
Data policy as activity network

© Vasily Bunakov

Science and Technology Facilities Council, Harwell Campus,

United Kingdom

vasily.bunakov@stfc.ac.uk

Abstract. The work suggests using a network of semantically clear interconnected activities for a

formal yet flexible definition of policies in data archives and data infrastructures. The work is inspired by

needs of EUDAT Collaborative Data Infrastructure and the case of long-term digital preservation but the

suggested policy modelling technique is universal and can be considered for all sorts of data management that

require clearly defined policies linked to machine-executable policy implementations.

Keywords: data management, long-term digital preservation, data policy, semantic modelling.

1 Introduction

Problematics of advanced long-term digital

preservation [1] has been in focus of many collaborative

projects and popular recommendations. However, it has

been paid a relatively small attention in domain-specific

projects that rely on data archiving, or in projects that

develop scalable e-infrastructures aggregating data that

comes from different user communities.

One of the problems that long-term digital

preservation aims to address is having clear policies for

the entire data lifecycle from data ingestion by archive or
by e-infrastructure service, through years-long data

management with sensible data checks, transformations

and moves, to data access and data dissemination to the

end users.

One can argue that without clear data policies and

means of their validation there is no such a thing as the

long-term digital preservation, even in cases when a

technology foundation used for an archive or an e-

infrastructure is sound and well-supported. At the end of

the day, every technology evolves – and at a brisk pace

compared to relatively long time when many data assets
are going to be useful, so data policies and means of their

expression should be semantically clear and in a way

more permanent than technology that underpins data

management. A strong case for policy-driven digital

preservation, with extensive references to the prominent

projects and popular methodologies was made in [2].

In practice, quite a few data archives and e-

infrastructures end up in a situation when they have got a

sound technology for managing data bits, also acquire a

decent number of users (which is a popular measure used

by funders for their judgement on the e-infrastructure

success) but do not have a reasonable data policy, let
alone any machine-assisted reasoning over it. The users’

trust in the archive or the e-infrastructure may be enough

for their daily use but there can be a substantial

conceptual and technological gap in regards to data

policies formulation, expression and execution.

Some larger projects and e-infrastructures are aware

of this gap and do make efforts to close it by working on

data policies implementation. An example of such e-

infrastructure is EUDAT [3] that has developed a number

of operational services [4] and data pilots with user
communities, and is now trying to express and apply

policies to these services.

The prime candidate for applying data policies in

EUDAT is B2SAFE service [5] based on iRODS

platform [6]. B2SAFE developers are doing a very good

job on building geographically and organizationally

distributed data storage with data replication, integrity

checks and other routine tasks of data management

guided by iRODS machine-executable rules. B2SAFE

have made their own effort on policies with the

development of Data Policy Manager [7] which is a

software module with policies expressed via XML
templates. There is a perceived need though of having a

more universal solution for policy management across all

EUDAT services. The possible policy modelling

approaches under consideration are using RuleML[8],

SWRL[9] or ProvOne ontology[10] which seems suitable

not only for capturing data provenance after the

execution of certain actions but also for the forward-

looking design of data processing workflows which can

then potentially serve as a means of data policy

modelling.

This work presents an alternative approach to those
mentioned and is based on Research Activity Model [11]

which is in fact quite universal and suitable for the

expression of all sorts of activities, not necessarily related

to research. Research Activity Model is slightly extended

and applied to the case of data policy modelling.

The main advantage of this alternative approach is its

high modularity which allows modeling policy elements

and using them as building blocks for the semantically

clear representation of a whole policy. The modularity of

policy design is especially important in data

infrastructures that commonly aggregate data coming
from different user communities, often having their own

business models, technical requirements, data formats

and data lifecycles which makes it difficult to design and

adequately express the crosswalks between community-

specific data policies and those for the data infrastructure.

Another advantage of the suggested approach is its ability

to address the conceptual gap between policy formulation

and policy implementation, as it may not be easy to

Proceedings of the XIX International Conference

“Data Analytics and Management in Data Intensive

Domains” (DAMDID/RCDL’2017), Moscow, Russia,

October 10–13, 2017

79

translate a high-level policy (often in a textual form) into

machine-executable policy.

The modularity should allow high levels of

inheritance and reuse of policy elements; it also helps to

solve specific problems of policy formulation and

validation when textually the same policy can be

executed in different ways leading to different states of

data archive, for which situation we provide an example.

The conceptual gap between policy formulation and

policy implementation is addressed by a possibility to
define policy-related Activities as “black boxes” with

(initially) only interfaces defined; this can be hopefully

done by policy makers themselves without entirely

delegating this policy design phase to policy

implementers (software developers).

Implementation of a sensible data policy is a

challenging task even within the boundaries of a

particular organization. In a situation when the

organization is using a collaborative data infrastructure

along with its own organization-specific IT services, the

implementation of a data policy is going to be even more
intricate and is likely to rely on loosely coupled services.

An approach to data policy modelling suggested in this

work is going to address this challenge, along with the

alleviation of the earlier mentioned problems of the

policy elements reusability and the policy application

results predictability.

The work is inspired by needs of EUDAT

Collaborative Data Infrastructure [3] and refers to it for

illustration of certain ideas, also the main incentive for

the work was modelling policies for the case of long-term

digital preservation. However, the suggested modelling
technique is universal and can be considered for all

archives or e-infrastructures that are interested in all sorts

of data management (not only long-term digital

preservation) that require a clearly defined policy linked

to machine-executable policy implementations.

Conceptual challenges of data policy modelling are

discussed first, specifically the problem of policy

decomposition into policy elements, then an example is

given of how Activity Model can be used for policy

modelling. This is followed by suggestions on what IT

architecture for data policy management will be required

to support the suggested modelling techniques.

2 Data policy and a problem of its

decomposition

2.1 Insufficiency of granular policy definition

Data policy is often created as a conventional textual

document that contains certain statements about what

should or should not be done with data, with implied or

sometimes explicit logical “ANDs” and “ORs” that glue

statements together in an aggregated policy. This

composite nature of policies is why it seems natural to

break down the policy document into granular

statements, model each statement using some formalism

and then execute the statements using some IT solution.

One of the most advanced efforts on data policy
decomposition was performed by SCAPE project [12]

that created an extensive catalogue of preservation policy

elements [13] which are in fact granular textual

statements. These granular statements which can be

converted, in a pretty straightforward way, in machine-

executable statements are called control policies in

SCAPE. Examples of control policies are: “information

on preservation events should use the PREMIS metadata

schema” or “original object creation date must be

captured”. The granular control policies relate to a

higher-level procedural policy (a procedural policy on

Provenance for the current example) which in turn relates

to an even higher-level and most abstract guidance policy
(a policy on Authenticity for the current example). Three-

level structure of guidance policies, procedural policies

and control policies constitute a very well developed

SCAPE digital preservation policy framework.

SCAPE stopped short of the actual implementation of

control policies, so when EUDAT [3] decided to use the

SCAPE framework for policy considerations, it was also

decided to supplement this framework with the catalogue

of practical data policies [14] developed by an RDA

(Research Data Alliance) Practical Policy Working

Group. The practical data policies in this catalogue are
expressed as iRODS [6] functons specifically suitable for

implementation in EUDAT B2SAFE service [5] based on

iRODS platform.

Having well-defined control policies or practical

policies is not enough though for semantically clear

modelling of a data policy as a whole, as the application

(execution) of a policy composed of granular machine-

executable statements may lead to quite different

outcomes depending on the order in which granular

policies are applied.

The problem of policy decomposition is in fact
interrelated with the problem of policy validation. To

illustrate this, let us consider a simple case when there is

a couple of easily identifiable policy statements

contained in the same policy document which we want to

decompose and validate through execution of two

granular policies. Let the statements in a composite

policy (perhaps, but not necessarily so, added one to

another through some policy update by different policy

managers) be:

[1] Image files having size of more than X gigabytes

should be stored in file storage A; otherwise they

should be stored in file storage B.
[2] Image files of type RAW should be converted in JPG

format.

If a certain file of type RAW is more than X gigabytes

in size but becomes less than X when converted in JPG

then, depending on the higher-level guiding policy and

on the order in which these granular policies are applied

in the actual service implementation, the result of the

combined application of the two granular policies can be

any of the following:

1. File is moved as RAW in storage A and remains

stored in A as RAW.
2. File is moved as RAW in storage A then

converted in JPG and remains stored in A.

3. File is converted in JPG and stored in B.

4. File is moved as RAW in storage A and remains

stored in A as RAW; also a copy of it converted

in JPG is stored in B.

This is to illustrate that validation of the data policy

80

implementation is hard as any of the listed outcomes may

be considered being right or wrong depending on the

validator’s point of view.

Also let us take into account that policy validation can

be based on some statistical selection of samples (so that

problematic boundary cases of RAW data sized only

slightly over X gigabytes threshold may not be selected

in a sample and hence go unnoticed), or that a policy

validation procedure allows some tolerance towards

small amount of failed policy checks (so that even if a
few files have ended up somewhere that a particular

policy interpretation considers to be a wrong place, this

does not trigger a policy violation alert).

So even if the data policy can be, seemingly

successfully, decomposed into granular policies that are

easy to define and validate as machine-executable

statements, the actual result of the policy implementation

does not necessarily match the intentions of policy

designers or policy managers, as the backwards process

of the policy composition – assembling it from the

granular policies (policy elements) – can be performed
with substantial variations.

2.2 Possible responses to the challenge of granular

policies insufficiency

One possible response to the outlined challenge could

be setting up an elaborated policy governance

framework, i.e. well-defined business processes that

allow human agents (policy managers) to look after the

policy implementation, i.e. accumulate and analyse

feedback from the environment where the policy is

applied and supply the result of this analysis as updated

requirements to software developers who work on the
actual software implementation of the policy. This

approach requires a good organizational culture and a

substantial human resource involved in data policy

management and in policy implementation; documented

requirements will serve as an interface between policy

managers and policy implementers. Some “magic”

should happen in between so that high-level policy

definitions translate into actual policies implementation

in software code, this is why policy validation is likely to

demand extensive software testing with specific policy-

related test cases.

Another possible response is having an elaborated
means of expression for the entire data policy (a

sophisticated policy modelling language): both for the

definition of granular policies and for the definition of

logic than binds the granular policies into the whole. An

example of this approach is RuleML [8] that is

considered a candidate for a detailed expression of data

policy in EUDAT e-infrastructure [3]. This approach

requires skilled human resource for policy modelling; the

modeler and a sophisticated model produced by her

becomes then an interface between policy managers and

policy implementers (the role of the latter is less
prominent than in the first approach, in a sense that

software developers should not interpret requirements

but just implement – or adopt – a certain engine that

executes formal rules defined by the savvy policy

modeller).

The third possible response is that a certain formalism

is used for the expression and, where necessary,

recomposition of granular policies (policy elements) and

for their assembling in the whole, with that formalism

being reasonably friendly to machines as well as to

humans. The humans – policy managers themselves or a

not-so-skilled modeller – can use the formalism for a

flexible policy definition that can be fairly easily

modified depending on the true policy intentions and on

the feedback received from the archive or e-infrastructure

where the policy is implemented. The role of software
developers is then to implement an engine for the

formalism (quite similarly to the second approach). The

machine just executes the policy expressed using that

formalism.

The differences amongst approaches are presented in

Table 1; in essence, they are different “weights”

(different levels of demand) for the skills of policy

managers, policy modellers and policy implementers.

Table 1 Differences amongst policy modelling

approaches

Policy

modelling

approach

Demands

for policy

manager

skills

Demands

for policy

modeller

skills

Demands

for policy

implemen-

ter skills

Policy

governance

framework

+

requirement

s

managemen

t + specific

software

testing

High

None

(policy

modeler

can be

replaced

by

business

analyst

or/and

software

tester)

High

Policy

modelling

language

Low High Medium

Formalism

for granular

policy

elements

definition

and

composition

Medium Medium Medium

The preferable approach could easily be the third one

as it empowers policy modelers themselves with

reasonable means of policy expression and therefore can

reduce overheads and risks of communicating a policy

from policy managers through modelers to implementers.

A remote analogy of the third approach could be the
proliferation of SQL language that, despite its

sophistication, has become a lingua franca of not only

software engineers but is widely used by logistics and

even sales departments is all sorts of business.

The formalism to be used for data policy expression

81

should not be something as developed as SQL though,

neither should it be purely textual: it can be based on the

idea of “building blocks” with possible graphical

representation of them, hence providing an easy-to-

operate semantic wrapper for machine-executable

statements. On the other hand (unlike SQL which allows

the actual data manipulation), these “building blocks” for

data policy definition are likely to remain only a wrapper

to the actual machine-executable implementations of

granular policies which will be inevitably specific to a
particular service even within the same archive or e-

infrastructure. As an example, for EUDAT B2SAFE [5]

that is based on iRODS platform [6] these granular

implementations can be iRODS functions and for other

EUDAT services based on other software platforms the

policy implementations can be something else. A

common semantic wrapper will be then a reasonable

means of a clear policy modelling and a clear definition

of interfaces between policy “building blocks” across a

variety of different IT services.

This work strongly prefers the third approach and
suggests considering Activity Model [11] for

semantically clear modelling of data policies in all IT

services within the same data archive or e-infrastructure,

as well as for policy interoperability across different data

archives and e-infrastructures.

3 Activity Model as a semantic wrapper for

machine-executable policies

3.1 Activity Model in a nutshell

Activity Model [11] was initially suggested for

modelling granular research activities and combining

them in networks so that, as an example, the output of

one Activity can be the input of another one, e.g. these

combined Activities may represent certain phases in
research data analysis. It has been clear though that

Activity Model can suit all sorts of activities as it is pretty

generic; as an example, it may well suit for modelling

data provenance across different IT services within e-

infrastructure.

The main “building block“ of the Activity Model is

an “activity cell” represented by Figure 1 with its aspects

(that can be thought of as incoming and outcoming

relations) explained in Table 2.

Figure 1 Research activity “cell”; it can be used for

semantic definition of any activity

The full RDF serialization of the Activity Model is

published in [11]; it is really simple and requires only

RDF Schema and an “inverseOf” OWL statement for its

expression, i.e. what is often referred to as RDFS Plus.

Table 2 Activity Model aspects explained

Aspect Description

Examples

Research per

se

Research data

analysis

Input

Something that

is taken in or

operated on by

Activity

Previous

research

Raw data

Output

Something that

is intentionally

produced by

Activity

Raw data Derived

(analyzed)

data

Scope

Something that

Activity is

aimed at or

deals with

Sample

properties

One or more

experiments

Condition

Something that

affects or

supports

Activity, or

gives it a

specific

context

Scientific

instrument

IT

environment

Actor

Something or

somebody who

participates in

Activity

Investigator Data analyst

Effect

Something that

is a

consequence

of Activity

Environment

pollution

New software

module

Activity “cells” can be combined in chains or
networks, and not necessarily in a way that the Output of

one Activity is the Input to another. As an example, a data

management policy can be the Output of one Activity

(policy design) and the Condition that affects another

Activity, e.g. data replication in the archive.

The model flexibility when any aspect of one Activity

can be matched with any aspect of another Activity is

supported by the fact that aspects do not have to have

types associated with them.

3.2 Proposed extensions of the Activity Model

In order to use Activity Model for data policy

modelling, we will need to make a profile of the model
by specifying certain types of Activity as subclasses (in

82

case of an RDF serialization of the model – RDFS

subclasses). Suggested extensions are presented in Table

3. Conceptually, Generic Data Management Activities

should cover the needs of data engineering that are

related to machine-interpretable policy implementations,

Logical Switch Activities should cover the needs of data

analysis and machine-assisted reasoning, and Control

Activities should cover the needs of IT services

deployment and operation.

Compared to modelling data policies with workflows,
the suggested approach based on the definition of policy-

related Activities should allow more loosely coupled

implementations of policy management IT solutions. As

an example, the “data engineering” part of policy

implementation represented by Generic Data

Management Activity can be performed on a software

platform fully controlled by a specific user community or

organization (e.g. a research institution), the operation

(the actual execution of control statements) represented

by Control Activity can be performed by collaborative

data infrastructure (e.g. by EUDAT CDI [3]) and the
logic of combining policy elements represented by

Logical Switch Activity can be performed by either the

organization or the data infrastructure, or by a third-party

service.

If the policy was modelled by an executable

workflow, it would require the presence of all three

aspects: data engineering, reasoning and execution – in

the same workflow likely operated by a single universal

workflow engine. This would mean not only an

operational limitation but a conceptual / modelling

limitation, too, as all the participants (stakeholders) of
policy implementation would have to adhere to the

conceptual framework and the format required by the

workflow engine. Modeling with interconnected

Activities as semantic wrappers to particular

implementations leaves more freedom to conceptualize

and to operate data policies that are going to be executed

by loosely coupled IT services.

Table 3 Additions to the core Activity Model required

for data policy modelling

Type to add Comment / Description

Generic Data

Management

Activity

Subclass of Activity for data

policy definition. It can be

considered a semantic wrapper

for a variety of data handling
Activities, e.g. Activities for

data characterization or data

transformation.

Logical Switch

Activity

Subclass of Activity for logical

switches of all sorts

Control Activity Subclass of Activity for an

interface with a particular

software platform where

policies are executed. This is a

semantic wrapper for the actual

call to a platform-specific

script or function.

Depending on a particular operational environment

(software platform where policies are executed), other

parts of the Activity Model, e.g. its Inputs, Outputs, or

Conditions may require additional semantically clear

extensions. However, it is unclear at the moment whether

these potentially required extensions should be a part of

the universal Activity Model profile for data policies, or

it is better to introduce them as necessary, as parts of

policy execution engine implementations on particular

software platforms.

3.3 Examples of the Activity Model data policies

profile application

The role of the suggested model extensions will be

clearer by giving an example of their application to the

modelling of a particular policy. The example will be a

policy with two granular statements about data

movements depending on data size and data format that

were considered in Section 2.1.

 We will need to define first a File Characterization

Activity:

@prefix am:

 <http://.../stuff/ActivityModel#> .

@prefix ampp:

 <http://.../ActivityModel#PolicyProfile> .

GDMA_FileChar a

ampp:GenericDataPolicyActivity

GDMA_FileChar am:hasInput File

GDMA_FileChar am:hasOutput FileSize

GDMA_FileChar am:hasOutput FileFormat

GDMA_FileChar am:hasOutput File

GDMA_FileChar am:hasScope ImageFiles

GDMA_FileChar am:hasCondition

ServiceInstance

GDMA_FileChar am:hasActor CertainScript

GDMA_FileChar am:hasEffect FileCharLog

In short, GDPA_FileChar activity takes a file as an
input and produces values for the file size and file
format (which can be semantically clearly defined as
necessary – e.g. with measurement units and
format IDs in a file type registry) as outputs; the initial
file is passed over as another output. To derive the file
size and format, the activity uses CertainScript
(which again can be semantically clearly defined as
necessary – e.g. with references to a software repository).
As an additional outcome (better defined not as Output
but as Effect) of the file characterization activity, we
get theFileCharLog log file. The scope of activity is
defined as ImageFiles (so that other kinds of files
can be handled by differently defined
Characterization Activities; what “ImageFiles”
actually means can be clearly defined with e.g. a
reference to a certain taxonomy entry). The Condition
is defined as ServiceInstance (which means that
Actor:CertainScript operates in some particular IT
service environment).

Mapping of Activity to a particular software
implementation can be performed using Activity ID
and a reference to a repository with a clear software
identity, e.g. a software versioning repository.

The graphic representation of this Characterization
Activity (which, in the ideal world, can be designed in
a certain authoring tool with graphical user interface
and producing the above RDF as a serialization) is
illustrated by Figure 2.

83

Figure 2 Definition of a Data Policy Activity for image

files characterization

The problem of the policy composition out of two
granular policies outlined in Section 2.1 can be addressed

with the help of other classes of activities that we

introduced earlier: Logical Switch and Control. For the

sake of simplicity (as we are going just to illustrate it how

the policy modelling can be done) we will not be defining

all aspects for these activities, e.g. we can omit Scope or

Effect but they may be required in a real policy modelling

situation.

The Logical Switch activity will take File, FileSize

and FileFormat as Inputs, a particular logic of handling

file moves to either storage A or B, as well as file

conversion, will be Condition. The Activity yields a list
of particular control statements (like “move File to

storage A”, “Convert file in JPG format”) as Output. The

shape of such defined Logical Switch activity is

illustrated by Figure 3.

Figure 3 Definition of a Logical Switch Activity for

handling image files

The semantically clear definition of a Logical Switch
Activity gives an idea of how we suggest to address the

problem of a policy composition from granular policy

statements. The hope is, if the logic of producing control

statements is made explicit, as well as the control

statements themselves, this will eliminate the ambiguity

of a policy composed of granular policy statements.

A good question is what formalism, if any, will be

adequate for the expression of logic in the Condition of

the Logical Switch. The short answer is: it depends on the

policy engine implementation. In an extreme case, this

Condition can be just a mandatory textual explanation

(commentary) of the logic implemented by the Actor
(which is omitted in the Figure 3), i.e. by an executable

function or a procedure or a script for a particular IT

platform. Alternatively, rules modelling language or

workflow templates (and appropriate engines for them)

can be used – yet, in this case, the actual usage of these

modelling languages or workflow templates would be

limited to the policy logic enwrapped in the Logical

Switch Activity, allowing freedom for different

implementations of other types of Activities involved in

the policy definition.

How to express control statements in the Output is

subject to particular implementations, too. The only
consideration which is important for the moment –

important both from conceptual and from

implementation perspectives – is having the list of

control statements as a clearly defined interface between

Logical Switch Activity and Control Activity.

Control Activity takes the list of control statements as

Input and makes platform-specific function or procedure

or script calls that implement the control statements.

Actors for Control Activity are particular functions /

procedures / scripts and the Effects of it are log and error

files or messages – whatever is used for traceability in a
particular implementation. Condition is, similarly to the

file characterization activity definition, a particular

software platform or IT service where Actors operate.

Figure 4 presents an example of a diagrame for the

Control Policy.

Figure 4 Definition of a Control Activity for policy

execution

Generic Data PolicyActivities (such as data

characterization) can be combined with Logical Switch

Activities and Control Activities in a chain or a network

of activities. For our example, the resulted chain is

illustrated by Figure 5. It represents the full model of a

certain data policy expressed as a chain of semantically

clear activities with interfaces between them, as well as
interfaces to activity implementations in particular IT

services or software platforms.

It is worth mentioning once again that every aspect in

the Figure 5 diagrame (such as File, Size, Format, Script

or Log) should be thought of not as a particular artefact

or a value but as a semantic wrapper of an artefact or a

value. As a particular model serialization, these semantic

wrappers can be RDF statements about artefacts or

values.

84

Figure 5 Example of full policy definition

In real data policy modelling situations, it may be

necessary to define more than one instance of each

Activity type; as an example, there could be two Data

Characterization Activities defined (one for the file size

and another for the file format) in place of one in our

example. Nevertheless, even differently defined

Activities could be combined in a semantically clear

network representing the same data policy.

If Activities in Figure 5 are clearly defined and
sensibly combined in the Activity network, this

eliminates any ambiguity in policy definition and

execution exemplified by two interfering granular

policies discussed back in Section 2.1 so that the actual

result of the policy implementation becomes predictable

and can be formally validated.

One of the strengths of the suggested model is a

combination of its reasonable expressivity with its high

flexibility as it is based on the idea of composition of

activities that can be a) modelled differently b)

implemented differently and c) operated (executed)

differently. In the above example, scripts for file
characterization and scripts for policy execution can be

implemented using different software and operated by

different components of the same service, or by different

services, or even by different e-infrastructures.

The actual chain or network of activities, as well as

definition of each of them (i.e. definition of all semantic

wrappers) could be done in a certain authoring tool with

a graphic user interface and RDF as a model serialization

format. Development of such a tool has been beyond

resources available for this conceptual work; however,

such a tool is worth mentioning as one of the elements of
an IT architecture that can support data policies

formulation, execution and validation.

4 IT architecture for activity-based data

policy management

The proposed IT architecture is presented by Figure 6

with the most essential components and information

flows (that would constitute a core operational platform

for data policy management) designated as filled-in

boxes and arrows; more advanced components and flows

are designated as dashed boxes and arrows with a blank

background.

As already suggested, having policy Activities

authoring tools with GUI and possibility to serialize

Activity networks in a semantically explicit format such
as RDF is essential for good levels of adoption of the

suggested approach and therefore such authoring tools

should be a part of a sensible IT architecture for data

policy management. In addition, what is required is a

repository where policy designs can be stored and

retrieved from.

Figure 6 IT architecture for activity-based policy

management

Activity network interpretation engine picks up

Activity network from the authoring tools or repository

and executes them. In order to execute activity networks

in a particular IT environment (software platforms and

services), a mapping engine is required that maps

Activities and their aspects (such as Conditions or

Outputs) to configuration files and executable scripts.

In addition to this generic mapping engine, specific

engines for logical conditions and control statements can

be implemented. Effects repository stores Effect aspects

of each Activity; it is a generalization of logging service
and contains semantically clear tracks of Activities

execution. Policy search interface can be designed for

searching and sharing data policies.

For the purposes of data archive or data

infrastructure audit, a policy validation engine is

required that talks to policy search interface and to

Effects repository. The actual validation can be based on

matching graphs of artefacts resulted from policies

execution with graphs of Activities in the policy design.

5 Conclusion

The problem of data policy modelling with

reasonable crosswalks between high-level (read: textual)

policies and their machine-executable implementations

has yet to find a satisfactory solution. The challenges of

policy design and implementation are even bigger when

collaborative data infrastructures are operated in

combination with the in-house software platforms.

The problem of semantically clear crosswalks and the
problem of data policy implementation across

organization-specific and external IT services can be

addressed by adoption of certain policy modelling

techniques and tools. Activity Model [11] can be a

reasonable means for the design of such tools, with the

idea that data policies can be represented as networks of

Activities with interconnected aspects of them.

This work has introduced extensions to the Activity

Model in order to make it fit for the task of data policy

85

modelling. An example of using the Activity Model for

the definition of a particular data policy has been given,

and a possible IT architecture has been considered that

can support data policy management based on Activity

networks.

Acknowledgements

This work is supported by EUDAT 2020 project that

receives funding from the European Union’s Horizon

2020 research and innovation programme under the grant

agreement No. 654065. The views expressed are those of

the author and not necessarily of the project.

References

[1] Giaretta, D. Advanced Digital Preservation.

Springer, Heidelberg (2011)

[2] Bunakov, V., Jones, C., Matthews, B., Wilson, M.
Data authenticity and data value in policy-driven

digital collections. OCLC Systems & Services:

International digital library perspectives, vol. 30

issue 4, pp. 212-231 (2014). doi: 10.1108/OCLC-

07-2013-0025. Open Access version of the preprint:

http://purl.org/net/epubs/work/12299882

[3] EUDAT Collaborative Data Infrastructure.

https://www.eudat.eu/eudat-cdi

[4] EUDAT services. https://www.eudat.eu/services-

support

[5] EUDAT B2SAFE service.

https://www.eudat.eu/b2safe

[6] iRODS: Integrated Rule-Oriented Data System.

https://irods.org/

[7] EUDAT Data Policy Manager.

https://github.com/EUDAT-B2SAFE/B2SAFE-

DPM

[8] RuleML Wiki pages.

http://wiki.ruleml.org/index.php/RuleML_Home

[9] SWRL: A Semantic Web Rule Engine.

https://www.w3.org/Submission/SWRL/

[10] ProvONE: A PROV Extension Data Model for

Scientific Workflow Provenance.

http://vcvcomputing.com/provone/provone.html

[11] Bunakov, V. Core semantic model for generic

research activity. In 15th All-Russian Conference

"Digital Libraries: Advanced Methods and

technologies, Digital Collections" (RCDL 2013),

Yaroslavl, Russia, 14-17 Oct 2013, CEUR
Workshop Proceedings (ISSN 1613-0073) 1108,

79-84 (2013). Persistent URL:

http://purl.org/net/epubs/work/10938342

[12] SCAPE: Scalable Preservation Environments

project. http://scape-project.eu/

[13] SCAPE Catalogue of Preservation Policy Elements.

http://scape-project.eu/wp-

content/uploads/2014/02/SCAPE_D13.2_KB_V1.

0.pdf

[14] Practical Policy Implementations Report.

http://dx.doi.org/10.15497/83E1B3F9-7E17-484A-

A466-B3E5775121CC

86

http://purl.org/net/epubs/work/12299882
https://www.eudat.eu/eudat-cdi
https://www.eudat.eu/services-support
https://www.eudat.eu/services-support
https://www.eudat.eu/b2safe
https://irods.org/
https://github.com/EUDAT-B2SAFE/B2SAFE-DPM
https://github.com/EUDAT-B2SAFE/B2SAFE-DPM
http://wiki.ruleml.org/index.php/RuleML_Home
https://www.w3.org/Submission/SWRL/
http://vcvcomputing.com/provone/provone.html
http://purl.org/net/epubs/work/10938342
http://scape-project.eu/
http://scape-project.eu/wp-content/uploads/2014/02/SCAPE_D13.2_KB_V1.0.pdf
http://scape-project.eu/wp-content/uploads/2014/02/SCAPE_D13.2_KB_V1.0.pdf
http://scape-project.eu/wp-content/uploads/2014/02/SCAPE_D13.2_KB_V1.0.pdf
http://dx.doi.org/10.15497/83E1B3F9-7E17-484A-A466-B3E5775121CC
http://dx.doi.org/10.15497/83E1B3F9-7E17-484A-A466-B3E5775121CC

