
A Multi-level Approach for Model-Based User
Interface Development

Björn Benner
Information Systems and Enterprise Modeling,
University of Duisburg-Essen, Essen, Germany

Email: bjoern.benner@uni-due.de

Abstract—Multi-level modeling is considered to provide ad-
vancements over the traditional modeling approaches. It is
applicable, among others, to scenarios where more than two
classification levels are required and a rigid dichotomy between
classes and objects needs to be relaxed. As the Model-Based
User Interface Development (MBUID) inherently encompasses
more than two classification levels, there are challenges which
cannot be accounted for with the traditional approaches (e.g.,
the propagation of changes or the extensibility of modeling
languages). Therefore, it seems promising to apply multi-level
modeling for overcoming these challenges. In this paper, we
show the applicability of the multi-level modeling language
FMMLx and the language execution engine XModeler for the
MBUID-field. As a proof of concept, a corresponding prototype
based on FMMLx and XModeler is presented which illustrates
the benefits of multi-level modeling.

Index Terms—Multi-level Modeling, MBUID, FMMLx, XMod-
eler

I. INTRODUCTION

Multi-level modeling aims at providing benefits over tradi-
tional conceptual modeling, e.g., by supporting an arbitrary
number of classification levels, increased capabilities of reuse
and increased capabilities of integration [1]. Recently, the
interest in multi-level modeling has increased [1]–[4] and
various multi-level modeling approaches have been success-
fully applied in different areas, e.g., the management of IT-
infrastructure [5] or the process improvement in the automo-
tive domain [6].

Taking into account, on the one hand, characteristics of
traditional conceptual modeling, on the other hand, unful-
filled requirements (e.g., the propagation of changes or the
extensibility of modeling languages), an additional area which
seems to be promising as a further field for the application
of multi-level modeling is the Model-Based User Interface
Development (MBUID) [7], [8]. MBUID utilizes different
types of models (e.g., abstract user interface, concrete user
interface or final user interface) for the development of user
interfaces (UIs) and aims at reducing the amount of time
consumed by the manual UI creation: about 48% of the source
code and about 50% of the implementation time is spent on
the UI development [9].

MBUID utilizes models on different levels of abstraction
for developing the UI, thus, it would benefit from an arbitrary
number of classification levels. As those models are inter-
dependent, changes in one model have to be synchronized

into the dependent models. Therefore, the capabilities for
integration can support the mutual synchronization of models,
thus, support the overall integrity. Furthermore, MBUID would
benefit from the increased capabilities of reuse, as it is not
desirable to create each UI from scratch.

Therefore, our goal is to investigate the applicability of the
multi-level paradigm for the model-based development of UIs.
To the best of our knowledge, only one approach exists that
applied multi-level modeling for model-based development
of UIs [10]. However, this approach targets the development
of concrete syntaxes and is limited by a predefined set of
visualization types. Therefore, this approach investigates only
a small subset of the MBUID area. In contrast, we do not only
focus on the design of UIs, but consider also the other aspects
of the UI’s entire lifecycle, i.e., its execution, its modification
as well as its adaption. Therefore, we investigated not only the
applicability of multi-level modeling but also the applicability
of multi-level programming for MBUID approaches. Hence-
forth, the combination of multi-level modeling with multi-
level programming is understood as the multi-level paradigm.
Accordingly, the traditional paradigm is understood as the
traditional conceptual modeling in combination with prevalent
programming languages.

In order to accomplish the above-mentioned goal, the re-
maining of the paper is structured as follows: First, generic
requirements towards the model-based development of UIs are
identified (Section II). Afterwards, the approaches based on the
traditional paradigm are evaluated against those requirements
(Section III). Following, a multi-level approach is selected
and the suitability of it for satisfying these requirements is
discussed (Section IV). Afterwards, a corresponding prototype
is developed (Section V) and a evaluation takes place (Sec-
tion VI). Finally, conclusions and an outlook on future work
are given (Section VII).

II. REQUIREMENTS TOWARDS MBUID APPROACHES

Requirements towards MBUID approaches can be catego-
rized into core and additional requirements. Core requirements
focus on the core functionalities of any MBUID approach,
e.g., the possibility to design models for the UI creation. As
all MBUID approaches deliver those, following, we focus on
the additional requirements, which target advanced features
enabling effective and efficient design of UIs. Following, the



most relevant additional requirements, taking into account the
goal of this paper, are presented.

R1 Foster Productivity: Considering all of the aspects that
should be accounted for while building a UI model (e.g.,
widgets, colors or arrangement), building models is consid-
ered difficult [11]. Especially if the modeling language only
provides primitive (generic) modeling concepts, the creation
of such rich models is a cumbersome endeavor as everything
has to be recreated from stratch. Therefore, in order to
support productivity of modeling, a modeling language should
provide semantically rich concepts which account for specific
characteristics of user interfaces [7], [8].

R2 Foster Range of Reuse: Beyond this, MBUID ap-
proaches should be applicable in a wide range of different
scenarios (economies of scale) [12]. Therefore, MBUID ap-
proaches should provide generic concepts which can be reused
in different situations. However, this claim stays in opposition
to R1: In order to foster productivity, an approach requires
semantically rich concepts. However, such specific concepts
can presumably not be reused in a wide range of scenarios.
In contrast, in order to be reusable in different scenarios, an
approach has to provide generic concepts, which hampers the
productivity.

R3 Transparent Propagation of Modifications: Due to the
omnipresence of change, developed UIs have to be adapted
continuously to changed requirements during their lifecycle.
For this reason, it is necessary to modify the corresponding
models in order to satisfy those changed requirements. Subse-
quently, those changes should be reflected in the corresponding
source code. However, it should not be necessary to recompile
the source code, but the UI should be adapted during runtime.
Therefore, it is desirable to have a transparent propagation of
change which applies the changes in the model in an automatic
manner to the source code and maintains the overall integrity
[8], [13].

R4 Extensibility of Language and Adaptability of Tool:
In literature, the omnipresence of change is mostly discussed
in terms of its implications for the created user interface,
e.g., [13]. However, literature mostly neglects changes which
go beyond the language application and require to adapt the
language specification. For example, it might be desirable to
add new concepts to the language specification by refining
existing ones (e.g., a refined Button which adheres to a cor-
porate design). In that context, it should not only be possible
to enhance the language specification on demand with a new
concept, but also to adapt the corresponding tool.

III. SHORTCOMINGS OF THE TRADITIONAL PARADIGM

We argue that MBUID approaches which rely on the
traditional paradigm cannot entirely satisfy the additional
requirements due to the limitations imposed by the traditional
conceptual modeling and corresponding tools implemented
using prevalent object-oriented programming languages.

In order to illustrate the implications of the prevalent
paradigm on current MBUID approaches, it is discussed using
a prototypical MBUID approach named Cameleon Reference

Framework (CRF) [14]. This framework presents an overall
structure for MBUID approaches which is on the one hand
valid for the majority of existing approaches [14] and on the
other hand used as a foundation for new MBUID approaches
[15]–[21].

The CRF constitutes a four-layered framework for structur-
ing the development and the adaption of UIs [14]. The four
layers of the CRF are the Final UI (i.e., the actual UI imple-
mented in a programming language), the Concrete Interface
(i.e., a non-executable platform- and interactor-specific model
of the UI), the Abstract Interface (i.e., an abstract specification
of the UI) and Concepts and Task Models (i.e., the speci-
fication of relevant tasks and domain concepts). The layers
are based on three types of so-called ‘ontological models’
[14]: domain-models “support the description of the concepts
and user tasks” [14, p. 294], context-models “characterize the
context of use in terms of user, platform and environment”
[14, p. 294] and adaption-models “specify both the reaction
in case of change of context of use and a smoothly way for
commuting” [14, p. 294].

In order to transition from one layer to another, model
transformation is applied [16]. Model transformation is defined
as the application of transformation rules in order to translate
a model into either text or another model (which adheres
to another metamodel) [22]. The translation from Concepts
and Task Models to Abstract Interface constitutes a model
transformation, as both models have different intentions, thus,
they adhere to different metamodels.

In contrast, the transformation from the Abstract Interface
to Concrete Interface is unsatisfactory. As an Abstract In-
terface is interactor-independent and the Concrete Interface
is interactor-dependent, several Concrete Interfaces can be
transformed or derived from one Abstract Interface [14].
Therefore, a number of Concrete Interfaces can be character-
ized or rather classified by one Abstract Interface. Thus, the
Abstract Interface rather represents a kind of metamodel for
the corresponding Concrete Interfaces. Therefore, this relation
can be regarded as a model transformation, because both
models have different metamodels. However, an instantiation-
relation between Concrete Interface and Abstract Interface
would be more appropriate because an Abstract Interface can
be considered as a class for a number of Concrete Interfaces.

The transformation from the Concrete Interface to the Final
UI is also a model transformation, as source code (i.e., text) is
generated based on a model. However, the transformation itself
is not satisfying, as it is afflicted by well-known synchroniza-
tion problems. If there are changes to the model, those changes
have to be transferred to the source code and vice versa.

The lack of an instantiation-relation and the necessity of
code generation is not caused by a misconception of the CRF
itself. However, they are a consequence of the traditional
conceptual modeling in combination with the predominant
programming languages.

The “prevalent programming languages are restricted to the
dichotomy of objects and classes” [23, p. 32]. Therefore, there
is only one classification level, i.e., an entity is either a class



or a corresponding instance. This dichotomy in programming
languages influences the tool support. Software tools which
support the development of MBUID models, implement the
required modeling concepts in a programming language. Thus,
the modeling concepts are on the class-level. Therefore, the
created models are instances of the modeling concepts, i.e., in
the realm of those software tools, the created MBUID models
are on the object level [23]. However, those MBUID models
are models of the generated UI, thus, they are conceptually (at
least) on the level of classes. As consequence, it is necessary
to generate corresponding classes from the instances in order
to allow a further instantiation. Nevertheless, the usage of
corresponding software tools implies a mismatch between the
conceptual and the technical level of a MBUID model. Thus,
the current MBUID modeling tools cannot adequately support
the MBUID approaches due to the limitations imposed by the
prevalent programming languages.

Due to these limitations, current MBUID approaches are
not capable of propagating modifications transparently (R3).
During design time, the existing models are transformed into
source code, which can be executed afterwards. If there are
changes to the model, the corresponding source code is simply
recreated, i.e., these are changes on the class level. During
runtime, it is not possible to recreate the source code in
that way, but it is necessary to adapt the existing objects.
For this reason, the models are interpreted first, followed by
invoking adaption mechanisms on the objects. Such adaption
mechanisms are hazardous, because an inappropriate adap-
tion might lead to runtime failures. As traditional conceptual
modeling and predominant programming languages are not
tightly integrated, it is necessary to implement complex trans-
formation mechanisms in order to connect both. Therefore, the
combination of traditional conceptual modeling and predom-
inant programming languages is not capable of propagating
modifications transparently.

Furthermore, the application of traditional conceptual mod-
eling implies a conflict between productivity (R1) and range
of reuse (R2) as discussed in the previous section. Traditional
conceptual modeling does only allow satisfying one demand
while neglecting the other [23]: An approach can contain
semantically rich concepts (in the sense of domain specific
modeling languages), thus, foster the productivity. However,
such concepts can presumably not be applied in a wide range
of scenarios. In contrast, an approach can contain generic
concepts (in the sense of general purpose modeling languages),
which can be reused in several scenarios. However, the con-
cepts do not provide semantic richness, thus, the productivity
gained by its usage is rather low. Hence, the traditional
paradigm is only capable of satisfying either R1 or R2 at
a time.

Beyond this, the traditional paradigm limits the extensibility
of MBUID approaches (R4). It enforces a strict separation
of language specification and language application. Hence,
adding further language concepts requires modifying the lan-
guage specification, first, and adapting the corresponding tool
afterwards. After recompilation, the enhancements can be used

in the tool. Thus, the traditional paradigm does not allow
enhancing an approach during runtime.

In consequence, the prevalent paradigm consisting of tra-
ditional conceptual modeling and predominant programming
languages is not able to satisfy the identified requirements.
Therefore, in the next section, we investigate an alternative
paradigm comprising a multi-level modeling and programming
approach.

IV. MULTI-LEVEL MODELING AND LANGUAGE
EXECUTION ENGINE

In order to satisfy the identified requirements, an approach
is required which supports multiple levels of classification as
well as a corresponding execution engine. Although different
multi-level modeling approaches (e.g., [24], [25]) as well as
execution engines (e.g., [26], [27]) exist, to the best of our
knowledge there is no other pair of multi-level modeling ap-
proach and corresponding language execution engine besides
FMMLx (Flexible Meta-Modeling and Execution Language)
[1] and XModeler [28], [29] which allows modelling as well
as executing behavior. Therefore, it becomes our approach of
choice.

FMMLx builds on XCore (the XModeler metamodel), thus,
it incorporates XCore’s recursive, self-reflexive architecture.
This architecture is inspired by Hofstadter’s praise of re-
cursion called “golden braid” [30]. In this architecture, the
instance-of-relation between class and object is enriched by
a specialization-relation. Thus, the concept class is a special-
ization of the concept object. Therefore, a class can be in-
stantiated to another class, i.e., it enables a recursive language
architecture. Hence, FMMLx allows for an arbitrary number of
classification levels. Furthermore, as all classifications levels
are in the same model, there is no strict separation of language
levels. It is of note that FMMLx also provides the concept
inheritance in addition to the instantiation.

Moreover, FMMLx contains the concept of intrinsicness
which allows a deferred instantiation of attributes, operations
and associations. Intrinsicness assigns an instantiation level
to those entities [1], i.e., they are instantiated on the cor-
responding classification level. Therefore, the dichotomy be-
tween instantiation and specialization is relaxed, as attributes,
operations and associations can be instantiated as well as
inherited from one classification level to the next lower level.
A similar concept is the potency of Deep Instantiation [31].

Fig. 1. Notation FMMLx

The notation of FMMLx is similar to the notation of UML
class diagrams (cf. Figure 1). Beyond this, the classification
level is indicated by the background-color of the name-box:
M5 is visualized by a green background of the name-box,
M4 by red, M3 by blue, M2 by black and M1 by white (cf.



Figure 1). Intrinsicness is presented as a black box with a
white number (i.e., the instantiation level) in front of the
feature’s name.

XModeler (also known as XMF) is a language execution en-
gine [1], [28], [29]. As explained, the XModeler’s metamodel
is XCore, thus, XModeler allows for an arbitrary number of
classification levels as well.

XModeler does not only support the creation of models
on several classification levels, but it also allows for model
execution. Each entity of the system is not only a model
but also source code. A modification of the model implies
a modification of the source code, and vice versa. Due to this
shared representation, each entity can be executed. Thereby,
execution is not limited to querying model elements, but each
entity can be enhanced by algorithms for an execution in the
sense of a complete programming language [28], [29]. For this
reason, XModeler provides XOCL (eXecutable OCL) which
is an enhanced version of OCL (Object Constraint Languages)
that comprises imperative features [28].

The usage of FMMLx in combination with XModeler’s
capabilities for modeling and programming constitutes an
integrated environment. The UI design and the UI execution
is performed in the same system. Hence, there are no issues
related to the synchronization of a design and an execution
environment. Therefore, a UI can directly be executed without
further effort after designing or modifying it.

Furthermore, the integrated environment can also serve as a
live-editor. This means, that such a multi-level approach is not
limited to modifying a model and executing it afterwards, but
it is capable of modifying a model and adapting corresponding
UIs during runtime automatically. Those capabilities enable a
tight interweaving of the development and the test of a UI.

V. A PROTOTYPICAL MULTI-LEVEL MBUID APPROACH

Following, a prototype is presented which constitutes a
rudimentary multi-level MBUID approach. As already dis-
cussed, the selected multi-level paradigm is the configuration
of FMMLx and XModeler. This prototype implements selected
aspects only in order to illustrate the capabilities of a multi-
level approach for MBUID. Therefore, this approach neglects
features of prevalent approaches (e.g., the consideration of task
models or an explicit visual notation). However, this approach
is intended to illustrate a potential solution for the discussed
requirements.

As the application of FMMLx and XModeler constitutes
an integrated environment, it is not sufficient to focus only
on the UI design, but it is necessary to consider also the
execution. Therefore, an adequate language architecture has
been developed which supports both (Figure 2).

The language architecture is inspired by the MVC-Pattern
[32]. In this pattern, a Controller is in charge of synchronizing
a Model with a View. Consequently, if there are two Views for
one Model, there are also two Controllers. As those controllers
relate to the same model, there is a high chance, that both
controllers access the same aspect, thus, there is presumably
redundant source code.

Fig. 2. Language Architecture

The language architecture presented in Figure 2, utilizes
the multi-level modeling in order to overcome this threat
of redundancy. The concept Controller is divided into two
concepts: the Model-bound Controller and the Controller.
While a Model-bound Controller implements the methods
necessary to access a Model, a Controller is an instance of a
Model-bound Controller and implements the access methods
for the View. Due to the instantiation relation between Model-
bound Controller and Controller, the access methods for the
models can be implemented in the Model-bound Controller
once and reused by each Controller.

It is of note that the arrangement of the language archi-
tecture should not be mistaken for a dedicated assignment to
classification levels, e.g., the position of the concept Controller
in Figure 2 does not necessarily assign it to M1. On the con-
trary, our current research indicates that the concept Controller
should also be differentiated over several classification levels.

However, for the purpose of this paper, a small subset of the
domain of discourse is selected, which allows to satisfy the
identified requirements. Therefore, the implemented language
architecture comprises only three classification levels: M2, M1
and M0. The levels M2 and M1 are for designing a UI for
an existing model; the level M0 represents the execution of
the designed UI. That is, the elements of the running UI are
actual instances of the Controller respectively of the View.
Following, the specified language concepts for the View and
for the Controller are presented.

The View is based on the language concepts presented in
Figure 3. These concepts provide a basis for developing a
library of all supported VisualizationElements. Furthermore,
Figure 3 contains selected instantiations, i.e., elements of
such a library. VisualizationElements are differentiated in
Widgets and VisualizationFeatures. Widgets constitute those
elements which are for interaction (e.g. Buttons, Radiobuttons
or Checkboxes). In contrast, VisualizationFeatures serve to
characterize the Widgets (e.g., the widget’s background-color
or foreground-color).

The selected instantiations of the language concepts contain
an abstract conception of the FormularWidget, which is the
supertype for all form-widgets. As an exemplary special-
ization, the already mentioned Widgets Button, Radiobutton
and Checkbox are presented. For each FormularWidget, both
the foreground-color and the background-color have to be



Fig. 3. Language Concepts for the View and Selected Instantiations

specified. Thus, FormularWidget has two associations to the
feature Color.

The language concepts which are specified for imple-
menting the Model-bound Controller, the Controller and the
Controller-Instance are presented in Figure 4. As the model
is mainly intended to illustrate the associations between the
concepts, most of the attributes are faded out. The included
language concepts refer to elements which support the de-
velopment of both the View and the Model. Elements of the
View (cf. Figure 3) are marked with a green box with ‘VM’.
The Model is created with FMMLx, thus, those concepts are
part of XCore. Hence, those elements are marked by a yellow
box with ‘XCore’. It is of note that this model does only
contain classes which are required for instantiating Model-
bound Controllers, Controller as well as Controller-Instances;
exemplary instances are presented in Figure 5 2 and 3 .

The superclass for controllers is the ElementXWidget which
describes that there is a Controller which connects a Model-
element with a View-element. The ElementXWidget is special-
ized into AttributeXWidget and MetaclassXWidget. Those con-
cepts describe the specific relation of an attribute respectively
a metaclass to any kind of Widget. AttributeXWidget and Meta-
classXWidget are connected via three relations: hasAttribute-
Type on M2, displayAttributeType on M1 and displayAttribute
on M0. Those three relations are necessary concepts as they de-
scribe different circumstances: hasAttributeType comprises all
attributes possessed by a class; displayAttributeType describes
those attributes which are part of a UI, displayAttribute relates
to those attributes which are actually shown by a running UI,
i.e., it relate to potential customization.

ElementXWidget features a relation ViewRelation on M1 for
associating the View. Such a relation can either be associated

with a Widget (WidgetRelation) or a VisualizationFeature (Fea-
tureRelation). The WidgetRelation contains a reference to a
Widget as well as a number of Configurations. A Configuration
refer to a number of VisualizationFeatures and is valid in a
specific context, e.g., for a given device, a given role or a given
user. Thus, it is possible to customize the appearance of a View
to a specific device, a group of persons (i.e., to roles) or even
to a specific user. Furthermore, it is also possible to connect a
Controller to a VisualizationFeature, i.e., it is possible to adapt
a VisualizationFeature – and therefore, a View – according to
information stored in the Model.

Moreover, each Controller might be the root-element of
a Screen and may have EventHandlers. Screens logically
bundle Controllers which View’s constitute one UI. Therefore,
Screen refers to one root-element which might contain further
controllers. Thus, the elements of one UI are ordered hierar-
chically.

EventHandlers are in charge of dealing with events triggered
by the Model or a View. Therefore, handlers allow for detecting
user interactions and serve to notify the controller about
changes in the Model or the View respectively. Furthermore,
some events might require displaying another View. For exam-
ple, after sending a search query, a View has to be displayed
which presents the results. Therefore, an EventHandler might
be connected to a Screen via a FollowingScreenRelation. A
corresponding Screen is displayed if the guard-condition (i.e.,
a XOCL-Expression) is satisfied.

The defined Controllers and View-elements on M1 can
be executed by instantiating those elements to M0. Thus, a
running UI consists of corresponding instances.

Figure 5 presents an application of the implemented proto-
type. It aims at illustrating the development of a form for



Fig. 4. Multi-level MBUID Metamodel

creating new customers. In this example, the Customer is
characterized by the attributes name, firstname and isVIP 1 .
For the UI creation, a corresponding Model-bound Controller
is created, first 2 . Following, it is instantiated to a Controller
and a corresponding View 3 . By a further instantiation, the
UI is executed, i.e., the form is shown 4 .

VI. EVALUATION

Following, it is elaborated, how FMMLx and XModeler in
general, and the presented prototype in particular, are able to
satisfy the identified requirements for MBUID.

R1 Foster Productivity & R2 Foster Reuse: The
FMMLx allows for an arbitrary number of classifications
levels, thus, concepts can be defined on a high level of
abstraction and be refined on lower levels. Due to Intrinsicness
it is furthermore possible to specify knowledge regarding low
levels of abstraction already on a high level of abstraction.
This hierarchy of concepts allow to relax the tension be-
tween productivity and reuse [1]. Concepts on a high level
of abstraction are generic, thus, they can be reused in a
wide range of scenarios. Furthermore, concepts on a low

level of abstraction are semantically rich, thus, they foster
productivity. Hence, multi-level modeling enables developing
MBUID approaches, which satisfy both R1 and R2, e.g., in
the presented prototype the relaxation is visible in two concept
hierarchies: First, the MVC-concept Controller is refined over
three abstraction levels (Model-bound Controller, Controller,
Controller-Instance). Second, the abstract concept Widget is
instantiated into the Button, Radiobutton and Checkbox, which
are instantiated into corresponding instances in a UI.

R3 Transparent Propagation of Modifications:
FMMLx and XModeler maintain a shared conceptualization
of model and source code. Due to this conceptualization,
changes in a model imply changes in the source code. Hence,
there is no necessity to implement error-prone mechanisms for
model transformations. In terms of MBUID approach, changes
in a model imply a direct adaption of the corresponding
UI during runtime. Thus, FMMLx and XModeler allow to
transparently propagate changes during runtime. Looking at
the prototype, changes in the underlying Controller-Instances
and the View-Instances lead immediately to an adaption of



Fig. 5. Screenshots of the UI-creation using the XModeler



the UI. Furthermore, changes to the state of the Controller,
the View or the Model-bound Controller influence also the
resulting UI.

R4 Extensibility of Language and Adaptability of Tool:
By applying FMMLx and XModeler, the definition and the
application of a MBUID approach are not strictly separated as
both are contained in one multi-level model. Thus, enhance-
ments of the approach are directly usable due to the R3 Trans-
parent Propagation of Modifications. Thus, FMMLx and
XModeler enable approaches which are extensible and provide
an adaptable tool (e.g., the presented prototype).

VII. CONCLUSION

In this paper, we applied a multi-level paradigm to the
MBUID-field with the aim to show its advantages for the
creation of UIs. For this reason, requirements related to the
development UIs were identified which support an effective
and efficient model-based development process. Against those
requirements, the limitations of the traditional paradigm have
been shown. In order to overcome these limitations, a multi-
level approach consisting of the multi-level modeling approach
FMMLx and language execution engine XModeler has been
suggested. In that context, it is discussed, how such a multi-
level approach can satisfy the requirements for a model-based
UI development. As a proof of concept, a rudimentary proto-
type has been designed and implemented, which illustrates
the potential of multi-level modeling and a corresponding
language execution engine for MBUID.

As the developed approach presents only a rudimentary
prototype, future work targets the development of a com-
prehensive multi-level MBUID approach. For this purpose, it
is not sufficient to transfer features of existing MBUID ap-
proaches to a multi-level MBUID approach, but it is necessary
to identify potential for improvement concerning prevalent
approaches. Furthermore, it would also be desirable, to not
restrict the UI creation to a primary manual task, but to support
an automatic generation of UIs. Moreover, it would also be
promising to incorporate further interaction technologies in
order to incorporate further senses in the human-computer-
interaction. Those investigations constitute our future work.

REFERENCES

[1] U. Frank, “Multilevel Modeling,” Business & Information Systems
Engineering, vol. 6, no. 6, pp. 319–337, Nov. 2014.

[2] T. Clark, C. Gonzalez-Perez, and B. Henderson-Sellers, “A foundation
for multi-level modelling.” in MULTI@ MoDELS. Tilburg University,
Sep. 2014, pp. 43–52.

[3] C. Atkinson and T. Kühne, “In defence of deep modelling,” Information
and Software Technology, vol. 64, pp. 36–51, Aug. 2015.

[4] V. A. Carvalho and J. P. A. Almeida, “Toward a well-founded theory
for multi-level conceptual modeling,” Software & Systems Modeling, pp.
1–27, 2016.

[5] U. Frank, “Designing Models and Systems to Support IT Management:
A Case for Multilevel Modeling.” in MULTI@ MoDELS, 2016, pp. 3–
24.

[6] S. Al-Hilank, M. Jung, D. Kips, D. Husemann, and M. Philippsen,
“Using multi level-modeling techniques for managing mapping infor-
mation.” in MULTI@ MoDELS, 2014, pp. 103–112.

[7] G. Meixner, F. Paternò, and J. Vanderdonckt, “Past, Present, and Future
of Model-Based User Interface Development,” i-com, vol. 10, no. 3, pp.
2–11, Nov. 2011.

[8] J. Vanderdonckt, “Model-driven engineering of user interfaces:
Promises, successes, failures, and challenges,” Proceedings of ROCHI,
vol. 8, 2008.

[9] B. A. Myers and M. B. Rosson, “Survey on User Interface Program-
ming,” in Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems. ACM, 1992, pp. 195–202.

[10] R. Gerbig, “Deep, Seamless, Multi-format, Multi-notation Definition and
Use of Domain-specific Languages,” Ph.D. dissertation, Verlag Dr. Hut,
2017.

[11] A. R. Puerta and P. Szkeley, “Model-based Interface Development,”
in Conference Companion on Human Factors in Computing Systems.
ACM, 1994, pp. 389–390.

[12] M. Abrams, C. Phanouriou, A. L. Batongbacal, S. M. Williams, and
J. E. Shuster, “UIML: An appliance-independent XML user interface
language,” Computer Networks, vol. 31, no. 11, pp. 1695–1708, 1999.

[13] R. France and B. Rumpe, “Model-driven Development of Complex Soft-
ware: A Research Roadmap,” in 2007 Future of Software Engineering.
IEEE Computer Society, 2007, pp. 37–54.

[14] G. Calvary, J. Coutaz, D. Thevenin, Q. Limbourg, L. Bouillon, and
J. Vanderdonckt, “A Unifying Reference Framework for multi-target user
interfaces,” Interacting with Computers, vol. 15, no. 3, pp. 289–308, Jun.
2003.

[15] Q. Limbourg, J. Vanderdonckt, B. Michotte, L. Bouillon, and V. López-
Jaquero, “USIXML: A language supporting multi-path development of
user interfaces,” EHCI/DS-VIS, vol. 3425, pp. 200–220, 2004.

[16] F. Paterno, C. Santoro, and L. D. Spano, “MARIA: A universal, declara-
tive, multiple abstraction-level language for service-oriented applications
in ubiquitous environments,” ACM Transactions on Computer-Human
Interaction (TOCHI), vol. 16, no. 4, p. 19, 2009.

[17] P. Akiki, “Engineering Adaptive Model-Driven User Interfaces for
Enterprise Applications,” phd, The Open University, Sep. 2014.

[18] I. Marin, F. Ortin, G. Pedrosa, and J. Rodriguez, “Generating native
user interfaces for multiple devices by means of model transformation,”
Frontiers of Information Technology & Electronic Engineering, vol. 16,
no. 12, pp. 995–1017, Dec. 2015.

[19] C. Wiehr, N. Aquino, K. Breiner, M. Seissler, and G. Meixner, “Im-
proving the Flexibility of Model Transformations in the Model-Based
Development of Interactive Systems,” UsiXML, p. 46, 2011.

[20] B. Collignon, J. Vanderdonckt, and G. Calvary, “Model-Driven Engi-
neering of Multi-target Plastic User Interfaces,” in Fourth International
Conference on Autonomic and Autonomous Systems (ICAS’08), Mar.
2008, pp. 7–14.

[21] M. Blumendorf, S. Feuerstack, and S. Albayrak, “Multimodal User In-
terfaces for Smart Environments: The Multi-access Service Platform,” in
Proceedings of the Working Conference on Advanced Visual Interfaces.
ACM, 2008, pp. 478–479.

[22] K. Czarnecki and S. Helsen, “Feature-based survey of model transfor-
mation approaches,” IBM Systems Journal, vol. 45, no. 3, pp. 621–645,
2006.

[23] U. Frank, “Enterprise modelling: The next steps,” Enterprise Modelling
and Information Systems Architectures, vol. 9, no. 1, pp. 22–37, 2015.

[24] C. Atkinson, M. Gutheil, and B. Kennel, “A Flexible Infrastructure
for Multilevel Language Engineering,” IEEE Transactions on Software
Engineering, vol. 35, no. 6, pp. 742–755, Nov. 2009.

[25] B. Neumayr, K. Grün, and M. Schrefl, “Multi-level Domain Modeling
with M-objects and M-relationships,” in Proceedings of the Sixth Asia-
Pacific Conference on Conceptual Modeling - Volume 96, 2009, pp.
107–116.

[26] J. De Lara and E. Guerra, “Deep meta-modelling with metadepth,”
in International Conference on Modelling Techniques and Tools for
Computer Performance Evaluation. Springer, 2010, pp. 1–20.

[27] C. Atkinson and R. Gerbig, “Flexible Deep Modeling with Melanee,”
in Modellierung (Workshops), vol. 255, 2016, pp. 117–122.

[28] T. Clark, P. Sammut, and J. Willans, Applied Metamodelling A Foun-
dation For Language Driven Development: Second Edition. Ceteva,
2008.

[29] ——, Superlanguages: Developing Languages and Applications with
XMF. Ceteva, 2008.

[30] D. H. Hofstadter, Gödel, Escher, Bach: An Eternal Golden Braid. New
York: Basic Books, 1979.

[31] C. Atkinson and T. Kühne, “Reducing accidental complexity in domain
models,” Software & Systems Modeling, vol. 7, no. 3, pp. 345–359, 2008.

[32] T. M. H. Reenskaug, “The original MVC reports,” Dept. of Informatics,
University of Oslo, Oslo, Tech. Rep., 1979.


