detailed in step 4 of Section III. The detailed results
will be discussed in Section IV-C.

5.) Analyze detected undesired states: The detected undesired
states were analyzed to eliminate false positives. False positives
are the states which are desired but are identified as undesired.
In our study, we found 146 false positives and they were easy
to find due to the hierarchical relationship between super-state
and sub-states. For example, states where PG is ‘on’ state or
sub-states of ‘on’ state and DCM is ‘on’ state but the magnet is
‘out of place’ and the printer is ‘off’ are detected as undesired
states. However, printer in ‘off’ state and magnet in ’out of
place’ state will not result in any off-nominal behaviors. Thus,
these cases are be considered as false positives.

After eliminating the false positives, we obtained the
finalized undesired states. We found 250 undesired states in
the pacemaker requirements. For example, when the magnet
state is ‘in place’ and pulse generator is not in ‘magnet’ state
of operation, it is considered as an undesired state because

when the magnet’s state is in place, the system requires the
operating mode node not to have any sensing operation. Having
the sensing operation when the magnet’s state is in place might
result in energy interference, which can cause the electrical
problem with the pacemaker.

6.) Correct requirements: Once the undesired states are
identified, their corresponding rules and requirements are
identified. In our study, we manually traced back from rules
to requirements. Consider a case that shows an undesired
state, 2.5.4.4, 2, 1, 2, which indicates magnet is out of
place but PG is in magnet state. Its corresponding rule is
User(remove_magnet) : 2.5.4.4, 2, 2, 2 → 2.5.4.4, 2, 1, 2
and its requirement is “When the magnet is removed the device
shall assume pretest operation”. Because the pretest operation
is never defined in the document, it is hard to know what
transition occurs from magnet state and what the destination
state is. To clarify this requirement, we corrected it as follows:
When the magnet is removed, the device shall assume pretest
operation and comes out of the magnet state.

We also found ONBs from the states that are associated with
PG and DCM. It is not safe for DCM to be switched off when
PG is on if there is a necessity for continuous monitoring. When
continuous monitoring is required, this situation will result in
complications of patient’s condition because the change of
pacing and sensing functions can no longer be controlled and
it will affect the heart beat rate of the patient. If such incomplete
requirements are not addressed, it is likely to produce a product
that can threat the patients’ safety.

C. Results

Table IV shows the results of our study. RS in the table refer
to the rule set. Because CCM does not use the hierarchical
approach, some items are not applicable such as the number of
sub-states and rule sets. We explain the results obtained from
the ECCM first and then compare them with those from the
CCM.

As Table IV shows, using ECCM approach, we identified 4
components, 8 states (level 0 states or parent states or super
states), 61 sub-states for 3 levels of hierarchy. 71 rules were
created and 4 rule sets were obtained. The total number of
system states generated is 504, and the number of expanded
rules for all rule sets is 1880. The ECCM approach detected

5



TABLE IV
RESULTS OF ECCM AND CCM

ECCM CCM
Number of components 4 4
Total number of states 8 62
Total number of sub-states 61 N/A
Number of rules from NL 71 1192
requirements
Number of rule sets generated 4 N/A
Number of system states analyzed 16 (RS1), 448

48 (RS2),
40 (RS3),
400 (RS4)

Number of expanded rules 56 (RS1), 9496
generated and analyzed 232 (RS2),

160 (RS3),
1432 (RS4)

Number of state analyzed for 396 448
finding undesired states
Number of ONBs 3 3
Time taken to convert NL to rules 1 hour 4 hours
(after reading requirements)
Time taken for analysis of 30 minutes 0
false positives
Time taken for generation of 0 4 hours
undesired rules

396 undesired (off-nominal) states and 146 of them were false
positives. We found 3 ONBs from 250 undesired states. The
identified ONBs are detailed in Table V. Every undesired state
is caused by one of those 3 off-nominal behaviors. We consider
the detected ONBs as low to moderate risk as they can be
easily addressed, and are not likely to lead to fatal accidents
unless some additional factors come into play such as energy
inference.

When we applied the CCM approach to the same set of
requirements, because the process of identifying components
is identical to ECCM, we obtained the same number of
components, which is four. However, the number of rules
created for CCM (1192) is far larger than for ECCM (71).
Also, the number of expanded rules bt CCM (9496) is much
larger than ECCM (1880). Unlike ECCM, CCM does not detect
possible undesired states but requires human intervention to
analyze all states to find undesired states, which in turn are
used for generating undesired rules to check the reachability of
the undesired states. Thus, it does not produce false positives.
By analyzing 52 undesired rules, we were able to detect 3
ONBs that were found from ECCM. We are able to find two
ONBs at level 0 of hierarchy and one ONB at level 2 while
the total number of levels are 3. While the two approaches
found the same number of ONBs, the systematic way of the
ECCM approach located them more easily and faster. Further,
CCM does not guarantee to locate ONBs.

Also, we found that our approach is more efficient than the
CCM approach. As shown in Table IV, the ECCM approach
took 1 hour to convert natural language requirements into
rules while the CCM approach took 4 hours. This indicates
that creating rules using ECCM is much easier than CCM.
Analyzing ONB is done differently for each approach. While
the analysis of ONBs in ECCM involves automated possible

TABLE V
LIST OF OFF-NOMINAL BEHAVIORS (ONBS) FOUND

S.No Off-nominal behavior
1 Magnet is inplace when PG is off
2 DCM is switched off when Pulse Generator is on
3 Pulse generator is in magnet state when magnet is

out of place or Pulse generator is in other state
when magnet is in place

undesired state detection followed by false positive analysis,
the analysis of ONBs in CCM involves manual identification
of undesired rules. These undesired rules are used to detect
possible ONBs in expanded rules automatically. Thus, for the
ONB analysis time, ECCM took 30 minutes, but CCM took 4
hours (due to large number of rules). Because we used only
a small set of requirements (pulse generator) in this study, if
we apply our approach to a larger set of requirements, ECCM
will produce far greater benefits than CCM.

V. DISCUSSION

By examining the results, we drew the following observations.
First, overall, the proposed technique helps to determine ONBs
in systems with complex behaviors during the requirements
phase. Second, the proposed approach reduces the number of
rules and states being analyzed, as we divide the input rules
into rule sets. The results indicate that state and rule explosion
can be reduced by combining state abstraction and state space
restriction.

We believe that our hierarchical approach can help the
requirements engineers and stakeholders to understand the
dependencies among the states more easily and address of
ONBs compared to non-hierarchical approaches such as CCM.
In addition, our proposed approach can give system behavior
at abstract level which we believe make it comprehensible for
non-technical stakeholders as abstract level representation is
simple.

Although our results are promising, our approach has some
limitations that we want to address. One limitation is that our
approach cannot guarantee exposure of all ONBs as it does
not consider states that recover to another undesired state. We
plan to address this limitation by analyzing all possible states
and then profiling rules similar to CCM.

The second limitation of our approach is that it is still prone
to state explosion problem. If there are too many states at a
single level of hierarchy, the approach can have scope for state
explosion. We plan to mitigate it by considering combinatorial
hierarchical exploration. The third limitation is the high number
of false positives during automated undesired state detection.
We plan to address it by creating a knowledge base which aids
in identifying domain specific off-nominal properties.

VI. RELATED WORK

To date, some amount of research has been done in finding
ONBs [3], [2]. For example, Sukhwani et al. [6] proposed
software reliability growth models to find ONBs during the

6



maintenance phase. Other researchers have tried to analyze
ONBs at the testing phase. Foyle and Hooey [5] proposed
off-nominal testing by incorporating off-nominal scenarios into
experimental design.

Some researchers have analyzed ONBs by developing
simulation models [4]. A few researchers have tried to detect the
ONBs at the requirements level. For example, Tsai et al. [13]
analyzed scenario specifications for off-nominal scenarios using
automated event tree analysis, in which the scenarios are
executed by considering failure models to generate event trees.
Day et al. [2] used system modeling language(SysML) to
model generic patterns of ONBs and used them to check the
completeness of the system.

These methods consider off-nominal situations from human
factor point of view. Unlike these methods, in our work, we
consider exposing the causes that result in ONBs from system’s
perspective.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we presented the model-driven requirements
analysis approach that reduces state and rule explosion prob-
lems using a hierarchical model exploration strategy, and its
empirical results with the pacemaker requirements.

Although our empirical results showed the promising results,
our approach also has several limitations as we discussed
in Section V. For future work, we intend to investigate and
improve our approach further considering those limitations.
First, we plan to use natural language processing to ease process
of identifying model elements, add analysis of orthogonal states
to proposed ECCM model, and reduce false positives using a
knowledge base for identifying undesired states. Second, we
plan to perform various empirical studies to explore further
advantages and limitations of our approach. Third, we also
plan to adapt and use the rule set generation algorithm for
system of systems. Finally, we plan to take possible contexts
into consideration when analyzing and exposing off-nominal
behaviors.

ACKNOWLEDGMENT

This work was supported, in part, by NSF CAREER Award
CCF-1564238 to University of North Texas.

REFERENCES

[1] A. K. Mostafa, “How embedded systems benefit people and in what
fields ?” Tech. Rep. July, 2015.

[2] J. Day, K. Donahue, A. Kadesch, A. Kennedy, and E. Post, “Modeling
off-nominal behavior in SysML,” in AIAA Infotech, Jun. 2012, pp. 19–21.

[3] D. Firesmith, “The Need to Specify Requirements
for Off-Nominal Behaviors,” 2012. [Online]. Avail-
able: https://insights.sei.cmu.edu/sei_blog/2012/01/the-need-to-specify-
requirements-for-off-nominal-behavior.html

[4] G. Fraccone, V. Volovoi, A. Colon, and M. Blake, “Novel air traffic
procedures: Investigation of off-nominal scenarios and potential hazards,”
Journal of Aircraft, vol. 48, no. 1, pp. 127–140, 2011.

[5] D. Foyle and B. Hooey, “Improving evaluation and system design through
the use of off-nominal testing: A methodology for scenario development,”
in Internaltional Symposium on Aviation Psychology, 2003, pp. 397–402.

[6] H. Sukhwani, J. Alonso, K. S. Trivedi, and I. Mcginnis, “Software
reliability analysis of nasa space flight software: A practical experience,”
in 2016 IEEE International Conference on Software Quality, Reliability
and Security (QRS), Aug 2016, pp. 386–397.

[7] D. Aceituna and H. Do, “Exposing the susceptibility of off-nominal
behaviors in reactive system requirements,” in Requirements Engineering,
Aug. 2015, pp. 136–145.

[8] B. Boehm and V. Basili, “Software defect reduction top 10 list,” IEEE
Computer, pp. 135–137, 2001.

[9] J. M. Stecklein, J. Dabney, B. Dick, B. Haskins, R. Lovell, and
G. Moroney, “Error Cost Escalation Through the Project Life Cycle,”
Incose -Annual Conference Symposium Proceedings, 2004.

[10] X. Devroey, G. Perrouin, M. Cordy, A. Legay, P. Schobbens, and
P. Heymans, “State machine flattening: Mapping study and assessment,”
CoRR, 2014.

[11] A. Valmari, The state explosion problem. Berlin, Heidelberg: Springer
Berlin Heidelberg, 1998, pp. 429–528.

[12] Boston Scientific, “Pacemaker system specification,” Boston Scientific,
Tech. Rep., 2007.

[13] W. Tsai, W. Song, R. Paul, Z. Cao, and H. Huang, “Services-oriented dy-
namic reconfiguration framework for dependable distributed computing,”
in COMPSAC, vol. 1. Citeseer, 2004, pp. 554–559.

7


