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Abstract. In the frame of an extensible canonical data model a formalization of data integration con-

cept is proposed. We provide virtual and materialized integration of data as well as the possibility to support 
data cubes with hierarchical dimensions. The considered approach of formalization of data integration con-
cept is based on the so-called content dictionaries. Namely, by means of these dictionaries we are formally 
defining basic concepts of database theory, metadata about these concepts, and the data integration concept. 
A computationally complete language is used to extract data from several sources, to create the materialized 
view, and to effectively organize queries on the multidimensional data. 
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1 Introduction 
The emergence of a new paradigm in science and 

various applications of information technology (IT) are 
related to issues of big data handling [21]. The concept 
of big data is relatively new and involves the growing 
role of data in all areas of human activity beginning 
with research and ending with innovative developments 
in business. Such data is difficult to process and analyze 
using conventional database technologies. In this con-
nection, the creation of new IT is expected in which 
data becomes dominant for new approaches to concep-
tualization, organization, and implementation of sys-
tems to solve problems that were previously considered 
extremely hard or, in some cases, impossible to solve. 
Unprecedented scale of development in the big data 
area and the U.S. and European programs related to big 
data underscore the importance of this trend in IT. 

In the above discussed context the problems of da-
ta integration are very actual. Within of our approach to 
data integration an extensible canonical model has been 
developed [16]. We have published a number of papers 
that are devoted to the investigation of data virtual and 
materialized data integration problems, for instance [15, 
17]. Our approach to data integration is based on the 
works of the SYNTHESIS group (IPI RAS) [2, 9–12, 
22–25], who are pioneers in the area of justifiable data 
models mapping for heterogeneous databases integra-
tion. To support materialized integration of data during 
creation of a data warehouse a new dynamic index 
structure for multidimensional data was proposed [6] 

which is based on the grid files [18] concept. We con-
sider the concept of grid files as one of the adequate 
formalisms for effective management of big data. Effi-
cient algorithms for storage and access of that directory 
are proposed in order to minimize memory usage and 
lookup operations complexities. Estimations of com-
plexities for these algorithms are presented. In fact, the 
concept of grid files allows to effectively organize que-
ries on multidimensional data [5] and can be used for 
efficient data cubes storage in data warehouses [13,19]. 
A prototype to support the considered dynamic indexa-
tion scheme has been created and its performance was 
compared with one of the most demanded NoSQL data-
bases [17]. 

In this paper a formalization of the data integration 
concept is proposed using a mechanism of the content 
dictionaries (similarly ontologies) of the OPENMath 
[4]. Subjects of the formalization are the basic concepts 
of database theory, metadata about these concepts and 
the data integration concept. The result of the formaliza-
tion are a set of content dictionaries, constructed as 
XML DTDs on the base of OPENMath and are used to 
model the databases concepts. With this approach, 
schema of an integrated database is an instance of con-
tent dictionary of the data integration concept. Within 
the considered approach is provided virtual and materi-
alized integration of data as well as the possibility to 
support data cubes with hierarchical dimensions. Using 
OPENMath as the kernel of the canonical data model 
allows us to use a rich apparatus of computational 
mathematics for data analysis and management. 

The paper is organized as follows: Concept and 
formal foundations of the considered approach to data 
integration are presented briefly in Section 2. Canonical 
data model and issues to support the data integration 
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concept are considered in Section 3. The conclusion is 
provided in Section 4. 

2 Brief Discussion on Data Integration Ap-
proach 

The basis of our concept to data integration is based 
on the idea of integrating arbitrary data models. Based 
on this assumption our concept of data integration as-
sumes:  

• applying extensible canonical model; 
• constructing justifiable data models mapping 

for heterogeneous databases integration; 
• using content dictionaries. 

Choosing the extensible canonical model as integra-
tion model allows integrating arbitrary data sources. As 
we allow integration of arbitrary data sources a necessi-
ty to check mapping correctness between data models 
arises. It is reached by formalization of data model con-
cepts by means of AMN machines [1] and using B-
technology to prove correctness of these mappings.  

The content dictionaries are central to our concept 
of data integration and semantical information of differ-
ent types can be defined based on these dictionaries. 
The concept of content dictionaries allows us to extend 
the canonical model by means of introducing new con-
cepts in these dictionaries easily. In other words, canon-
ical model extension only is reduced to adding new 
concepts and metadata about these concepts in content 
dictionaries. Our concept to data integration is oriented 
as virtual and materialized integration of data as well as 
to support data cubes with hierarchical dimensions.  It is 
important that in all cases we use the same data model.  
The considered data model is an advanced XML data 
model which is a more flexible data model than rela-
tional or object-oriented data models. Among XML 
data models, a distinctive feature of our model is that 
we use a computationally complete language for data 
definition. An important feature of our concept is the 
support of data warehouses on the base of a new dy-
namic indexing scheme for multidimensional data. A 
new index structure developed by us allows to organize 
effectively OLAP-queries on multidimensional data and 
can be used for efficient data cubes storage in data 
warehouses. Finally, the modern trends of the develop-
ment of database systems lead to use of different divi-
sions of mathematics to data analysis. Within of our 
concept to data integration, this leads to the use of cor-
responding content dictionaries of the OPENMath. 

2.1 Formal Foundations 

The above discussed concept to data integration is 
based on the following formalisms:  

• canonical data model; 
• OPENMath objects; 
• multidimensional indexes; 
• domain element calculus. 

Below we will consider these formalisms in detail. 
As we noted, our approach to data integration is based 

on the works of the SYNTHESIS group. According to 
the research of this group, each data model is defined by 
syntax and semantics of two languages, data definition 
language (DDL) and data manipulation language 
(DML). They suggested the following principles of syn-
thesis of the canonical model:  

• Principle of axiomatic extension of data models 
The canonical data model must be extensible. The 

kernel of the canonical model is fixed. Kernel extension 
is defined axiomatically. The extension of the canonical 
data model is formed during the consideration of each 
new data model by adding new axioms to its DDL to 
define logical data dependencies of the source model in 
terms of the target model if necessary. The results of the 
extension should be equivalent to the source data mod-
el. 

• Principle of commutative mappings of data 
models 

The main principle of mapping of an arbitrary re-
source data model into the target one (the canonical 
model) could be reached under the condition that the 
diagram of DDL (schemas) mapping and the diagram of 
DML (operators) mapping are commutative. 

     
Figure 1 DDL mapping diagram 

In Figure 1 we used the following notations: 
SCH_CM: Set of schemas of the canonical data model; 
SCH_SM: Set of schemas of the source data model; 
DB_CM: Database of the canonical data model; DB_SM: 
Database of the source model. 

  
Figure 2 DML mapping diagram 

In Figure 2 we used the following notations: OP_CM: 
Set of operators of the canonical data model; P_SM: Set 
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of  procedures in DML of the source model. 

• Principle of synthesis of unified canonical data
model

The canonical data model is synthesized as a union
of extensions. 

Figure 3 Canonical data model 

2.2 Mathematical Objects Representation 

The OpenMath is a standard for representation of 
the mathematical objects, allowing them to be ex-
changed between computer programs, stored in data-
bases, or published on the Web. The considered formal-
ism is oriented to represent semantic information and is 
not intended to be used directly for presentation. Any 
mathematical concept or fact is an example of mathe-
matical object. The OpenMath objects are such repre-
sentation of mathematical objects which assume an 
XML interpretation.  

Formally, an OpenMath object is a labeled tree 
whose leaves are the basic OpenMath objects. The 
compound objects are defined in terms of binding and 
application of λ-calculus [8]. The type system is built 
on the basis of types that are defined by themselves and 
certain recursive rules, whereby the compound types are 
built from simpler types. To build compound types the 
following type constructors are used: 
• Attribution. If v is a basic object variable and t is a

typed object, then attribution (v, type t) is a typed
object. It denotes a variable with type t.

• Abstraction. If v is a basic object variable and t, A
are typed objects, then binding (λ, attribution (v,
type t), A) is a typed object.

• Application. If F and A are typed objects, then ap-
plication (F, A) is a typed object.

The OPENMath is implemented as an XML applica-
tion. Its syntax is defined by syntactical rules of XML, 
its grammar is partially defined by its own DTD. Only 
syntactical validity of the OPENMath objects represen-
tation can be provided on the DTD level. To check se-
mantics, in addition to general rules inherited by XML 
applications, the considered application defines new 
syntactical rules. This is achieved by means of introduc-
tion of content dictionaries. Content dictionaries are 

used to assign formal and informal semantics to all 
symbols used in the OPENMath objects. A content dic-
tionary is a collection of related symbols encoded in 
XML format. In other words, each content dictionary 
defines symbols representing a concept from the specif-
ic subject domain. 

Figure 4 An example of ompound object 

2.3 Dynamic Indexing Scheme for Multidimensional 
Data 

To support the materialized integration of data dur-
ing the creation of a data warehouse and to apply very 
complex OLAP-queries on it a new dynamic index 
structure for multidimensional data was developed (see 
more details in [6]). The considered index structure is 
based on the grid file concept. The grid file can be rep-
resented as if the space of points is partitioned into an 
imaginary grid. The grid lines parallel to axis of each 
dimension divide the space into stripes. The number of 
grid lines in different dimensions may vary, and there 
may be different spacings between adjacent grid lines, 
even between lines in the same dimension. Intersections 
of these stripes form cells which hold references to data 
buckets containing records belonging to corresponding 
space partitions.  

The weaknesses of the grid file formalism concept 
are non-efficient memory usage by groups of cells re-
ferring to the same data buckets and the possibility of 
having a large number of overflow blocks for each data 
buckets. In our approach, we made an attempt to elimi-
nate these defects of the grid file. Firstly, we introduced 
the concept of the chunk: set of cells whose correspond-
ing records are stored in the same data bucket (repre-
sented by single memory cells with one pointer to the 
corresponding data buckets). Chunking technique is 
used to solve the problem of empty cells in the grid file. 
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Figure 5 An example of 3-dimensional grid file 

Secondly, we consider each stripe as a linear hash 
table which allows increasing the number of buckets 
more slowly (for each stripe, the average number of 
overflow blocks of chunks crossed by that stripe is less 
than one). By using this technique we essentially restrict 
the number of disk operations.  

Figure 6 An example of 2-dimensional modified grid 
file 

We perform comparison of directory size by our 
approach with two techniques for grid file organization 
proposed in [20]: MDH (multidimensional dynamic 
hashing) and MEH (multidimensional extendible hash-
ing). Directory sizes for both of these techniques are: 

𝑶𝑶�𝒓𝒓𝟏𝟏+
𝟏𝟏
𝒔𝒔� and 𝑶𝑶�𝒓𝒓𝟏𝟏+

𝒏𝒏−𝟏𝟏
𝒏𝒏𝒏𝒏−𝟏𝟏� correspondingly, where r is 

the total number of records, s is the block size and n is 
the number of dimensions. In our case the directory  
size can be estimated as 𝑂𝑂 �𝑛𝑛𝑛𝑛

𝑠𝑠
 �. Compared to MDH 

and MEH techniques, the directory size in our approach 

is 𝒔𝒔𝒓𝒓
𝟏𝟏
𝒔𝒔

𝒏𝒏
  and 𝒔𝒔𝒓𝒓

𝒏𝒏−𝟏𝟏
𝒏𝒏𝒏𝒏−𝟏𝟏

𝒏𝒏
times smaller correspondingly. We 

have implemented a data warehouse prototype based on 
the proposed dynamic indexation scheme and compared 
its performance with MongoDB [26] (see in [17]). 

2.4 Element Calculus 

In the frame of our approach to data integration as 
integration model we consider an advanced XML data 
model. In fact, data model defines the query language 
[5]. Based on this, to give declarative queries a new 
query language (domain element calculus) [14] was 
developed. A query to XML - database is a formula in 
element calculus language. To specify formulas a vari-
ant of the multisorted first order predicate logic lan-
guage is used. Notice that element calculus is developed 
in the style of object calculus [10]. In addition, there is a 
possibility to give queries by means of λ-expressions. 
Generally, we can combine the considered variants of 
queries.  

3 Extensible Canonical Data Model 
The canonical model kernel is an advanced XML 

data model: a minor extension of the OPENMath to 
support the concept of databases. The main difference 
between our XML data model and analogous XML data 
models (in particular, XML Schema) is that the concept 
of data types in our case is interpreted conventionally 
(set of values, set of operations). More details about the 
type system of the XML Schema can be found in [3]. A 
data model concept formalized on the kernel level is 
referred to as kernel concept. 

3.1 Kernel Concepts 

In the frame of canonical data model we distinguish 
basic and compound concepts. Formally, a kernel con-
cept is a labeled tree whose leaves are basic kernel con-
cepts. Examples of basic kernel concepts are constants, 
variables, and symbols (for instance, reserved words). 
The compound concepts are defined in terms of binding 
and application of λ-calculus. The type system is built 
analogously to that in OPENMath.  

3.2 Extension Principle 

As we noted above the canonical data model must 
be extensible. The extension of the canonical model is 
formed during the consideration of each new data mod-
el by adding new concepts to its DDL to define logical 
data dependencies of the source model in terms of the 
target model if necessary. Thus, the canonical model 
extension assumes defining new symbols. The exten-
sion result must be equivalent to the source data model. 
To apply a symbol on the canonical model level the 
following rule has been proposed:  

Concept          symbol ContextDefinition. 
For example, to support the concept of key of relational 
data model, we have expanded the canonical model 
with the symbol key. Let us consider a relational sche-
ma example:  

S = {S#, Sname, Status, City}. 
The equivalent definition of this schema by means 

of extended kernel is considered below: 
attribution (S, type TypeContext, constraint  

    ConstraintContext) 
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TypeContext           application (sequence, 
     ApplicationContext) 

ApplicationContext          attribution (S#, type int), 
   attribution (Sname, type string), 
   attribution (Status, type int), 
   attribution (City, type string)) 

ConstraintContext          attribution (name, key S#). 
It is essential that we use a computationally com-

plete language to define the context [14]. As a result of 
such approach, usage of new symbols in the DDL does 
not lead to any changes in the DDL parser. 

3.3 Semantic Level 

The canonical model is an XML application. Only 
syntactical validity of the canonical model concepts 
representation can be provided on the DTD level. To 
check semantics the considered application defines new 
syntactical rules. We define these syntactical rules in 
content dictionaries. 

3.4 Content Dictionaries 

The content dictionary is the main formalism to de-
fine semantical information about concepts of the ca-
nonical data model. In other words, content dictionaries 
are used to assign formal and informal semantics to all 
concepts of the canonical data model. A content dic-
tionary is a collection of related symbols, encoded in 
XML format and fixes the “meaning” of concepts inde-
pendently of the application. Three kinds of content 
dictionaries are considered: 
• content dictionaries to define basic concepts (sym-

bols);
• content dictionaries to define a signature of basic

concepts (mathematical symbols) to check the se-
mantic validity of their representation;

• content dictionary to define a data integration con-
cept.
Supporting the above considered content dictionar-

ies assumes to develop corresponding DTDs. Instances 
of such DTDs are XML documents. An instance of a 
DTD of a content dictionary of basic concepts is used to 
assign formal and informal semantics of those objects. 
Finally, an instance of a DTD of a content dictionary of 
a signature of basic concepts contains metainformation 
about these concepts, and an instance of a DTD of a 
content dictionary of a data integration concept is a 
metadata for integrating databases.  

3.5 Data Integration Concept 

In the frame of our approach to data integration we 
consider virtual as well as materialized data integration 
issues within a canonical model. Therefore, we should 
formalize the concepts of this subject area such as me-
diator, data warehouse and data cube.  We are model-
ling these concepts by means of the following XML 
elements: dbsch, med, whse and cube.  

Mediator. The content of element dbsch is based on 

the kernel attribution concept and has an attribute name. 
By means of this concept we can model schemas of 
databases. The value of attribute name is the DB's 
name. The content of element med is based on the ele-
ments msch, wrapper, constraint and has an attribute 
name. The value of this attribute is the mediator's name. 
The element msch is interpreted analogously to element 
dbsch. Only note that this element is used during mod-
elling schemas of a mediator. The content of elements 
wrapper and constraint is based on the kernel applica-
tion concept. By means of wrapper element mappings 
from source models into a canonical model are defined. 
The integrity constraints on the level of mediator are the 
values of the constraints elements. It is important that 
we are using a computationally complete language for 
defining the mappings and integrity constraints. Below, 
an example of a mediator for an automobile company 
database is adduced [5] which is an instance of a con-
tent dictionary of data integration concept. It is assumed 
that the mediator with schema AutosMed = {SerialNo, 
Model, Color} is integrate two relational sources: Cars 
= {SerialNo, Model, Color} and Autos = {Serial, Mod-
el}, Colors = {Serial, Color}. 
<cd name = ‘dic’> 
 <dbsch name = ‘Source1’> 
  <omattr> 
   schema definition of Cars 
  </omattr> 
 </dbsch> 
 <dbsch name = ‘Source2’> 
  <omattr> 
   schema definition of Autos 
  </omattr> 
  <omattr> 
   schema definition of Colors 
  </omattr> 
 </dbsch> 
 <med name = ‘Example’> 
  <msch> 
   <omattr> 
    AutosMed: schema  for mediator is  defined 
   </omattr> 
  </msch> 
  <wrapper> 
   <oma> 
    <oms name = ‘convert_to_xml’ cd = ‘xml’/> 
    <oma> 
     <oms name = ‘union’ cd = ‘db’/> 
     <omv name = ‘Cars’/> 
     <oma> 
      <oms name = ‘join’ cd = ‘db’/> 
      <omv name = ‘Autos’/> 
      <omv name = ‘Colors’/> 
     </oma> 
    </oma>  
   </oma> 
  </wrapper>   
 </med> 
</cd> 

It is essential that, we use a computationally com-
plete language to model the mediator work. 

Data warehouse. As we noted above the considered 
approach to support data warehousing is based on the 
grid file concept and is interpreted by means of element 
whse. This element is defined as kernel application 
concept and is based on the elements wsch, extractor, 
grid and has an attribute name. The value of this attrib-
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ute is the name of the data warehouse. The element 
wsch is interpreted in the same way as the element msch 
for the mediator. The element extractor is defined as 
kernel application concept and is used to extract data 
from source databases. The element grid is defined as 
kernel application concept and is based on the elements 
dim and chunk by which the grid file concept is mod-
elled. To model the concept of stripe of a grid file we 
introduced an empty element stripe which is described 
by means of five attributes: ref_to_chunk, min_val, 
max_val, rec_cnt and chunk_cnt. The values of attrib-
utes ref_to_chunk are pointers to chunks crossed by 
each stripe. By means of min_val (lower boundary) and 
max_val (upper boundary) attributes we define "widths" 
of the stripes. The values of attributes rec_cnt and 
chunk_cnt are the total number of records in a stripe and 
the number of chunks that are crossed by it correspond-
ingly. To model the concept chunk we introduced an 
element chunk which is based on the empty element avg 
and is described by means of four attributes: id of type 
ID, qty, ref_to_db and ref_to_chunk. Values of attrib-
utes ref_to_db and ref_to_chunk are pointers to data 
blocks and other chunks, correspondingly. Value of 
attribute qty is the number of different points of the 
considered chunk for fixed dimension. Element avg is 
described by means of two attributes: value and dim. 
Values of value attributes are used during reorganiza-
tion of the grid file and contain the average coordinates 
of points, corresponding to records of the considered 
chunk, for each dimension. Value of attribute dim is the 
name of the corresponding dimension. To model the 
concept of dimension of a grid file we introduced an 
element dim which is based on the empty element stripe 
and has a single attribute name: i. e. the dimension 
name. 

Data cube. Materialized integration of data assumes 
the creation of data warehouses. Our approach to create 
data warehouses is mainly oriented to support data cu-
bes. Using data warehousing technologies in OLAP 
applications is very important [5]. Firstly, the data 
warehouse is a necessary tool to organize and centralize 
corporate information in order to support OLAP queries 
(source data are often distributed in heterogeneous 
sources). Secondly, significant is the fact that OLAP 
queries, which are very complex in nature and involve 
large amounts of data, require too much time to perform 
in a traditional transaction processing environment. To 
model the data cube concept we introduced an element 
cube which is interpreted by means of the following 
elements: felement, delement, fcube, rollup, mview and 
granularity. In typical OLAP applications, some collec-
tion of data called fact_table which represent events or 
objects of interest are used [5]. Usually, fact_table con-
tains several attributes representing dimensions, and one 
or more dependent attributes that represent properties 
for the point as a whole. To model the fact_table con-
cept we introduced an element felement which is based 
on the kernel attribution concept. To model the concept 
of dimension we   introduced an element delement. This 
element is based on the empty element element which is 

described by means of attribute name. Value of attribute 
name is the dimension name. The creation of the data 
cube requires generation of the power set (set of all sub-
set) of the aggregation attributes. To implement the 
formal data cube concept in literature the CUBE opera-
tor is considered [7]. In addition to the CUBE operator 
in [7] the operator ROLLUP is produced as a special 
variety of the CUBE operator which produces the addi-
tional aggregated information only if they aggregate 
over a tail of the sequence of grouping attributes. To 
support these operators we introduced cube and rollup 
symbols correspondingly. In this context, it is assumed 
that all independent attributes are grouping attributes. 
For some dimensions there are many degrees of granu-
larity that could be chosen for a grouping on that di-
mension. When the number of choices for grouping 
along each dimension grows, it becomes non-effective 
to store the results of aggregating based on all the   sub-
sets of groupings. Thus, it becomes reasonable to intro-
duce materialized views. 

Figure 7 Examples of lattices partitions for time inter-
vals and automobile dealers 

Materialized views. A materialized view is the result 
of some query which is stored in the database, and 
which does not contain all aggregated values. To model 
the materialized view concept we introduce an element 
mview which is interpreted by means of an element 
view, and the last is based on the kernel attribution con-
cept. When implementing the query over hierarchical 
dimension, a problem to choose an effective material-
ized view arises. In other words, if we have aggregated 
values regarding to granularity Months and Quarters 
then for aggregation regarding to granularity on Years it 
will be effective to apply query over materialized view 
with granularity Quarters. As in [5], we also consider 
the lattice (a partially ordered set) as a relevant con-
struction to formalize the hierarchical dimension. The 
lattice nodes correspond to the units of the partitions of 
a dimension. In general, the set of partitions of a dimen-
sion is a partially ordered set. We say that partition P1 is 
precedes partition P2, written P1 ≤ P2 if and only if there 
is a path from node P1 to node P2. Based on the lattices 
for each dimension we can define a lattice for all the 
possible materialized views of a data cube which are 
created by means of grouping according to some parti-
tion in each dimension. Let V1 and V2 be views, then V1 
≤ V2 if and only if for each dimension of V1 with parti-
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tion P1 and analogous dimension of V2 with partition P2 
holds P1 ≤ P2. Finally, let V be a view and Q be a query. 
We can implement this query over the considered view 
if and only if V ≤ Q. To model the concept of hierar-
chical dimension we introduced an element granularity 
which is based on an empty element partition, and the 
latter is described by means of attribute name. The val-
ue of attribute name is the name of the granularity. Be-
low, an example of data cube for an automobile compa-
ny database is adduced [5] which is an instance of con-
tent dictionary of data integration concept. We consider 
Sales = {SerialNo, Dealer, Date, Price} as a data cube 
schema. The considered data cube is implemented on 
the base of materialized views and is based on three 
dimensions: Auto, Dealer and Date and has one de-
pendent attribute: Value Set of partitions of dimension 
Date form a partially ordered set. We are using two 
granularity elements to represent this set.  
 
<cd name = ‘dic’> 
 ... 
 <cube name = ‘example’> 
  <felement> 
   <omattr> 
    schema definition of Sales 
   </omattr> 
  </felement> 
  <delement> 
   <element name = ‘Auto’/> 
   <element name = ‘Dealer’/>  
   <element name = ‘Date’/>  
  </delement> 
  <mview> 
   <view name = ‘View1’> 
    <omattr> 
     definition of materialized view Sales1 
    </omattr>  
   </view>  
   <view name = ‘View2’> 
    <omattr> 
     definition of materialized view Sales2 
    </omattr>  
   </view>   
  </mview> 
  <granularity name = ‘Date’>  
   <partition name = ‘days’/> 
   <partition name = ’months’/> 
   <partition name = ‘quarters’/> 
   <partition name = ‘years’/>  
  </granularity> 
  <granularity name = ‘Date’> 
   <partition name = ‘days’/> 
   <partition name = ’weeks’/> 
  </granularity>  
 </cube> 
</cd> 
  
The detailed discussion of the issues connected with 
applying the query   language to integrated data is be-
yond the topic of this paper. Below the XML-
formalization of data integration concept is presented.  
 
<!-- include dtd for extended OPENManth objects --> 
 
<!ELEMENT cd (dbsch|med|whse|cube)*> 
<!ATTLIST cd name CDATA #REQUIRED> 
<!ELEMENT dbsch (omattr)+> 
<!ATTLIST dbsch name CDATA #REQUIRED> 
<!ELEMENT med (msch,wrapper,constraint*)> 
<!ELEMENT msch (omattr)> 

<!ELEMENT wrapper (oma)> 
<!ELEMENT constraint (oma)> 
<!ATTLIST med name CDATA #REQUIRED> 
<!ELEMENT whse (wsch,extractor,grid)> 
<!ELEMENT wsch (omattr)> 
<!ELEMENT extractor (oma)> 
<!ATTLIST whse name CDATA #REQUIRED> 
<!ELEMENT grid (dim+,chunk+)> 
<!ELEMENT dim (stripe)+> 
<!ELEMENT stripe EMPTY> 
<!ELEMENT chunk (avg)+> 
<!ELEMENT avg EMPTY> 
<!ATTLIST dim name CDATA #REQUIRED> 
<!ATTLIST avg value CDATA #IMPLIED  
                           dim CDATA #REQUIRED> 
<!ATTLIST chunk id ID #REQUIRED  
        qty CDATA #REQUIRED 

ref_to_db CDATA #REQUIRED                                   
ref_to_chunk IDREFS #IMPLIED> 

<!ATTLIST stripe ref_to_chunk IDREFS #IMPLIED  
                                      min_val_CDATA #REQUIRED  
                 rec_cnt CDATA #REQUIRED 
                 max_val_CDATA #REQUIRED  
                 chunk_cnt CDATA #REQUIRED> 
<!ELEMENT cube (felement,delement,mview?, 
                granularity*)> 
<!ELEMENT felement (omattr)> 
<!ELEMENT delement (element)+> 
<!ELEMENT element EMPTY> 
<!ATTLIST element name CDATA #REQUIRED> 
<!ELEMENT mview (view)+> 
<!ELEMENT view (omattr)> 
<!ELEMENT granularity (partition)+> 
<!ELEMENT partition EMPTY> 
<!ATTLIST view name CDATA #REQUIRED> 
<!ATTLIST granularity name CDATA #REQUIRED> 
<!ATTLIST partition name CDATA #REQUIRED> 
 
Figure 8 DTD for formalization of the data integration 
concept 

4 Conclusion 
The data integration concept formalization prob-

lems were investigated. The outcome of this investiga-
tion is a definition language of integrable data, which is 
based on the formalization of the data integration con-
cept using a mechanism of the content dictionaries of 
the OPENMath. Supporting the concept of data integra-
tion is achieved by the creation of content dictionaries, 
each of which contains formal definitions of concepts   
of a specific area of databases.  

The data integration concept is represented as a set 
of XML DTDs which are based on the OPENMath for-
malism. By means of such DTDs were formalized the 
basic concepts of database theory, metadata about these 
concepts and the data integration concept. Within our 
approach to data integration, an integrated schema is 
represented as an XML document which is an instance 
of an XML DTD of the data integration concept. Thus, 
modelling of the integrated data based on the OPEN-
Math formalism leads to the creation of the correspond-
ing XML DTDs.  

By means of the developed content dictionary of 
the data integration concept we are modelling the medi-
ator and the data warehouse concepts. The considered 
approach provides virtual and materialized   integration 
of data as well as the possibility to support data cubes 
with hierarchical dimensions. Within our concept of 
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data cube, the operators CUBE and ROLLUP are im-
plemented. If necessary, in data integrated schemas new 
super-aggregate operators can be define. We use a com-
putationally complete language to create schemas of 
integrated data. Applying the query language to the 
integrated data is generated a reduction problem. Sup-
porting the query language over such data requires addi-
tional investigations. 

Finally, modern trends of the development of data-
base systems lead to the application of different   divi-
sions of mathematics to data analysis and management. 
In the frame of our approach to data integration, this 
leads to the use of corresponding content dictionaries of 
the OPENMath.  
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