Applying Multi-Level Modeling to Data Integration
in Product Line Engineering

Damir Nesic
ITM/MMK/MDA
Royal Institute of Technology
Brinellviagen 83, Stockholm, Sweden
damirn @kth.se

Abstract—Developing systems according to the Product Line
Engineering (PLE) paradigm is a process in which different
types of engineering artifacts are created with the aim of reusing
them in different configurations of the same system. Ensuring
that different system configurations satisfy various functional
and non-functional properties is ensured by analyzing different
artifacts but because they are maintained by different tools,
sometimes even manually, achieving and especially automating
such analyses is a challenging task. Overcoming this issue can be
achieved through data integration of existing data which implies
creating an information model that specifies how will the existing
data fragments be related, captures relevant domain constraints,
and most importantly captures the fact that some data objects are
classes in one tool and instances in another. This paper reports
on the experiences from applying the Multi-Level conceptual
Theory (MLT), to the problem of information modeling for data
integration in the PLE context. Being a Multi-Level Modeling,
powertype-based framework, MLT allows separation of the class
and instance facet of modeled entities while keeping them explicit.
Some of the MLT modeling constructs are particularly useful for
capturing the refinement levels of the modeled artifacts and for
succinctly capturing constraints like disjointess or completeness
among them. The paper also reports certain aspects of the studied
case that could not be expressed using MLT. The studied case
comes from a real data-integration project from the heavy vehicle
manufacturer, Scania CV AB.

Index Terms—multi-level modeling, information modeling,
product line engineering, linked data

I. INTRODUCTION

Development and evolution of safety-critical Software-
Intensive Systems (SIS) is a process involving various engi-
neering disciplines that produce engineering artifacts across
the complete SIS lifecycle, e.g. software, hardware, various
models, and documents. Performing different analyses across
the lifecyle is essential for sucesfull SIS development and
deployment, e.g. is versioning or tracing data consistent, or
more importantly, does SIS conform to prescribed safety or
reliability standards. Automating such analyses is often a
daunting task [21] because individual artifacts are isolated in
individual tools that use own principles and technologies for
artifact management.

Development of highly configurable SIS, also known as
Product Line Engineering (PLE) [19], brings additional dif-

This work was funded by the ITEA 14014 ASSUME project with the
support from Scania CV AB.

Mattias Nyberg
ITM/MMK/MDA
Royal Institute of Technology
Brinellviagen 83, Stockholm, Sweden
matny @kth.se

ficulties. The goal of PLE is simultaneous development of a
multitude of different product configurations. In other words,
an additional challenge is to access and manage the data that
allows contextualizing the analysis operations with respect to
possible product configurations. Similarly to the artifacts data,
it is common that the data describing the applicability of an
artifact to a particular product configuration is scattered across
the lifecycle in different forms [4], [16].

Enabling access to the data necessary for designing dif-
ferent analyses can be achieved through data integration [9]
techniques that can be used to extract and integrate existing
artifacts data from individual tools without modifying the
existing tool landscape or enterprise processes. Next to the
traditional approaches for data integration [9], [12] suported
by technologies like relational databases [13] and ER or UML
information models [13], the idea of Linked Data (LD) [5]
has in recent years been applied to the problem of semantic
data integration on Internet, but also in different engineering
domains, primarily through OSLC standards [25].

As in any data integration scenario, the integrated data must
conform to an information model that in the case of LD
can be created using RDFS or OWL languages [24]. There
are two main aspects of these languages that make their use
in an enterprise context difficult. Firstly, both languages are
based on the Open-World Assumption (OWA) [6] which may
lead to inconclusive results of data analysis. Secondly, in data
integration scenarios, some entities are simultaneously both
classes and objects [18] and this is not expressible in OWL
while RDFS can express this fact but without any constraints
that prevent creation of inconsistent or contradictory informa-
tion models. As an alternative to RDFS and OWL, but also
to traditional MOF-compliant modeling frameworks that face
the same issue with entities being both classes and instance,
work in [17] has investigated the applicability of the Multi-
Level Modeling (MLM) paradigm [2], [15] for information
modeling in the PLE context. More specifically, the Multi-
Level conceptual Theory (MLT) [8] was used to interpret PLE-
specific concepts inside MLT framework in order to support
modeling of different artifacts and their configuration data with
an emphasis on semantically rich and correct models.

The present paper reports on the experiences from applying
the framework presented in [17] on the case of information-

model creation for LD-based data integration in the real
industrial PLE context from the heavy vehicle manufacturer,
Scania CV AB. This report contributes to the field of MLM in
two ways: firstly, the considered case comes from a real, large-
scale data-integration project for safety-critical SIS develop-
ment, thus contributing to the limited knowledge about MLM
paradigm applicability in the industrial setting; secondly, the
information model is intended for data integration in a PLE
context based on LD principles which a is novel application
for MLM approaches.

The rest of the paper is organized as follows. Section II
presents relevant PLE and LD concepts followed by a brief
description of the MLT framework. Section III presents the
details of the created information model and Section III-B
presents its use in the data integration process. Section IV
discuses the benefits and shortcomings of the applied modeling
framework and is followed by Section V that surveys related
work. Finally, Section VI concludes the paper.

II. BACKGROUND

This section introduces the PLE and LD concepts followed
by a brief explanation of the MLT framework and PLE
concepts described in [17].

A. Product Line Engineering

Figure 1 exemplifies the overall idea of PLE. The main
goal of PLE is to engineer artifacts that realize or describe
a product in a way such that these artifacts can be reused
in several different product configurations. Capturing artifact
reuse is achieved by representing different product config-
urations in terms of configuration options, also known as
features [19]. For example, an individual truck configuration
could be described as having features: engine, brakes, cab etc.
The features and their mutual dependencies are captured in
a variability model [19], in the case of features known as
the feature diagram [3], that captures all possible product
configurations in terms of features. This phase of PLE is
known as domain engineering. Left part of Figure 1 shows a
fragment from a feature diagram. An example of a dependency
could be, if the feature strong engine is selected than the
feature small brakes cannot be selected.

Feature 1 [Feature 4

T
irequires excludes gy

e

Feature 3->Source Code 2 Source Code 1
Feature 1->Requirement 1

Source Code 2
< -
Requirement 1
Product Requirement 2
configurator .

(Product A) (Product B) : C Product n)

Fig. 1. Basic idea behind the Product Line Engineering development paradigm

Once the variability model is established, features can be
mapped to one or more artifacts, i.e. to specific versions of
engineering artifacts. For example, if a product configuration
has a strong engine, then a particular engine control sofware
must be used. The mappings between the features and artifacts

are known as presence conditions [20] and they are exempli-
fied in the middle part of Figure 1. The presence conditions
are arbitrarily complex propositional formulas over the set of
features in the variability model. Individual products can be
derived in the so-called application phase of PLE by using the
product configurator, that based on the selection of features,
composes appropriate artifacts into individual products.

In Scania CV AB, there are several tens of different types
of artifacts and they are maintained either manually, in hand-
written documents, or in multiple in-house and third-party
tools. The number of features is around ten thousand while
the number of presence conditions is in the order of millions
and they are maintained together with the artifacts in individual
tools.

B. Linked Data

Linked Data refers to the set of principles for structuring and
publishing data on Internet. The principles can be summarized
as: each real life entity, digital or physical, is identified by an
Uniform Resource Identifier (URI) and is called a resource;
the result of any operation over resources is always presented
in Resource Description Framework [24] (RDF) format; re-
sources should have links, also URISs, to other resources. The
main technologies used for publishing LD are the aforemen-
tioned RDF data model, its data modeling extension RDFS
Schema [24], and accompanying ontology language called Web
Ontology Language [24] (OWL). Additional standardized LD
technologies exist [24].

Publishing LD is a process in which the data from existing
sources is assigned with URIs so that each data fragment,
can be serialized as RDF according to an LD schema [23].
An LD schema is an information model of the published
data that is usually expressed in RDFS or OWL language
which define constructs that can be used for LD information
modeling. Unlike in traditional data integration where a high
level modeling language describes the overall data integration
schema, in LD “the data schema is represented with the
data itself” [23], i.e. RDFS and OWL are syntactically the
same as the RDF data model. The RDFS language defines
the concepts of a class, relation specialization, grouping of
resources into containers, and some frequently used string-
valued attributes. Interestingly, although not stated explicitly,
RDEFS is underpinned by the concept of an unlimited num-
ber of abstraction levels, similar to MLM approaches. The
OWL language defines a richer vocabulary with concepts like
class disjointness, relation cardinality, inverse relations and
others, but it does not support MLM concepts and its RDF
serialization is cumbersome. Furthermore, both RDFS and
OWL assume the open-world assumption [6] (OWA), i.e. any
information that is not stated is not false. This can lead to
inconclusive analysis operations of the RDF data which is not
desirable in an enterprise.

There are several benefits from using LD in an enterprise:
use of robust, generic web-based principles for data exchange
and querying, the possibility to reuse already published LD,
and incremental data integration because adding new entities

to the information model does not falsify the previous one.
The basic idea of LD-based data integration implemented in
Scania, is shown in Figure 2.

SW Versioning

Data access and

data visualization PDM System

B E]

i} @
B @
il 8

Requirements

Fig. 2.
principles

Illustration of data integration in Scania CV AB based on LD

Figure 2 illustrates that artifacts from existing tools are
published in RDF format and stored in a central database
that can then be used for designing cross-tool artifact anal-
yses. Grey interfaces represent adapters that implement LD
principles and publish artifacts data from existing tools in
RDF format. Currently, data integration in Scania is limited to
three tools: software versioning tool, product data management
tool and the requirement specification tool. Once stored in the
central database, the data can be accessed through a purpose-
build LD-based application, i.e. LD tool 1. The evolution
of the presented data integration approach is to also enable
consuming LD by existing tools, like exemplified on the case
of Tool 4.

Designing adapters requires an information model that
structures the relevant types of data objects from existing tools
into a LD representation, potentially enriched by relations
and attributes that do not exist in source tools. Since the
information model represent the interface between data models
in existing tools and RDF data model, the information model
must treat two issues. Firstly, in all considered cases, the
existing tools were not OWA-based while RDF is. Conse-
quently, all the constraints that implicitly exist in non-OWA
frameworks, e.g. object disjointness or completeness, must be
explicitly captured and published in LD. Secondly, and more
importantly, data objects which are instances in one tool can
be classes in another tool, also noted in [18], and the fact that
certain data objects exhibit this dual nature must be captured.

Since both RDFS and OWL languages do not provide
support for expressing the class-instance nature of certain
data objects, i.e. they are not based on MLM principles, and
they assume OWA-based modeling, a different information
modeling framework was needed in order to leverage the
benefits of LD for enterprise data-integration.

C. Multi Level Theory for Data Integration in PLE

This section briefly introduces the Multi-Level conceptual
Theory (MLT) concepts togeter with interpretations of PLE
concepts that were introduced in [17]. Detailed explanations
of relevant concepts are presented in the next section on the
example of the information model created using the MLT
framework.

The MLT framework differentiates between three primary
concepts. These are trypes that correspond to UML classes,
individuals that correspond to UML objects, and attributes
that correspond to UML associations. Types are semantically
interpreted as sets and they are organized into an arbitrary
number of abstraction levels where each level is represented
by an order type. Each type declared in an MLT model
is a specialization of an order type and an instance of the
immediately higher order type or some type specializing the
higher order type. In MLT, order types are called IndividualOT,
representing types whose direct instances are individuals that
cannot be instantiated further, FirstOT whose direct instances
are types specializing the IndividualOT, SecondOT whose
direct instances are specializing the FirstOT and so on. MLT
is a powertype-based MLM framework, i.e. unlike in deep
instantiation [15], the type-facet and the instance-facet of a
type is explicitly modeled on two adjacent abstraction levels.

Attributes are used to represent properties of types and
instances of types. Semantically, attributes represent binary
relations; either between a type and a data-type, e.g. string,
or between two types declared in the model. This distinction
is reflected in the visualization of the MLT models where in
the former case, attributes are visualized similar to attributes
in UML class diagrams while in the later case the attributes
are visualized as associations between types. The attributes
relating two types declared in the model are referred to as
relations and MLT separates them into basic and structural
relations. Structural relations are predefined and they relate
two types whether any arbitrary basic relation relates instances
of types and must be declared by the modeler.

Work in [17], interprets and disambiguates basic relations
between different artifacts that are product-configuration spe-
cific (PCS) and that inherently occur in the application phase
of PLE. Each PCS relation is the consequence of previously
mentioned presence conditions that specify sets of product
configurations in which a particular artifact can be used.
Furthermore, the approach discusses the structuring of versions
and variants of different types of artifacts and their relations to
product configurations and corresponding presence conditions.
The main result of the work is the transformation of presence
conditions, that are usually just syntactical annotation, into
first-class citizens with well-defined semantics. This allows
publishing presence conditions as non-string RDF data that
can be analyzed using standard LD technologies.

III. INFORMATION MODELING USING MLT

The model in Figure 3 captures the details about require-
ments and Electronic Control Units (ECUs), i.e. embedded
computers that control vehicle behavior. The complete model
is significantly larger and it includes more artifact types but
the excerpt in Figure 3 captures all relevant model aspects.

Because the information model is used for LD-
based data integration, the attributes of types and
relations between types are reused from various LD
vocabularies. The notation prefix:name represents a
shorthand for vocabularyURI/name. For example,

SecondOT FirstOT IndividualoT ‘
1.5 17 B -
rdfs label < rdfs label I 1" | rdfs label
dcterms:created rdftype | determs:created rdf-type determs:created
dcterms:description determs:description determs:description
i v.yivs e |
1 |
i Requirement |
! rdftype
[Sl el el Truck
I : 1 1.7 - -
| ! Requirementitem scaniaspecifies | |oranachassisho
!)
[scaniaisoASIL lﬁ
" 1 JA
1 /_'P SW Req
Il 1,
E SW Guarantee |
<3 [<-
i
Ll
1
A" dcterms:isVersionOf
ScaniaConcept !
— SW Guarantee
S Version
1"1\ %7 ‘k"“u,‘_h‘ zchtenﬂs:is\/’er'sionor
I -~
i rdf.type T |
[- EMS SW Reqg 1
_) | RequirementVersion 1 4 |
mitisSubordinateTo v !
i] gc'e"“??‘?slmf:"gﬁe‘my dcterms lastWodifiedBy = "Damir |
. (scania.introCO) scaniaintroCO = "2017-07-10" |
H
Scanialtem T
mitisSubordinateT:
ECUItem ECU
<'— | — e * -
R(scania:componentCode)| mitpartitions scania s o-"_dcterms hasPart
p p S~ __raftype
) B 1 e ﬁ%
mit |sSubordmaie'I;ﬂ ;scxama isVariantOf mitisSubordinateTo “*-__H
1 T EMS
Variant ECUVariant _/"j‘_t_p_a,n_lt,@ls. —————— -**|scaniacomponentCode = E1
—mM—— »dcterms:modified _\:
1. TTe—— rdf:type %scania isV ariantOf
A 1 e (=== |
1 Tt 1 EMST |
mitisSuboordinateTo dcterms:isVersionOf| mitisSubordinateTo S =
1+ - 1
i IS L i
Version e A
ECUversion | .-~ mitpartitions Zﬁjnlenﬂs:is\fersmn@f
e e omment R(staniainioGo) [€--—.____ - | e
) . ditype ‘-f—ﬂ: EMS1 v1 rdftype emsi vl
‘I..”i iscama:imroCO = 2017-07-10 scania SN="1234"
dcterms:hasPart dcterms: hasPart | e
1 A]
1 1
determs:hasPart
ProductGroup 1
1 ”
scaniacondiion e rdf:type i EMS1 v1 Product Group
;
i scania:condition = "a OR b" rdftype
|
[—
PLE concepts MLT concept | i Individuals E— Relations that hold between instances of classes
[)

-2 Relations that hold between classes

Domain concept

—
| Published automatically by tool adapters = rdfs subClassOf

Fig. 3. MLT information model for LD-based data integration

dcterms:description attribute is a shorthand for the
full URI http://purl.org/dc/terms/description
where the attribute description is defined. The prefix scania
indicates a vocabulary that contains Scania-specific definitions.
An underscored attribute is an attribute of the entity labeled
by it while a non-underscored attribute is an attribute of
instances of the type that is labeled by it. Figure 3 omits the
values of attributes common to all entities, i.e. rdfs:label,
dcterms:description, and dcterms:created.

The rdf:type relation is the RDF equivalent of the in-
stance of relation. It should be noted that all types specializing
type FirstOT are instances of the type SecondOT but the
rdf : type relations are omitted in order to reduce clutter.

A. Different Aspects of the Information Model

The information model in Figure 3 captures several different
types of information. The three types in the top part of Figure 3
represent the MLT order types which structure the model into
abstraction levels. Because all entities in the model are either
direct or indirect, through specialization relations, instances
of these three types, they model the common attributes of all
entities in the information model. Direct instances of the types
on the IndividualOT abstraction level are the real world
individuals, e.g. :emsl vl and :truck.

The information model in Figure 3 also contains some
example RDF data that illustrates the relations between the
resources published by LD adapters and types in the MLT
model. All entities with a dashed border are examples of RDF
data. Two main aspects captured by the information model are
the PLE aspect that describes all artifacts and their properties
from the PLE point of view and the use of MLT constructs
for structuring and capturing the constraints over the published
RDF data.

1) The PLE Aspect: Types and relations in the left
part of the information model, i.e. ScaniaConcept,
Scanialtem, Variant, Version, and ProductGroup,
classify all the artifacts from individual tools into these five
types and also prescribe the mandatory structural and basic
relations between them. Instances of type ScaniaConcept
represent abstract, stable concepts in the domain whose def-
initions change very rarely. Instances of type Scanialtem
represent different logical realizations of concepts. Instances
of type Variant represent refinements of instances of
type Scanialtem according to different criteria, e.g. arti-
fact generation, new product variant etc. Instances of type
ScaniaVersion represent particular engineering artifacts
that can be used to construct or describe a particular product
configuration. The only structural relation between these types
is the isSubordinateTo relation which implies that in-
stances of types related by it must be in the specialization rela-
tion, i.e. when serialized into RDF, specialization corresponds
to the rdfs:subClassOf relation. Structuring instances of
these four types into specialization hierarchies reflects the pro-
cess of incremental refinement during the engineering of these
artifacts. Moreover, relations dcterms:isVersionOf and
scania:isVariantOf are prescribed between the men-

tioned types in order to enrich the RDF data with traceability
links.

Instances of type ProductGroup represent product con-
figurations defined by different presence conditions for the pur-
pose of describing product configurations in which particular
artifacts can be used. Unlike in Section II-A, where presence
conditions were propositional formulas, in the information
model presence conditions are represented by types defined
by these propositional formulas and these types are instances
of the type ProductGroup. For example, type EMS1 v1
Product Group has instances that are individual product
configurations, each containing an individual part that is an
instance of typeEMS1 v1. In other words, each instance of the
type EMS1 v1 Product Group can be represented by a
set of features that entail the truthfulness of the presence condi-
tion of the type EMS1 wv1. The relation dcterms:hasPart
between type ProductGroup and Version and Variant
indicates that any type that is an instance of types Version
or Variant must be related to a particular product group
that defines the artifacts inclusion into particular product
configurations. In the complete model, even the instances of
the type ScaniaItem can be related to an instance of the
type ProductGroup and the relation between them can be
different, e.g. testedBy in the case of test cases.

2) Use of MLT-specific constructs: In Figure 3, types
specializing the order type IndivudalOT capture the infor-
mation that each instance of the type Requirement specifies
one or more instances of the type Truck and that each
instance of the type Truck has one or more parts which
are instances of type ECU. Furthermore, a particular type of
requirement is a software requirement and therefore the type
SW Req specializes the type Requirement.

Type ECU is partitioned by the type ECUItem, following
the so-called type-object pattern recognized in [15]. The
partitions relation, based on the powertype relation, implies
that all specializations of the type ECU are pairwise dis-
joint and are the only instances of the type ECUItem. For
example, Scania currently has around 80 different ECUs
that are instances of type ECUItem. Type ECUItem spe-
cializes the type ScaniaItem whose meaning was pre-
viously described. Unlike the type ECU, type SW Req is
disjointly categorized by the type SW Guarantee. The
disjointCategorization relation implies that all in-
stances of the type SW Guarantee are pairwise disjoint
specializations of the the type SW Req but not the only ones.
For example, in contract-based requirements specification,
there are additional requirement types such as SW Assumption
whose instances also specialize the type SW Req.

Type ECUItem has an attribute called
scania:componentCode that is an MLT regularity
attribute, denoted by placing the attribute in
parenthesis preceded by the letter R. The attribute

scania:componentCode represents a sticker placed on
physical ECUs and it is used to differentiate between instances
of the type ECUItem in order to connect proper cabling
on the assembly line. According to the MLT framework, a

regularity attribute is an attribute such that each attribute
value is unique to the instance that assigns it the particular
value. In Figure 3, the attribute scania:componentCode
is assigned with a value S8 by the type EMS which is the
Engine Management System and also an ECU. Any other
value of the scania:componentCode attribute must
belong to a different specialization of type ECU.

As mentioned, the aim of the work in [17] was to interpret
PLE concepts within the MLT framework in order to enable
capturing complex and semantically well-defined information
models in PLE. Given the previously described PLE concepts
in the information model, all other types on the FirstOT ab-
straction level whose instances will be published as RDF data
specialize the introduced PLE concepts and leverage the MLT
structural relations in order to define the semantics and capture
the constraints over RDF data. Each instance of the type
ScaniaConcept is at the top of a specialization hierarchy
that captures levels of refinement, in other words levels of vari-
ation, of artifacts in the application phase of PLE. The special-
ization hierarchies are enforced trough isSubordinateTo
relations. For example, type EMS specializes the type ECU.
Similarly, type EMS1 specializes type EMS and type EMS1
v1 specializes type EMS1. Furthermore, all types in the
specialization hierarchies are disjoint, and in some cases
complete, which is captured through the partitions and
disjointCategorization relations. MLM capabilities
of the MLT framework are essential for expressing different
types of information on different abstraction levels.

Regarding basic relations, there are only a few between
types in Figure 3. Besides the dcterms:hasPart basic
relation which is reused from the Dublin Core Meta Data
vocabulary, other basic relations like scania:specifies
and scania:isVariantOf are defined for the need of this
particular model.

B. Using the Information Model

This section illustrated the usage of the MLT information
model for data integration according to LD principles. To that
end, Figure 4 omits most of the details from the model shown
Figure 3 and only shows the model structure.

As previously discussed, the types in the information model
represent different engineering artifacts across the product
lifecycle. According to Section II-B and Figure 2, in order
to transform the artifact data into RDF data, it is necessary to
implement adapters that will transform the artifact data from
the internal tool formats into RDF format.

In Figure 4, black boxes indicate that a particular tool
maintains instances of the indicated classes. The entities with
a dashed border, either types or individuals, are instances of
the types owned by a tool and they are published as RDF data
by tool adapters. The need for an MLM based approach is
illustrated by types owned by Tool 1 which are instances of
types owned by Tool 2. Because MLT forces strict stratification
of modeled entities into abstraction levels with instantiation,
i.e. rdf : type, relation between them, the implementation of

[Second0T } 1o 1 [FirstoT ‘ . h [Individual0T

H ; T3 7

rattype

L

i, Tool 3

7‘{ rattype
| T ocwpe ™
] e L

5 T rottype T |
o |
o e , Tool 2 N
— 1 fmmmmmmnnns)
e NN | rdttype
rdftype !

rdfiype

l__

rattype

Fig. 4. LD adapter construction based on the MLT information model

adapters using traditional programming languages with two-
level concepts was possible. Each adapter was responsible for
a set of types and their instances, while the types not owned
by any existing tool were published by an additional "virtual”
adapter. The “virtual” adapter also created the links between
RDF data created by tool adapters on the RDF level in order to
create the MLM model that conforms to the MLT information
model. The number of types published by the adapters is
in the order of magnitude of tens of thousands while the
number of individuals is far greater. It should be noted that
these numbers were reached after several increments of the
information model and that initial numbers were much smaller.
However, incremental data integration is one of the strengths
of LD and the incremental approach was beneficial for gradual
adoption and structuring of the domain knowledge.

As mentioned earlier, the first version of LD-based data
integration and tool adapters is in place for three tools.
As of now, the primary usage of the integrated data is
for different stakeholders to visualize, navigate, and explore
relations between different types of artifacts using an in-house
developed tool called Search & Browse. Part of the future work
is to define and implement standardized analysis operations
over the data that target different use cases like consistency
checking or change impact analysis. Also, in order to automate
adapter development and data validation, future versions of
the information model shall be created using a model-driven
approach based on the Lyo Toolchain tool [10].

IV. DISCUSSION

The case introduced in the present paper indicates that
creating information models for data integration requires the

use of an MLM framework because instances from one tool
can be types in another tool. The particular MLM framework
that was used in the present paper, the MLT framework, offers
many benefits but there are also some shortcomings.

Most importantly, MLT defines the partitions, disjoint cat-
egorization, and subordination relations which were essential
for capturing the item-variant-version pattern. Furthermore,
regularity attributes are a succinct way to express the con-
straint that different attribute values lead to the creation of new
types. The fact that MLT is a powertype-based MLM frame-
work means that for each partitions relation, there is an
additional type defined [15] compared to deep instantiation
approaches. However, because each type in the information
model represents a data fragment, it is desirable to explicitly
define all of them. Moreover, the separation into two types,
provides a type where instance-facet attributes can be declared
and a type where type-facet attributes can be declared which
was helpful in explaining the MLM concepts to employees in
Scania.

Regarding the practical aspects of using the MLT frame-
work, the absence of tool support was the biggest challenge.
Although a MLT-UML profile was suggested in [7], it was not
implemented and MLT models had to be created and debugged
manually. A part of the future work with the Lyo toolchain is
about extending its graphical modeling tool based on results
from [17].

As a purely powertype MLM approach, MLT does not
support expressing some information. There are two exam-
ples where deep instantiation and dual-deep instantiation
are needed. First example concerns the componentCode
regularity attribute. As mentioned earlier, componentCode
is a sticker on physical individuals which are instances of
version artifacts, e.g. EMS1 v1, and therefore it should be
considered as the attribute of individuals. However, because
types like EMS1 v1 are added by the adapters, i.e. they are
not present in the information model, the componentCode
attribute must be modeled as an attribute of instances of the
ECUItem type on the FirstOT level. If MLT framework
had supported deep instantiation, the componentCode attribute
could be modeled as an attribute of type ECUItem with
potency=2 and then all specializations of the type EMS would
inherit that attribute thus yielding the desired result.

The second example concerns the use case for dual-deep
instantiation. For example, individual ems1 v1 could have
an attribute scania:assembledBy whose value is of type
ScaniaEmployee. Simultaneously, any type on any abstrac-
tion level has an attribute dcterms:created whose value
should also be of type ScaniaEmployee. In this scenario,
two different attributes on two different abstraction levels are
related to the same type which is basic idea of dual-deep
instantiation. Currently, the information model does not treat
this issue in any way because the type ScaniaEmployee is
not modeled.

V. RELATED WORK

Reports about applications of Multi-Level Modeling ap-
proaches on real cases are still rare, particularly in areas other
than model-based software development including software
architectures and domain-specific languages.

In [11], standardized IT management frameworks for enter-
prise infrastructure modeling, evolution and decision making
are surveyed and common chanllenges and prospects for
improvement are identified. Following the survey, multi-level
modeling approach was used to construct a language that
tackles identified challenges. The report in [22] also looks at
enterprise architecture modeling using a modeling language
developed during industrial projects. The language Txture uses
both multi-level modeling concepts and traditional two-level
modeling concepts and the authors claim that a language with
enough expressiveness for capturing complex domains must
support concepts both paradigms.

Work in [1] tackles the problem of mapping domain specific
concepts to concepts from automotive safety standards by
introducing a mapping layer which leads to a multi-level
model. In the absence of an adequate MLM framework for the
presented problem, the paper introduces the DeepML language
that combines constructs from several MLM frameworks. The
approach in [14] is motivated by the problem of interop-
erability between information systems, a similar problem to
the one discussed in the present paper. The authors propose
additional disambiguation of instantiation and specialization
relations in order to facilitate tool interoperability but they do
not apply their approach to a realistic case study. However, the
introduced extensions are formally captured and then evaluated
against a set of criteria such as modularity, level stratification
and etc.

VI. CONCLUSIONS

Constant increase of product complexity in PLE devel-
opment of SIS requires seamless access to well-structured
artifacts data with the purpose of making decisions or ensuring
different properties of developed SIS. One way to enable such
operations is data integration of existing artifacts data into a
unified representation. This paper has reported on the expe-
riences from applying an MLM framework, specifically the
MLT framework, for the creation of an information model for
LD-based data integration used in a real industrial case from
the heavy vehicle manufacturer, Scania CV. MLLM capabilities
of MLT enabled capturing several aspects of the considered
data while the relations partitioning, disjoint categorization
and subordination have enabled expressing constraints and
structuring published LD with well-defined semantics. Being a
powertype-based MLM approach, MLT forces clear separation
of modeled entities into abstraction levels which has facil-
itated adapter implementation using traditional programming
languages. Although MLT provides formal definitions of all of
its constructs, the lack of tool support prevented using them
in an automated fashion. As an integration technology, LD
has proven useful primarily in two aspects. Firstly, the ability
to reuse definitions of attributes like creator, description, or

hasPart relation were a significant time-saver. Secondly, the
possibility to incrementally integrate data allowed gradual
adoption and structuring of domain knowledge. Future work is
targeted towards providing tool support for model-driven LD
adapter generation based on information models created using
MLT framework.

[1]

[2]
[3]
[4]

[5]
[6]
[7]

18]

(9]
[10]
(1]
[12]
[13]
[14]

[15]

[16]
(17]
[18]

[19]

[20]

[21]

[22]

[23]
[24]

[25]

REFERENCES

Al-Hilank, S., Jung, M., Kips, D., Husemann, D., Philippsen, M.: Using
multi level-modeling techniques for managing mapping information. In:
MULTI@MoDELS (2014)

Atkinson, C., Kiihne, T.: Reducing accidental complexity in domain
models. Software & Systems Modeling (2008)

Batory, D.: Feature models, grammars, and propositional formulas. In:
SPLC 05 (2005)

Berger, T., Rublack, R., Nair, D., Atlee, J.M., Becker, M., Czarnecki, K.,
Wasowski, A.: A survey of variability modeling in industrial practice.
In: VaMoS 13 (2013)

Bizer, C., Heat, T., Berners-Lee, T.: Linked Data: The Story so Far. IGI
Global (2011)

Brachman, R., Levesque, H.: Knowledge Representation and Reasoning.
Morgan Kaufmann Publishers Inc. (2004)

Carvalho, V.A., Almeida, J.P.A., Guizzardi, G.: Using a well-founded
multi-level theory to support the analysis and representation of the
powertype pattern in conceptual modeling. In: CAISE ’16 (2016)
Carvalho, V.A., Almeida, J.P.A.: Toward a well-founded theory for
multi-level conceptual modeling. Software & Systems Modeling (2016)
Doan, A., Halevy, A., Ives, Z.: Principles of Data Integration. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 1st edn. (2012)
El-Khoury, J., Gurdur, D., Nyberg, M.: A model-driven engineering
approach to software tool interoperability based on linked data (2016)
Frank, U.: Designing models and systems to support IT management:
A case for multilevel modeling. In: MULTI@MoDELS (2016)

Halevy, A., Rajaraman, A., Ordille, J.: Data integration: The teenage
years. VLDB ’06 (2006)

Halpin, T., Morgan, T.: Information Modeling and Relational Databases.
Morgan Kaufmann Publishers Inc. (2008)

Jordan, A., Mayer, W., Stumptner, M.: Multilevel modelling for inter-
operability. In: MULTI@MOoDELS (2014)

Lara, J.D., Guerra, E., Cuadrado, J.S.: When and how to use multilevel
modelling. ACM Transactions on Software Engineering Methodology
(2014)

Nesi¢, D., Nyberg, M.: Multi-view modeling and automated analysis of
product line variability in systems engineering. In: SPLC 16 (2016)
Nesié, D., Nyberg, M.: Modeling product-line legacy assets using multi-
level theory. In: REVE@SPLC ’17. To appear. (2017)

Neumayr, B., Jeusfeld, M.A., Schrefl, M., Schiitz, C.: Dual Deep
Instantiation and Its ConceptBase Implementation (2014)

Pohl, K., Bockle, G., van der Linden, FJ.: Software Product Line
Engineering. Foundations, Principles, and Techniques. Springer-Verlag
Berlin Heidelberg (2005)

v. Rhein, A., Grebhahn, A., Apel, S., Siegmund, N., Beyer, D., Berger,
T.: Presence-condition simplification in highly configurable systems.
ICSE 37 (2015)

Sudarsan, R., Fenves, S., Sriram, R., Wang, F.: A product information
modeling framework for product lifecycle management. Computer-
Aided Design (2005)

Trojer, T., Farwick, M., Haeusler, M.: Modeling techniques for en-
terprise architecture documentation: experiences from practice. In:
MULTI@MOoDELS (2014)

W3C Consortium: Best practices for publishing linked data (2017),
https://www.w3.0rg/TR/1d-bp

Ww3C Consortium: Semantic web (2017),
https://www.w3.0rg/standards/semanticweb

OASIS consortium: Open services for lifecycle colaboration (2017),
http://open-services.net

