
DeepRuby: Extending Ruby with
Dual Deep Instantiation

Bernd Neumayr
Department of Business Informatics – Data &

Knowledge Engineering
Johannes Kepler University Linz

Linz, Austria
bernd.neumayr@jku.at

Christoph G. Schuetz
Department of Business Informatics – Data &

Knowledge Engineering
Johannes Kepler University Linz

Linz, Austria
christoph.schuetz@jku.at

Christian Horner
Department of Business Informatics – Data &

Knowledge Engineering
Johannes Kepler University Linz

Linz, Austria

Michael Schrefl
Department of Business Informatics – Data &

Knowledge Engineering
Johannes Kepler University Linz

Linz, Austria
michael.schrefl@jku.at

Abstract—Clabjects, the central construct of multi-level mod-
eling, overcome the strict separation of class and object in con-
ceptual modeling. Ruby, a dynamic object-oriented programming
language, similarly treats classes as objects and thus appears as
a natural candidate for implementing clabject-based modeling
constructs. In this paper we introduce DeepRuby, a Ruby
implementation of the core constructs of Dual Deep Instantiation:
clabject hierarchies and attributes with separate source potency
and target potency. DeepRuby represents clabjects at two layers:
the clabject layer and the clabject facet layer. At the clabject
facet layer, a clabject with maximum source potency i-1 and
maximum target potency j-1 is represented by a matrix of i× j
clabject facets organized using Ruby’s superclass and eigenclass
constructs. Clabject facets can easily be extended with behavior
implemented in custom methods.

Index Terms—Object oriented programming, Metamodeling

I. INTRODUCTION

Object-orientation is arguably the most important paradigm
in programming and conceptual modeling. Statically-typed
object-oriented programming languages, like Java, and tradi-
tional conceptual modeling approaches, like E/R and UML,
come with a strict separation between class and object. The
clabject as central construct of multi-level modeling [10] over-
comes this separation and not only plays the roles of class and
object but also of metaclass, potentially at many classification
levels. Extending traditional modeling/programming languages
to supporting clabjects is difficult, due to this inherent mis-
match. Dynamically typed languages like Ruby overcome the
strict separation between object and class: classes are also
treated as objects and may be extended at runtime. Based on
this kinship, Ruby suggests itself as a suitable language for
implementing multilevel modeling constructs.

Deep Instantiation [2] is one of the most prominent ap-
proaches to multi-level modeling. A potency assigned to a
clabject or property indicates the number of instantiation
levels, i.e., the number of instantiation steps to reach the

ultimate instance of the clabject or property. For example,
clabject CarModel with potency 2 is instantiated by BMW Z4
with potency 1 which is in turn instantiated by Peter’s Car
with potency 0. Clabject CarModel defines a property engine
with potency 2 and target EngineModel which is instantiated
by BMW Z4 has engine EngineK5 and in turn by Peter’s Car
has engine Engine123; Engine123 is an instance of EngineK5
which is an instance of EngineModel. Clabject CarModel
further defines a property listPrice with target currency value
and potency 1 which is instantiated by BMW Z4 has list price
e 42,232.

Dual Deep Instantiation [9] (DDI) allows to specify the
number of instantiation steps separately for the source and for
the target of a property. For example, clabject CarModel, as
source, introduces property owner with source potency 2 and
target Person with target potency 1. This property is ultimately
instantiated between instances of instances of CarModel as
source and instances of Person as target, for example by Peters
Car has owner Peter. Clabject CarModel further has a self-
describing property creator with source potency 0 and target
Person and target potency 1. This property is instantiated
between CarModel as source and an instance of Person as
target, for example by CarModel has creator Peter.

In previous work, we formalized different variants of DDI
in deductive database languages, namely F-Logic [9] and Con-
ceptBase [11], but without support for implementing behavior.
In this paper we introduce DeepRuby, an implementation of
DDI in Ruby that supports the implementation of custom
methods. DeepRuby makes heavy use of Ruby’s dynamic
programming and metaprogramming facilities [12]. The Deep-
Ruby version presented in this paper only implements a subset
of DDI: it does neither support clabject generalization nor
multi-valued attributes. These simplifications allow to set the
focus on the following core idea of DeepRuby.

DeepRuby implements DDI at two layers, the clabject

counter()
incCounter()

#Person

age()
age=()
initialize()

Person

@age = 27
@name =„Maria“

Mary:Woman

#Object
instance_

variables()
inspect2()

Object

#BasicObjectBasicObject

Class

attr_accessor()

Module

#Woman
@counter = 1

Woman

name()
name=()

#Mary

eigenclass

superclass

class

1 module Social
2 class Person
3 attr_accessor(:age)
4 def initialize(a)
5 self.class.incCounter
6 @age = a; end
7 end
8 class << Person
9 def counter; @counter; end

10 def incCounter
11 if @counter.nil?; @counter = 0; end
12 @counter = @counter + 1; end
13 end
14 class Woman < Person; end
15 Mary = Woman.new(31)
16 Mary.age = 27
17 puts Mary.age # => 27
18 puts Person.counter # => nil
19 puts Woman.counter # => 1
20 class << Mary
21 attr_accessor(:name)
22 end
23 Mary.name = "Maria"
24 end
25 class Object
26 def inspect2
27 str = "(#{self}"
28 instance_variables.each {|x| str = str +
29 " #{x}=#{instance_variable_get(x)}"}
30 str += ")"; end
31 end
32 puts Social::Person.inspect2
33 # => (Social::Person)
34 puts Social::Woman.inspect2
35 # => (Social::Woman @counter=1)
36 puts Social::Mary.inspect2
37 # => (#<Social::Woman:0x...> @age=27 @name="Maria")

Fig. 1. Introductory example to Ruby’s object model: Ruby code and custom graphical representation of Ruby objects. Predefined objects depicted in grey

layer and the clabject facet layer. DeepRuby’s clabject facet
layer makes explicit each of the otherwise implicit facets
of a DDI clabject by a flat Ruby object. For example,
clabject facet CarModelˆ(2,1) with property owner=Person
represents the instance-instance-type of CarModel. Clabject
facet CarModelˆ(0,1) with property creator=Person represents
the self-type of CarModel. CarModelˆ(0,0) with property
creator=Peter represents the self-value of CarModel. Clabject
facet CarModelˆ(2,2) with property engine=EngineModel rep-
resents the instance-instance-metatype of CarModel. Clabject
facet CarModelˆ(1,1) with property listPrice=CurrencyValue
represents the instance-type of CarModel.

In the remainder of the paper, we give, in Sect. II, an
introduction to Ruby’s object model. In Sect. III, we introduce
a more intricate example DDI model and its representation
in DeepRuby. We also explain the clabject naming scheme
typically used with DDI for clabjects with more than two
instantiation levels. Sect. IV explains the clabject facet layer.
Sect. V exemplifies the extension of clabject facets with
custom methods. Sect. VI gives an overview of related work.
Sect. VII concludes the paper with ongoing and future work re-
garding the implementation of advanced constructs of DDI [9]
and Dual Deep Modeling [11].

II. BACKGROUND: RUBY’S OBJECT MODEL

As a background for forthcoming sections this section
explains some relevant aspects of Ruby’s object model along

a small but intricate example (see Fig. 1).
Ruby’s modules provide a namespacing mechanism for

constants, such as class names. Class Person (see line 1:2,
that is line 2 in the listing in Fig. 1) is created within
module Social and can be accessed outside the module by
qualified name Social::Person (line 1:32). Note: method
puts writes a string representation of the given object to an
IO stream – for illustration, the actual output of the Ruby
program is given in the program as a comment (e.g., # =>

(Social::Person)).
Member attributes of a Ruby class are defined as getter

and setter methods that access instance variables. Instance
variables are created when set by a method. To avoid the need
to write getters and setters by hand, class Module provides
a method attr_accessor that creates getter and setter
methods for an attribute of a given name. For example, in line
1:3, class Person (an instance of Class which inherits from
class Module) calls attr_accessor for symbol :age to
create setter method age= and getter method age in class
Person to write and read instance variables @age (names
of instance variables are marked by prefix ‘@’) of instances of
class Person, such as Mary (see line 1:16 and line 1:17).

In Ruby, classes are treated as objects and can have instance
variables themselves, called class instance variables. Classes
are instances of class Class and also may have an eigenclass
(also referred to as singleton class). Methods defined with
a class’s eigenclass (also referred to as singleton methods

1 module SalesMgmt
2 p = DDI::Model.new(SalesMgmt,3)
3 DDI::Clabject.new(p,1,:Person)
4 Person.new(:MsBlack)
5 Person.new(:Peter)
6 Peter.define(:spouse,0,1,Person)
7 Peter.ˆ(0,0).spouse = MsBlack
8 DDI::Clabject.new(p,2,:CarEngine)
9 CarEngine.new(:EngineK5)

10 EngineK5.new(:Engine123)
11 DDI::Clabject.new(p,3,:Product)
12 Product.define(:categoryMgr, 1, 1, Person)
13 .define(:owner, 3, 1, Person)
14 Product.new(:Bike)
15 Bike.new(:BromptonM6L)
16 Bike.ˆ(0,0).categoryMgr = MsBlack
17 BromptonM6L.new(:PetersBike)
18 PetersBike.ˆ(0,0).owner = Peter
19 Product.new(:Car)
20 Car.define(:engine, 2, 2, CarEngine)
21 Car.categoryMgr = MsBlack
22 Car.new(:BMWZ4)
23 BMWZ4.ˆ(1,1).engine = EngineK5
24 BMWZ4.new(:PetersCar)
25 PetersCar.ˆ(0,0).owner = Peter
26 PetersCar.ˆ(0,0).engine = Engine123
27 Person.define(:favouriteItem, 1, 3, Product)
28 Peter.ˆ(0,0).favouriteItem = PetersCar
29 MsBlack.ˆ(0,1).favouriteItem = BromptonM6L
30 puts Peter.favouriteItem.name
31 # => PetersCar
32 puts PetersCar.ˆ(0,1).engine.name
33 # => EngineK5
34 Product.getMembersN(2).each{|c| puts c.name }
35 # => BromptonM6L \n BMWZ4
36 end

categoryMgr1-1 = Person
owner3-1 = Person

Product3

categoryMgr0-0

= MsBlack
engine2-2

= CarEngine

Car2

engine1-1 = EngineK5

BMW Z41

owner0-0 = Peter
engine0-0=Engine123

PetersCar0

categoryMgr0-0

= MsBlack

Bike2

BromptonM6L1

owner0-0 = Peter

PetersBike0

favouriteItem1-3 = Product

Person1

favouriteItem0-0 =
PetersCar

spouse0-1 = Person
spouse0-0 = MsBlack

Peter0

favouriteItem0-1 =
BromptonM6L

MsBlack0

Category

Model

Individual

Individual

Fig. 2. Running example: A DeepRuby program (left) realizing a DDI model (right)

or class methods) can be used to access a class’s class
instance variables. The eigenclass of a class has as super-
class the eigenclass of the class’s superclass. For example,
Person’s eigenclass (labelled #Person in the graphical
representation) is opened by ‘class << Person’ at line
1:8. Person’s eigenclass defines a getter method counter
(line 1:9) together with a method incCounter (line 1:10)
which is called (line 1:5) to increment the counter every
time a new object is created. Class Woman has superclass
Person (defined by ‘class Woman < Person’ at line
1:14) and, thus, #Woman (the eigenclass of Woman) has
superclass #Person (the eigenclass of Person).

Class instance variables really belong to the class (as an
object) and class methods are called in the context of a class
object. For example, when calling Woman.new to create a
new instance of class Woman the initializer defined with class
Person (line 1:4) is called, incCounter is called in the
context of class Woman setting instance variable @counter
of Woman to 1 (see comment in line 1:19) and not of Person
which remains undefined (see comment in line 1:18).

Single objects may also have singleton classes with single-
ton methods. For example, Mary’s singleton class (opened at
line 1:20 by class << Mary and depicted as #Mary) de-
fines getter and setter methods for accessing instance variable
@name of Mary.

Ruby allows to open existing classes to add additional
methods which then affect all direct and indirect instances of
the class. For example, class Object (opened at line 1:25) is

the direct or indirect superclass of all custom classes created
in Ruby programs and also the superclass of class Module
and Class. A method added to class Object can thus be
called from any Ruby object (with Ruby classes being also
Ruby objects). Method inspect2 (line 1:26) is defined with
class Object; when invoked on an object, it creates a string
consisting of the object’s name and its instance variables (see
lines 1:32–1:36).

III. DUAL DEEP INSTANTIATION IN RUBY – AN EXAMPLE

In this section DeepRuby is explained along the example
depicted and implemented in Fig. 2. Ruby’s modules are used
as namespacing mechanism. The clabjects of a DDI model
are created within such a module/namespace. For example,
module SalesMgmt (line 2:1) serves as namespace for a DDI
model with depth 3 (line 2:2), i.e., a model with maximum
source and target potencies of 3.
Creating clabject hierarchies. A DDI model consists of one
or more clabject hierarchies. Every clabject hierarchy has one
root clabject. A root clabject has a fixed clabject potency
(specifying the number of instantiation levels beneath the root)
and typically has a name. For example, clabject Person (line
2:3) and clabject Product (line 2:11) are the root clabjects
in the SalesMgmt model and have a potency of 1 and 3,
respectively.

Clabjects are instantiated by sending message new. The
new clabject is in the same module as its class and has a
potency 1 lower than its class. For example, clabject Person

with potency 1 is instantiated by MsBlack (line 2:4) and by
Peter (line 2:5), which get potency 0. Clabject Product
with potency 3 is instantiated by Bike (line 2:14) and by
Car (line 2:19) which get potency 2.

Naming clabjects. The names of clabjects in DDI models
(such as in Fig. 2) may seem counter-intuitive. For example,
one would typically consider a class named Car to be a
specialization (and not an instantiation) of class Product.
In the following we explain how to read such models and
sketch the rationale behind this naming scheme.

It is sometimes argued that deep instantiation’s support for
concise modeling comes with the price of lack of concep-
tual clarity [3]: one clabject may represent multiple domain
concepts which makes it more difficult to differentiate these
different domain concepts. In order to make these different
domain concepts explicit, we proposed [9]–[11] to give mean-
ingful names to instantiation levels of a clabject and to produce
the name of an implicitly represented domain concept by
combining a clabject name with a level name.

For example (see Fig. 2), clabject Product has instantia-
tion levels Category, Model, and Individual, representing do-
main concepts Product Category, Product Model, and Product
Individual. Clabject Car is an instance of Product Category
and further represents domain concepts Car Model and Car
Individual (which are specializations of Product Model and
Product Individual). Clabject BMWZ4 is an instance of Car
Model and further represents domain concept BMWZ4 Individ-
ual (a specialization of Car Individual). Finally, PetersCar
is an instance of BMWZ4 Individual.

Defining and instantiating attributes. Attributes are defined
with a source clabject, a name, a source potency, a target
potency, and a target clabject. For example, clabject Product
defines an attribute with name owner, source potency 3, target
potency 1, and target clabject Person (line 2:13).

A clabject has many clabject facets, one for each com-
bination of source potency and target potency. In order to
set attribute engine at source potency 1 and target po-
tency 1 at clabject BMWZ4 to EngineK5, one first selects
the clabject facet (BMWZ4.ˆ(1,1)) to which one sends
engine=EngineK5 (line 2:23).

Clabjects with potency 0 have no members, yet they may
define attributes with a target potency higher than 0, similar to
what can be accomplished in Ruby with singleton classes of
an object (e.g., attribute name defined with Mary’s singleton
class at line 21 in Fig. 1). For example, clabject Peter defines
an attribute spouse with source potency 0, target potency 1,
and target Person (line 2:6) and instantiates it with target
potency 0 and target MsBlack (line 2:7).

Root clabjects with clabject potency 1 are akin to ‘normal’
classes in that they have individuals as members. They are
different from normal classes in that their attributes may have
a range defined at a higher classification level. For example,
Person (line 2:3) has individuals MsBlack (line 2:4) and
Peter (line 2:5) as members, yet it defines an attribute
favouriteItem (line 2:27) with target Product and

target potency 3, meaning that the range of favouriteItem
is given by the members of the members of the members of
clabject Product.
Querying clabject hierarchies and attributes. The values
and (meta) types of a clabject’s attributes are queried by
sending the attribute name to the clabject facet which is
identified by the clabject together with source potency and
target potency. For example, sending attribute name engine
to PetersCar’s clabject facet with source potency 0 and tar-
get potency 1 (line 2:32) returns the type of engine of
PetersCar, which is EngineK5, which is inherited from
BMWZ4.

For getting or setting attributes with source potency 0 and
target potency 0 it is not necessary to specify the clabject facet.
If a message is sent to a clabject it dispatches it to its 0-0 facet.
For example, when sending attribute name favouriteItem
to Peter (line 2:30) it is dispatched to Peterˆ(0,0) and
retrieves Peter’s favourite item, which is his car.

DeepRuby provides methods to navigate clabject hierarchies
to facilitate flexible querying of DDI models. For example,
line 2:34 retrieves the members of the members of Product,
these are BMWZ4 and Brompton.
DeepRuby provides (1) generic query mechanisms (1a) to
retrieve attribute values and (meta) types including inherited
values and types (1b) to navigate clabject hierarchies and
retrieve a clabject’s members at a specific level and (2) takes
care of keeping DDI models consistent when defining and
setting attributes, with regard to: (2a) correct number of
instantiation steps at the source and the target, (2b) target
clabjects are compatible with targets at higher potencies, (2c)
a newly introduced target does not produce type conflicts at
lower potencies and at descending clabjects.

IV. DEEPRUBY UNDER THE HOOD

By freely combining source and target potencies, a clabject
c with maximum source potency m (given by the clabject’s
potency) and maximum target potency n (given by the DDI
model’s depth) has (m + 1) × (n + 1) clabject facets. Every
such facet corresponds to a combination of source potency and
target potency. The basic idea of DeepRuby is to represent
every such clabject facet as a ’flat’ Ruby object (which in
the current approach is always a class) with instance variables
and methods. For example, clabject Car with potency 2 in a
model with depth 3 has 12 (3 × 4) clabject facets. The object
Carˆ(0-0) holds @catMgr=MsBlack and Carˆ(2-2)
holds @engine=CarEngine as instance variable. The rela-
tionships between clabject facets are represented using Ruby
constructs:

• The eigenclass of clabject facet ci,j is clabject
facet ci,(j+1). For example, the eigenclass of class
Carˆ(0,0) is clabject facet Carˆ(0,1).

• If clabject c is an instantiation of clabject d, then
every clabject facet ci,j has clabject facet d(i+1),j

as superclass. For example, Carˆ(0,0) has super-
class Productˆ(1,0) and Carˆ(0,1) has superclass
Productˆ(1,1).

superclass

superclass superclass superclass

superclass superclass superclass

categoryMgr1-1 = Person
owner3-1 = Person

Product3

categoryMgr0-0 = MsBlack
engine2-2 = CarEngine

Car2

engine1-1 = EngineK5

BMW Z41

owner0-0 = Peter
engine0-0 =Engine123

PetersCar0

Product

Car

BMWZ4

PetersCar

@owner = Peter
@engine = Engine123

PetersCar^(0,0)

level(1)

level(0)

level(2)

level(3)

level(0)

level(1)

level(2)

level(0)

level(1)

level(0)

superclass superclass superclass

superclass

superclass

Product^(0,3)

Product^(1,3)

Product^(0,2)

catMgr()
catMgr=()

Product^(1,2)

BMWZ4^(1,0)

PetersCar^(0,1) PetersCar^(0,2) PetersCar^(0,3)

Product^(0,1)

catMgr();catMgr=()

@catMgr = Person

Product^(1,1)

Product^(0,0)

Product^(1,0)

Product^(2,0)

@engine = EngineK5

BMWZ4^(1,1) BMWZ4^(1,2) BMWZ4^(1,3)

instantiation_of

instantiation_of

instantiation_of

0 1 2 3

target potency

source potency

0

1

2

3

eigenclass superclass

Product^(3,0)

owner()
owner=()

@owner = Person

Product^(3,1)

owner()
owner=()

Product^(3,2)

Product^(2,2)Product^(2,1)

Product^(3,3)

Product^(2,3)

@catMgr = MsBlack

Car^(0,0) Car^(0,1)

Car^(1,0)

BMWZ4^(0,0)

Car^(0,2) Car^(0,3)

Car^(1,1) Car^(1,2) Car^(1,3)

BMWZ4^(0,1) BMWZ4^(0,2) BMWZ4^(0,3)

Car^(2,0)

engine()
engine=()

Car^(2,3)

engine()
engine=()

Car^(2,1)

engine()
engine=()

@engine = CarEngine

Car^(2,2)

DDI Model
DeepRuby

Clabject Layer
DeepRuby

Clabject Facet Layer

Fig. 3. Realizing clabject facet matrices in Ruby using superclass and eigenclass

A clabject is first represented as an instance of class
Clabject (line A:25 in the Appendix) with an array
levels which holds for each source potency a reference
to the respective instance of class ClabjectFacet (see
line A:210) with target potency 0, from there one can navigate
to other clabject facets along eigenclass relationships. Sending
message ˆ(i,j) to a clabject c returns clabject facet ci,j .
A clabject facet’s attribute clabject (line A:213) allows
to navigate back from clabject facet to clabject; for example,
from clabject facet Carˆ(2,1) to clabject Car.

What is the role of superclass relationships in Deep-
Ruby?:

• Methods are inherited from superclass di+1,j to subclass
ci,j (this comes for free, since this is what class hier-
archies are traditionally used for). For example, setter
method engine= defined at Carˆ(2,1) is inherited

by BMWZ4ˆ(1,1) and in turn by PetersCarˆ(0,1).
• Target clabjects of attributes (represented as instance

variables) are inherited from superclass ci+1,j to sublass
ci,j (this is implemented generically as part of Deep-
Ruby). For example, when sending message engine
to PetersCarˆ(0,1) one gets EngineK5, which is
inherited from BMWZ4ˆ(1,1).
What is the role of eigenclass relationships in Deep-

Ruby?:
• The eigenclass ci,j+1 of a clabject facet ci,j pro-

vides methods for accessing instance variables of
ci,j (this comes for free with the eigenclass con-
struct). For example, setter method catMgr= de-
fined in Productˆ(1,2) is called for setting
@catMgr=Person in Productˆ(1,1)

• Target clabjects (represented as instance variables) at

ci,j+1 act as constraint for target clabjects at ci,j

(this is implemented generically as part of DeepRuby).
For example, target clabject engine=EngineK5 of
PetersCarˆ(0,1) (inherited from BMWZ4ˆ(1,1))
acts as constraint when invoking setter method engine=
on PetersCarˆ(0,0).

We have further been experimenting with two alternative
representation of the clabject facet matrix: In the first alter-
native represenation, clabject facets with target potency 0 are
represented as simple objects and not as classes. This would
also be a reasonable design choice since these facets do not
act as classes, yet it makes the implementation a bit more
complex.

In the second alternative representation, we introduce an
additional layer between DDI-clabject layer and clabject facet
layer in order to align DeepRuby with DeepTelos [6]. At this
intermediate layer, a DDI clabject is represented by multiple
simple clabjects. A simple clabject resembles an object, class,
metaclass, or metaˆn class in DeepTelos. Clabject facets with
the same difference between source potency and target potency
are collected into such a simple clabject. For example, clabject
facets Carˆ(0,0), Carˆ(1,1), Carˆ(2,2) are collected
into a simple clabject Car 0 and clabject facets Carˆ(1,0),
Carˆ(2,1) are collected into a simple clabject Car 1, with
Car 0 having class Car 1 as its most-general instance. A
simple clabject combining facets where the target potency
is higher than the source potency (e.g., Productˆ(0,1),
Productˆ(1,2), Productˆ(2,3)) cannot be directly
represented in DeepTelos.

In this section we have explained the basic principles of
DeepRuby’s implementation and use of Ruby’s eigenclass
construct to implement Dual Deep Instantiation and have
sketched two alternative representations. The evaluation and
fine-tuning of these alternatives is subject to ongoing work.

V. SIMPLE ATTRIBUTES AND CUSTOM METHODS IN
DEEPRUBY

Using classes/eigenclasses arranged in superclass hierar-
chies for realizing the clabject facet matrix allows to use stan-
dard Ruby constructs to implement simple attributes (attributes
with non-clabjects as range) and behavior (custom methods)
on top of the clabject facet matrix, and to specialize behavior
(i.e., overwrite methods, add additional methods) along the
clabject hierarchy.

To demonstrate these features, the running example from
Fig. 2 is extended in Fig. 4 with clabject hierarchies
Currency with simple attributes for exchange rate (with
Euro as reference currency), isocode and value, and Country
with a local currency. Clabject Product is extended with a
listPrice and a method priceInCountry to convert
the list price to the local currency of the given country.

First-level members of Currency receive getters and
setters for simple attributes exchRate and isocode
by invoking standard Ruby method attr_accessor
on the eigenclass of Currency.ˆ(1,0) (which is

Currency.ˆ(1,1)) (see line 4:4). Second-level mem-
bers of Currency get getter and setter for attribute
value by invoking attr_accessor on the eigenclass of
Currency.ˆ(2,0) (which is Currency.ˆ(2,1)) (line
4:7). Currencies Pound, Euro, and Yen are created with
their isocode and exchange rate (lines 4:20–4:25). GBP38200
is an instantiation of Pound (and a second-level member of
Currency) with value 38200 (line 4:26).

Second-level members of Currency have a method
for pretty printing (defined with the eigenclass of
Currency.ˆ(2,0) which is Currency.ˆ(2,1)), mak-
ing use of value and isocode. In order to get the
isocode the method needs to first navigate from the clabject
facet (instance of ClabjectFacet) to the corresponding
clabject (instance of Clabject) along attribute clabject
and from there along attribute cclass to the corresponding
first-level member of Currency (line 4:9). Sending pretty
to GBP38200 results in ‘GBP 38200’ (line 4:27).

Second-level members of Currency further have a
method toCurrency which takes a first-level member of
Currency as parameter (line 4:11). Sending toCurrency
with parameter Euro to GBP38200 produces a new instanti-
ation of Euro which is pretty printed as ‘EUR 42784.0’ (line
4:28).

The eigenclass of Yen.ˆ(1,0) (which is
Yen.ˆ(1,1)) overwrites method pretty inherited
from Currency.ˆ(2,1)) to use unicode symbol U instead
of isocode JPY . The new instantiation of Yen created by
sending toCurrency with parameter Yen to GBP38200 is
pretty printed as ‘U 5556363.64’ (line 4:33).

Clabjects UK and Japan instantiate Country and have
local currencies Pound and Yen, respectively. Asking for
the exchange rate of Japan’s local currency returns 0.0077
(line 4:39).

Method priceInCountry (see line 4:42) of second-
level members of Product takes a country as parameter
and converts the listPrice of second-level instantiations
of Product to the country’s local currency, returning a new
instantiation of the given currency with the value being the
result of the conversion. Sending priceInCountry with
parameter Japan to BMWZ4 (see line 4:48) returns a new
clabject pretty-printed as ‘U 5556363.64’ (line 4:48).

VI. RELATED WORK

With the advent of multi-level modeling, the question of
multi-level model execution emerges. Melanee [1], DeepTe-
los [6], MetaDepth [8], DeepJava [7], and XModeler [4] are
modeling tools and frameworks that support model execution,
each pursuing a different strategy with respect to supporting
model execution. Multilevel programming may also be real-
ized in a type-safe manner by metaprogramming and reflective
constraints [5].

The Melanee multi-level modeling tool [1] supports model
execution through a service API and a plug-in mechanism. The
communication between modeling and execution environment
can be realized using socket-based communication. Changes

1 module SalesMgmt
2 DDI::Clabject.new(Product.model,2,:Currency)
3 class << Currency.ˆ(1,0)
4 attr_accessor(:isocode, :exchRate)
5 end
6 class << Currency.ˆ(2,0)
7 attr_accessor(:value)
8 def pretty
9 "#{clabject.cclass.isocode} #{value}"

10 end
11 def toCurrency(c)
12 raise "#{c} is not a currency" \
13 unless (c.isMemberN(1,Currency))
14 obj = c.new
15 obj.value = (value * clabject.cclass
16 .exchRate / c.exchRate).round(2)
17 return obj
18 end
19 end
20 Currency.new(:Pound);
21 Pound.isocode = "GBP"; Pound.exchRate = 1.12;
22 Currency.new(:Euro)
23 Euro.isocode = "EUR"; Euro.exchRate = 1
24 Currency.new(:Yen)
25 Yen.isocode = "JPY"; Yen.exchRate = 0.0077
26 Pound.new(:GBP38200); GBP38200.value = 38200
27 puts GBP38200.pretty # => GBP 38200
28 puts GBP38200.toCurrency(Euro).pretty
29 # => EUR 42784.0
30 class << Yen.ˆ(1,0)
31 def pretty; "\u00A5 #{value}"; end
32 end
33 puts GBP38200.toCurrency(Yen).pretty
34 # => U 5556363.64
35 DDI::Clabject.new(Product.model,1,:Country)
36 Country.define(:localCurrency,1,1,Currency)
37 Country.new(:UK).localCurrency = Pound
38 Country.new(:Japan).localCurrency = Yen
39 puts Japan.localCurrency.exchRate #=> 0.0077
40 Product.define(:listPrice, 2, 2, Currency)
41 class << Product.ˆ(2,0)
42 def priceInCountry(country)
43 listPrice.toCurrency(country.localCurrency)
44 end
45 end
46 BMWZ4.ˆ(0,0).listPrice = GBP38200
47 puts BMWZ4.priceInCountry(Japan).pretty
48 # => U 5556363.64
49 end

priceInCountry2(Country1) : Currency2

listPrice2-2 = Currency

Product3

Car2

listPrice0-0 = GBP38200

BMW Z41

pretty2()
toCurrency2(Currency1) : Currency2

value2

exchRate1

isoCode1

Currency2

pretty1-0()

exchRate = 0.0077
isocode = „JPY“

Yen1

exchRate = 1
isocode = „EUR“

Euro1

exchRate = 1.12
isocode = „GBP“

Pound1

value = 38200

GBP382000

localCurrency1-1 = Currency

Country1

localCurrency0-0 = Pound

UK0

localCurrency0-0 = Yen

Japan0

value= 5556363.64value= 42784.0

Fig. 4. Custom methods: DeepRuby program (left) realizing a DDI model with methods (right)

in the modeling environment then automatically reflect in the
execution environment, and vice versa. The execution envi-
ronment can be implemented as a Java program. Concerning
the definition of execution semantics, different approaches
exist. A “pragmatic” approach, for example, employs a Java
representation of the multi-level model where each clabject in
the multi-level model corresponds to a single Java class, with
execution semantics defined using plain Java code.

DeepTelos [6] extends the Telos metamodeling language
and its implementation with “most general instances” to add
support for deep instantiation. Since DeepTelos defines the
extensions as a set of Datalog axioms, DeepTelos models are
compatible with ConceptBase, an implementation of a Telos
variant. ConceptBase also allows for the definition of exe-
cutable models using event-condition-action rules. In Sect. IV
we sketched how to group clabject facets into simple clabjects
that resemble DeepTelos classes. DeepTelos does not directly
support self-describing clabjects (i.e., clabject with attributes
where the target potency is higher than the source potency)

but comes with powerful metamodeling features unmatched
by DeepRuby.

MetaDepth [8] is a text-based multi-level modeling frame-
work with potency-based deep instantiation. MetaDepth is a
Java-based implementation using a custom syntax. Among the
primary features of MetaDepth are multi-level constraints and
derived attributes at different meta-levels. Execution semantics
is defined using an OCL extension. MetaDepth provides an
interpreter for the thus defined multi-level models. MetaDepth
also supports code generation complying to the Java Metadata
Interface.

DeepJava [7] is an extension of the Java programming
language with a mechanism for potency-based deep instan-
tiation. Internally, a compiler transforms DeepJava code into
plain Java. Hence, each DeepJava class translates into a set
of Java classes, one for each clabject facet. The compiler also
generates code for clabject instantiation at runtime, which is
realized using Java’s reflective functions. Clabject instantiation
results in the dynamic generation of a number of interfaces.

As a limitation, direct access without getters and setters is
restricted to attributes with potency values smaller than two.
With respect to Java, Ruby’s eigenclass concept much better
suits the clabject philosophy of multi-level modeling. As
opposed to DeepJava, DeepRuby supports deep instantiation
with both a source and a target potency, resulting in the
generation of a matrix of Ruby classes for each clabject.

VII. CONCLUSION

In this paper we introduced DeepRuby, a Ruby implemen-
tation of the core language constructs of Dual Deep Instantia-
tion [9]: clabject hierarchies and attributes with dual potencies.
The system takes care of consistent instantiation of clabjects
and attributes and provides methods for querying multi-level
models. Our experiences with implementing DeepRuby have
confirmed our initial conjecture that a dynamic programming
language like Ruby that does not strictly separate classes and
objects is a good platform for implementing clabject-based
modeling constructs.

In an internal prototype we have also implemented DDI’s
advanced modeling constructs (which are missing from the
DeepRuby version presented in this paper): multi-valued prop-
erties, bi-directional properties, and clabject generalization.
The fine-tuning of the advanced prototype and experimentation
with alternative representations of the clabject facet matrix is
subject to ongoing work.

Dual deep modeling (DDM) [11], an extended version
of DDI, additionally comes with multi-level cardinality con-
straints, property specialization hierarchies, and distinguishes
between property value and property range. Implementing
these constructs in DeepRuby is subject to future work.

Moving beyond previous implementations of DDI/DDM in
ConceptBase [9] and F-Logic [11], DeepRuby allows to extend
clabject facets with custom methods. We have exemplified
the implementation of such methods and their inheritance and
specialization along the clabject facet hierarchy.

REFERENCES

[1] Atkinson, C., Gerbig, R., Metzger, N.: On the execution of deep models.
In: Mayerhofer, T., Langer, P., Seidewitz, E., Gray, J. (eds.) Proceedings
of the 1st International Workshop on Executable Modeling. CEUR
Workshop Proceedings, vol. 1560, pp. 28–33. CEUR-WS.org (2015)

[2] Atkinson, C., Kühne, T.: The Essence of Multilevel Metamodeling. In:
Gogolla, M., Kobryn, C. (eds.) Proceedings of the 4th International
Conference on the UML 2001, Toronto, Canada. LNCS, vol. 2185, pp.
19–33. Springer Verlag (Oct 2001)

[3] Carvalho, V.A., Almeida, J.P.A.: Toward a well-founded theory for
multi-level conceptual modeling. Software & Systems Modeling (2016)

[4] Clark, T., Gonzalez-Perez, C., Henderson-Sellers, B.: A foundation for
multi-level modelling. In: MULTI 2014. CEUR Workshop Proceedings,
vol. 1286, pp. 43–52. CEUR-WS.org (2014)

[5] Draheim, D.: Reflective constraint writing - A symbolic viewpoint of
modeling languages. Trans. Large-Scale Data- and Knowledge-Centered
Systems 24, 1–60 (2016)

[6] Jeusfeld, M.A., Neumayr, B.: DeepTelos: Multi-level modeling with
most general instances. In: Comyn-Wattiau, I., Tanaka, K., Song, I.,
Yamamoto, S., Saeki, M. (eds.) ER 2016. LNCS, vol. 9974, pp. 198–
211. Springer (2016)

[7] Kuehne, T., Schreiber, D.: Can programming be liberated from the two-
level style: Multi-level programming with DeepJava. In: Proceedings
of the 22nd Annual ACM SIGPLAN Conference on Object-oriented
Programming Systems and Applications. pp. 229–244 (2007)

[8] de Lara, J., Guerra, E.: Deep meta-modelling with MetaDepth. In: Vitek,
J. (ed.) TOOLS 2010. LNCS, vol. 6141, pp. 1–20. Springer (2010)

[9] Neumayr, B., Jeusfeld, M.A., Schrefl, M., Schütz, C.: Dual deep instan-
tiation and its conceptbase implementation. In: Jarke, M., Mylopoulos,
J., Quix, C., Rolland, C., Manolopoulos, Y., Mouratidis, H., Horkoff,
J. (eds.) CAiSE. Lecture Notes in Computer Science, vol. 8484, pp.
503–517. Springer (2014)

[10] Neumayr, B., Schuetz, C.G.: Multilevel modeling. In: Liu, L., Özsu,
M.T. (eds.) Encyclopedia of Database Systems. pp. 1–8. Springer New
York, New York, NY (2017)

[11] Neumayr, B., Schuetz, C.G., Jeusfeld, M.A., Schrefl, M.: Dual deep
modeling: multi-level modeling with dual potencies and its formalization
in F-Logic. Software & Systems Modeling pp. 1–36 (2016)

[12] Perrotta, P.: Metaprogramming Ruby 2. The Pragmatic Programmers
(2014)

APPENDIX

DEEPRUBY IMPLEMENTATION

1 module DDI
2
3 class Model
4 attr_reader(
5 :depth, # maximum potency of user clabjects
6 :modul, # module/namespace for clabjects
7)
8 def initialize(mod, n)
9 raise "initial maximum-depth too low (n < 1)" if n < 1

10 @modul = mod
11 @depth = n
12 # create module-specific ClabjectLevel-class
13 # because of different eigenclass depth
14 cls = Class.new
15 modul.const_set(:ClabjectLevel, cls)
16 # include module ClabjectFacet in eigenclasses
17 for n in (0..depth)
18 cls = cls.singleton_class
19 cls.send(:include, ClabjectFacet)
20 end
21 end
22 end # end Model
23
24
25 class Clabject
26 attr_reader(
27 :model, # reference to DDI model
28 :levels, # array of clabject levels
29 :name,
30 :instantiations, # first-level members
31 :instantiation_of, # class clabject
32 :potency
33)
34
35 def cclass
36 instantiation_of
37 end
38
39 def members
40 instantiations
41 end
42
43 def ˆ(srcPtcy,tgtPtcy)
44 facet(srcPtcy,tgtPtcy)
45 end
46
47 def facet(srcPtcy,tgtPtcy)
48 raise "Target potency #{tgtPtcy} above max potency #{model.depth}+1."

if tgtPtcy > (model.depth+1)
49 return levels[srcPtcy].eigenclassN(tgtPtcy)
50 end
51
52 def initialize(model, potency, name=nil, parent=nil)
53 @name = name
54 @instantiation_of = parent
55 @potency = potency
56 @model = model
57 @levels = Array.new(potency+1)
58 for m in (0..potency)
59 if parent.nil?
60 @levels[m] = createClabjectLevel(model
61 .modul.const_get(:ClabjectLevel), m)
62 else
63 @levels[m] = createClabjectLevel(parent
64 .levels[m+1], m)
65 end
66 end
67 @instantiations = Array.new
68 model.modul.const_set(name, self) if name
69 return self
70 end
71
72 def new(name=nil)
73 obj = Clabject.new(
74 self.model, self.potency-1, name, self)
75 instantiations << obj
76 return obj
77 end
78
79
80 def createClabjectLevel(supercls,levelNr)
81 cls = Class.new(supercls)

82 facet = cls
83 for n in (0..model.depth)
84 facet.clabject = self
85 facet.tgtPtcy = n
86 facet.srcPtcy = levelNr
87 if(n < model.depth)
88 facet = facet.singleton_class
89 end
90 end
91 return cls
92 end
93
94 def to_s
95 name
96 end
97
98 def getMembersN(n)
99 if n == 0

100 return [self]
101 elsif n == 1
102 return instantiations
103 elsif n > 1
104 tempAry = []
105 ary = [self]
106 for m in (1..n)
107 ary.each do |cbj|
108 tempAry = tempAry + cbj.instantiations
109 end
110 ary = tempAry
111 tempAry = []
112 end
113 return ary
114 end
115 end
116
117 def isMember(cbj)
118 if self == cbj
119 true
120 elsif self.respond_to?(:instantiation_of) &&

!self.instantiation_of.nil?
121 self.instantiation_of.isMember(cbj)
122 else
123 false
124 end
125 end
126
127 def isCompatibleWith(cbj)
128 return self.isMember(cbj) || cbj.isMember(self)
129 end
130
131 def isMemberN(n, cbj)
132 if n == 0 and self == cbj
133 true
134 elsif self.respond_to?(:instantiation_of) &&

!self.instantiation_of.nil?
135 self.instantiation_of.isMemberN(n-1, cbj)
136 else
137 false
138 end
139 end
140
141 def method_missing(method, *args)
142 if levels[0].respond_to?("#{method}", *args)
143 levels[0].send("#{method}", *args)
144 else
145 raise NoMethodError.new("There is no method called #{method} here")
146 end
147 end
148
149 def define(attribute, srcPtcy, tgtPtcy, value)
150 for n in (1..(tgtPtcy+1))
151 obj = facet(srcPtcy,n)
152 #crete getter
153 obj.class_eval("
154 def #{attribute}
155 if @#{attribute}
156 @#{attribute}
157 else
158 inherited(’#{attribute}’)
159 end
160 end"
161)
162 #create setter
163 obj.class_eval("
164 def #{attribute}=(val)
165 if valueSettingAllowed(:#{attribute}, val)
166 @#{attribute} = val
167 end
168 end"
169)
170 end
171 set(attribute, srcPtcy, tgtPtcy, value)
172 return self
173 end
174
175 def checkDownwardCompatibility(attribute, srcPtcy, tgtPtcy, value)
176 return true unless levels[srcPtcy].getMostSpecific(attribute)
177 return true if value.nil?
178 for potency in (0..srcPtcy)
179 getMembersN(potency).each do |cbj|
180 actMsVal = cbj.levels[srcPtcy-potency]
181 .getMostSpecific(attribute)
182 raise "#{value.name} is not compatible with #{actMsVal.name}" if

!value.isCompatibleWith(actMsVal)
183 end
184 end
185 end
186
187 def set(attribute, srcPtcy, tgtPtcy, value, doDownwardCheck = true)
188 checkDownwardCompatibility(attribute, srcPtcy, tgtPtcy, value) if

doDownwardCheck

189 facet(srcPtcy,tgtPtcy).send("#{attribute}=", value)
190 return self
191 end
192
193 def get(attribute, srcPtcy, tgtPtcy)
194 facet(srcPtcy,tgtPtcy).send(attribute)
195 end
196
197 def getValueSettingObject(attribute, srcPtcy, tgtPtcy)
198 facet(srcPtcy,tgtPtcy)
199 .getValueSettingObject(attribute.to_s.to_sym)
200 end
201
202 def getMethodDefiningClass(attribute, srcPtcy, tgtPtcy)
203 facet(srcPtcy,tgtPtcy)
204 .method("#{attribute.to_sym}").owner
205 end
206
207 end # end Clabject
208
209
210 module ClabjectFacet
211
212 attr_accessor(
213 :clabject,
214 :srcPtcy,
215 :tgtPtcy
216)
217
218 def to_s
219 clabjectname = (clabject.respond_to?(:name))? clabject.name : clabject
220 "#{clabjectname}ˆ(#{srcPtcy},#{tgtPtcy})"
221 end
222
223 def parent
224 superclass
225 end
226
227 def eigenclass
228 singleton_class
229 end
230
231 def inherited(attribute)
232 if parent.respond_to?(attribute.to_s.to_sym)
233 parent.send(attribute.to_s.to_sym)
234 else
235 false
236 end
237 end
238
239 def getValueSettingObject(attribute)
240 if instance_variable_get("@#{attribute.to_sym}")
241 self
242 else
243 getInheritedValueSettingObject(attribute)
244 end
245 end
246
247 def getInheritedValueSettingObject(attribute)
248 if parent.respond_to?(attribute.to_s.to_sym)
249 parent.getValueSettingObject(attribute.to_s.to_sym)
250 else
251 false
252 end
253 end
254
255 def getMostSpecific(attribute)
256 getMostSpecificN(attribute)[:val]
257 end
258
259 def getMostSpecificN(attribute)
260 if respond_to?(attribute)
261 val = self.send(attribute)
262 if val
263 return {:ptcy => 0, :val => val}
264 elsif eigenclass.respond_to?(attribute)
265 x = eigenclass.getMostSpecificN(attribute) #recursion
266 if x[:val]
267 return {:ptcy => x[:ptcy]+1, :val => x[:val]}
268 end
269 end
270 end
271 return {:val => false}
272 end
273
274 def valueSettingAllowed(attribute, value)
275 if value.kind_of?(Clabject)
276 ms = getMostSpecificN(attribute)
277 if ms[:val] && !value.isMemberN(ms[:ptcy], ms[:val])
278 raise "#{value.name} is not memberN(#{ms[:ptcy]}) of

#{ms[:val].name}"
279 end
280 return true
281 else
282 raise "#{value} is no Clabject"
283 end
284 end
285
286 def eigenclassN(n)
287 obj = self
288 for m in (1..n) # returns self if n=0
289 obj = obj.singleton_class
290 end
291 return obj
292 end
293
294 end # end ClabjectFacet
295
296 end # end module DDI

