
On an Approach to Data Integration: Concept, Formal
Foundations and Data Model

© Manuk G. Manukyan

Yerevan State University,
Yerevan, Armenia

mgm@ysu.am
Abstract. In the frame of an extensible canonical data model a formalization of data integration con-

cept is proposed. We provide virtual and materialized integration of data as well as the possibility to support
data cubes with hierarchical dimensions. The considered approach of formalization of data integration con-
cept is based on the so-called content dictionaries. Namely, by means of these dictionaries we are formally
defining basic concepts of database theory, metadata about these concepts, and the data integration concept.
A computationally complete language is used to extract data from several sources, to create the materialized
view, and to effectively organize queries on the multidimensional data.
In memory of Garush Manukyan, my father.

This work was supported by the RA MES State Committee of Science, in the frames of the research
project N 15T-18350.

Keywords: data integration, mediator, data warehouse, data cube, canonical data model, OPENMath,
grid file, XML.

1 Introduction
The emergence of a new paradigm in science and

various applications of information technology (IT) are
related to issues of big data handling [21]. The concept
of big data is relatively new and involves the growing
role of data in all areas of human activity beginning
with research and ending with innovative developments
in business. Such data is difficult to process and analyze
using conventional database technologies. In this con-
nection, the creation of new IT is expected in which
data becomes dominant for new approaches to concep-
tualization, organization, and implementation of sys-
tems to solve problems that were previously considered
extremely hard or, in some cases, impossible to solve.
Unprecedented scale of development in the big data
area and the U.S. and European programs related to big
data underscore the importance of this trend in IT.

In the above discussed context the problems of da-
ta integration are very actual. Within of our approach to
data integration an extensible canonical model has been
developed [16]. We have published a number of papers
that are devoted to the investigation of data virtual and
materialized data integration problems, for instance [15,
17]. Our approach to data integration is based on the
works of the SYNTHESIS group (IPI RAS) [2, 9–12,
22–25], who are pioneers in the area of justifiable data
models mapping for heterogeneous databases integra-
tion. To support materialized integration of data during
creation of a data warehouse a new dynamic index
structure for multidimensional data was proposed [6]

which is based on the grid files [18] concept. We con-
sider the concept of grid files as one of the adequate
formalisms for effective management of big data. Effi-
cient algorithms for storage and access of that directory
are proposed in order to minimize memory usage and
lookup operations complexities. Estimations of com-
plexities for these algorithms are presented. In fact, the
concept of grid files allows to effectively organize que-
ries on multidimensional data [5] and can be used for
efficient data cubes storage in data warehouses [13,19].
A prototype to support the considered dynamic indexa-
tion scheme has been created and its performance was
compared with one of the most demanded NoSQL data-
bases [17].

In this paper a formalization of the data integration
concept is proposed using a mechanism of the content
dictionaries (similarly ontologies) of the OPENMath
[4]. Subjects of the formalization are the basic concepts
of database theory, metadata about these concepts and
the data integration concept. The result of the formaliza-
tion are a set of content dictionaries, constructed as
XML DTDs on the base of OPENMath and are used to
model the databases concepts. With this approach,
schema of an integrated database is an instance of con-
tent dictionary of the data integration concept. Within
the considered approach is provided virtual and materi-
alized integration of data as well as the possibility to
support data cubes with hierarchical dimensions. Using
OPENMath as the kernel of the canonical data model
allows us to use a rich apparatus of computational
mathematics for data analysis and management.

The paper is organized as follows: Concept and
formal foundations of the considered approach to data
integration are presented briefly in Section 2. Canonical
data model and issues to support the data integration

Proceedings of the XIX International Conference
“Data Analytics and Management in Data Intensive
Domains” (DAMDID/RCDL’2017), Moscow, Russia,
October 10–13, 2017

206

concept are considered in Section 3. The conclusion is
provided in Section 4.

2 Brief Discussion on Data Integration Ap-
proach

The basis of our concept to data integration is based
on the idea of integrating arbitrary data models. Based
on this assumption our concept of data integration as-
sumes:

• applying extensible canonical model;
• constructing justifiable data models mapping

for heterogeneous databases integration;
• using content dictionaries.

Choosing the extensible canonical model as integra-
tion model allows integrating arbitrary data sources. As
we allow integration of arbitrary data sources a necessi-
ty to check mapping correctness between data models
arises. It is reached by formalization of data model con-
cepts by means of AMN machines [1] and using B-
technology to prove correctness of these mappings.

The content dictionaries are central to our concept
of data integration and semantical information of differ-
ent types can be defined based on these dictionaries.
The concept of content dictionaries allows us to extend
the canonical model by means of introducing new con-
cepts in these dictionaries easily. In other words, canon-
ical model extension only is reduced to adding new
concepts and metadata about these concepts in content
dictionaries. Our concept to data integration is oriented
as virtual and materialized integration of data as well as
to support data cubes with hierarchical dimensions. It is
important that in all cases we use the same data model.
The considered data model is an advanced XML data
model which is a more flexible data model than rela-
tional or object-oriented data models. Among XML
data models, a distinctive feature of our model is that
we use a computationally complete language for data
definition. An important feature of our concept is the
support of data warehouses on the base of a new dy-
namic indexing scheme for multidimensional data. A
new index structure developed by us allows to organize
effectively OLAP-queries on multidimensional data and
can be used for efficient data cubes storage in data
warehouses. Finally, the modern trends of the develop-
ment of database systems lead to use of different divi-
sions of mathematics to data analysis. Within of our
concept to data integration, this leads to the use of cor-
responding content dictionaries of the OPENMath.

2.1 Formal Foundations

The above discussed concept to data integration is
based on the following formalisms:

• canonical data model;
• OPENMath objects;
• multidimensional indexes;
• domain element calculus.

Below we will consider these formalisms in detail.
As we noted, our approach to data integration is based

on the works of the SYNTHESIS group. According to
the research of this group, each data model is defined by
syntax and semantics of two languages, data definition
language (DDL) and data manipulation language
(DML). They suggested the following principles of syn-
thesis of the canonical model:

• Principle of axiomatic extension of data models
The canonical data model must be extensible. The

kernel of the canonical model is fixed. Kernel extension
is defined axiomatically. The extension of the canonical
data model is formed during the consideration of each
new data model by adding new axioms to its DDL to
define logical data dependencies of the source model in
terms of the target model if necessary. The results of the
extension should be equivalent to the source data mod-
el.

• Principle of commutative mappings of data
models

The main principle of mapping of an arbitrary re-
source data model into the target one (the canonical
model) could be reached under the condition that the
diagram of DDL (schemas) mapping and the diagram of
DML (operators) mapping are commutative.

Figure 1 DDL mapping diagram

In Figure 1 we used the following notations:
SCH_CM: Set of schemas of the canonical data model;
SCH_SM: Set of schemas of the source data model;
DB_CM: Database of the canonical data model; DB_SM:
Database of the source model.

Figure 2 DML mapping diagram

In Figure 2 we used the following notations: OP_CM:
Set of operators of the canonical data model; P_SM: Set

semantic
function

semantic
function

m
ap

pi
ng

bi
je

ct
iv

e
m

ap
pi

ng

SCH_CM DB_CM

SCH_SM DB_SM

OP_CM DB_CM DB_CM

DB_SM DB_SM

semantic
function

semantic
function

m
ap

pi
ng

al
go

ri
th

m
ic

re

fin
em

en
t

P_SM

207

of procedures in DML of the source model.

• Principle of synthesis of unified canonical data
model

The canonical data model is synthesized as a union
of extensions.

Figure 3 Canonical data model

2.2 Mathematical Objects Representation

The OpenMath is a standard for representation of
the mathematical objects, allowing them to be ex-
changed between computer programs, stored in data-
bases, or published on the Web. The considered formal-
ism is oriented to represent semantic information and is
not intended to be used directly for presentation. Any
mathematical concept or fact is an example of mathe-
matical object. The OpenMath objects are such repre-
sentation of mathematical objects which assume an
XML interpretation.

Formally, an OpenMath object is a labeled tree
whose leaves are the basic OpenMath objects. The
compound objects are defined in terms of binding and
application of λ-calculus [8]. The type system is built
on the basis of types that are defined by themselves and
certain recursive rules, whereby the compound types are
built from simpler types. To build compound types the
following type constructors are used:
• Attribution. If v is a basic object variable and t is a

typed object, then attribution (v, type t) is a typed
object. It denotes a variable with type t.

• Abstraction. If v is a basic object variable and t, A
are typed objects, then binding (λ, attribution (v,
type t), A) is a typed object.

• Application. If F and A are typed objects, then ap-
plication (F, A) is a typed object.

The OPENMath is implemented as an XML applica-
tion. Its syntax is defined by syntactical rules of XML,
its grammar is partially defined by its own DTD. Only
syntactical validity of the OPENMath objects represen-
tation can be provided on the DTD level. To check se-
mantics, in addition to general rules inherited by XML
applications, the considered application defines new
syntactical rules. This is achieved by means of introduc-
tion of content dictionaries. Content dictionaries are

used to assign formal and informal semantics to all
symbols used in the OPENMath objects. A content dic-
tionary is a collection of related symbols encoded in
XML format. In other words, each content dictionary
defines symbols representing a concept from the specif-
ic subject domain.

Figure 4 An example of ompound object

2.3 Dynamic Indexing Scheme for Multidimensional
Data

To support the materialized integration of data dur-
ing the creation of a data warehouse and to apply very
complex OLAP-queries on it a new dynamic index
structure for multidimensional data was developed (see
more details in [6]). The considered index structure is
based on the grid file concept. The grid file can be rep-
resented as if the space of points is partitioned into an
imaginary grid. The grid lines parallel to axis of each
dimension divide the space into stripes. The number of
grid lines in different dimensions may vary, and there
may be different spacings between adjacent grid lines,
even between lines in the same dimension. Intersections
of these stripes form cells which hold references to data
buckets containing records belonging to corresponding
space partitions.

The weaknesses of the grid file formalism concept
are non-efficient memory usage by groups of cells re-
ferring to the same data buckets and the possibility of
having a large number of overflow blocks for each data
buckets. In our approach, we made an attempt to elimi-
nate these defects of the grid file. Firstly, we introduced
the concept of the chunk: set of cells whose correspond-
ing records are stored in the same data bucket (repre-
sented by single memory cells with one pointer to the
corresponding data buckets). Chunking technique is
used to solve the problem of empty cells in the grid file.

attr

book type app

sequence

type

app attr

attr stringOneOrMore

author string
c

title type

208

Figure 5 An example of 3-dimensional grid file

Secondly, we consider each stripe as a linear hash
table which allows increasing the number of buckets
more slowly (for each stripe, the average number of
overflow blocks of chunks crossed by that stripe is less
than one). By using this technique we essentially restrict
the number of disk operations.

Figure 6 An example of 2-dimensional modified grid
file

We perform comparison of directory size by our
approach with two techniques for grid file organization
proposed in [20]: MDH (multidimensional dynamic
hashing) and MEH (multidimensional extendible hash-
ing). Directory sizes for both of these techniques are:

𝑶𝑶�𝒓𝒓𝟏𝟏+
𝟏𝟏
𝒔𝒔� and 𝑶𝑶�𝒓𝒓𝟏𝟏+

𝒏𝒏−𝟏𝟏
𝒏𝒏𝒏𝒏−𝟏𝟏� correspondingly, where r is

the total number of records, s is the block size and n is
the number of dimensions. In our case the directory
size can be estimated as 𝑂𝑂 �𝑛𝑛𝑛𝑛

𝑠𝑠
 �. Compared to MDH

and MEH techniques, the directory size in our approach

is 𝒔𝒔𝒓𝒓
𝟏𝟏
𝒔𝒔

𝒏𝒏
 and 𝒔𝒔𝒓𝒓

𝒏𝒏−𝟏𝟏
𝒏𝒏𝒏𝒏−𝟏𝟏

𝒏𝒏
times smaller correspondingly. We

have implemented a data warehouse prototype based on
the proposed dynamic indexation scheme and compared
its performance with MongoDB [26] (see in [17]).

2.4 Element Calculus

In the frame of our approach to data integration as
integration model we consider an advanced XML data
model. In fact, data model defines the query language
[5]. Based on this, to give declarative queries a new
query language (domain element calculus) [14] was
developed. A query to XML - database is a formula in
element calculus language. To specify formulas a vari-
ant of the multisorted first order predicate logic lan-
guage is used. Notice that element calculus is developed
in the style of object calculus [10]. In addition, there is a
possibility to give queries by means of λ-expressions.
Generally, we can combine the considered variants of
queries.

3 Extensible Canonical Data Model
The canonical model kernel is an advanced XML

data model: a minor extension of the OPENMath to
support the concept of databases. The main difference
between our XML data model and analogous XML data
models (in particular, XML Schema) is that the concept
of data types in our case is interpreted conventionally
(set of values, set of operations). More details about the
type system of the XML Schema can be found in [3]. A
data model concept formalized on the kernel level is
referred to as kernel concept.

3.1 Kernel Concepts

In the frame of canonical data model we distinguish
basic and compound concepts. Formally, a kernel con-
cept is a labeled tree whose leaves are basic kernel con-
cepts. Examples of basic kernel concepts are constants,
variables, and symbols (for instance, reserved words).
The compound concepts are defined in terms of binding
and application of λ-calculus. The type system is built
analogously to that in OPENMath.

3.2 Extension Principle

As we noted above the canonical data model must
be extensible. The extension of the canonical model is
formed during the consideration of each new data mod-
el by adding new concepts to its DDL to define logical
data dependencies of the source model in terms of the
target model if necessary. Thus, the canonical model
extension assumes defining new symbols. The exten-
sion result must be equivalent to the source data model.
To apply a symbol on the canonical model level the
following rule has been proposed:

Concept symbol ContextDefinition.
For example, to support the concept of key of relational
data model, we have expanded the canonical model
with the symbol key. Let us consider a relational sche-
ma example:

S = {S#, Sname, Status, City}.
The equivalent definition of this schema by means

of extended kernel is considered below:
attribution (S, type TypeContext, constraint

 ConstraintContext)

Y

X

Z

w1

w2
u1

u3
u2

v1 v3 v2

Data
buckets

Grid
partitions

Overflow
blocks

Chunk
s

Imaginary divisions

St
ri

pe
s

Data
buckets

 . . .

209

TypeContext application (sequence,
 ApplicationContext)

ApplicationContext attribution (S#, type int),
 attribution (Sname, type string),
 attribution (Status, type int),
 attribution (City, type string))

ConstraintContext attribution (name, key S#).
It is essential that we use a computationally com-

plete language to define the context [14]. As a result of
such approach, usage of new symbols in the DDL does
not lead to any changes in the DDL parser.

3.3 Semantic Level

The canonical model is an XML application. Only
syntactical validity of the canonical model concepts
representation can be provided on the DTD level. To
check semantics the considered application defines new
syntactical rules. We define these syntactical rules in
content dictionaries.

3.4 Content Dictionaries

The content dictionary is the main formalism to de-
fine semantical information about concepts of the ca-
nonical data model. In other words, content dictionaries
are used to assign formal and informal semantics to all
concepts of the canonical data model. A content dic-
tionary is a collection of related symbols, encoded in
XML format and fixes the “meaning” of concepts inde-
pendently of the application. Three kinds of content
dictionaries are considered:
• content dictionaries to define basic concepts (sym-

bols);
• content dictionaries to define a signature of basic

concepts (mathematical symbols) to check the se-
mantic validity of their representation;

• content dictionary to define a data integration con-
cept.
Supporting the above considered content dictionar-

ies assumes to develop corresponding DTDs. Instances
of such DTDs are XML documents. An instance of a
DTD of a content dictionary of basic concepts is used to
assign formal and informal semantics of those objects.
Finally, an instance of a DTD of a content dictionary of
a signature of basic concepts contains metainformation
about these concepts, and an instance of a DTD of a
content dictionary of a data integration concept is a
metadata for integrating databases.

3.5 Data Integration Concept

In the frame of our approach to data integration we
consider virtual as well as materialized data integration
issues within a canonical model. Therefore, we should
formalize the concepts of this subject area such as me-
diator, data warehouse and data cube. We are model-
ling these concepts by means of the following XML
elements: dbsch, med, whse and cube.

Mediator. The content of element dbsch is based on

the kernel attribution concept and has an attribute name.
By means of this concept we can model schemas of
databases. The value of attribute name is the DB's
name. The content of element med is based on the ele-
ments msch, wrapper, constraint and has an attribute
name. The value of this attribute is the mediator's name.
The element msch is interpreted analogously to element
dbsch. Only note that this element is used during mod-
elling schemas of a mediator. The content of elements
wrapper and constraint is based on the kernel applica-
tion concept. By means of wrapper element mappings
from source models into a canonical model are defined.
The integrity constraints on the level of mediator are the
values of the constraints elements. It is important that
we are using a computationally complete language for
defining the mappings and integrity constraints. Below,
an example of a mediator for an automobile company
database is adduced [5] which is an instance of a con-
tent dictionary of data integration concept. It is assumed
that the mediator with schema AutosMed = {SerialNo,
Model, Color} is integrate two relational sources: Cars
= {SerialNo, Model, Color} and Autos = {Serial, Mod-
el}, Colors = {Serial, Color}.
<cd name = ‘dic’>
 <dbsch name = ‘Source1’>
 <omattr>
 schema definition of Cars
 </omattr>
 </dbsch>
 <dbsch name = ‘Source2’>
 <omattr>
 schema definition of Autos
 </omattr>
 <omattr>
 schema definition of Colors
 </omattr>
 </dbsch>
 <med name = ‘Example’>
 <msch>
 <omattr>
 AutosMed: schema for mediator is defined
 </omattr>
 </msch>
 <wrapper>
 <oma>
 <oms name = ‘convert_to_xml’ cd = ‘xml’/>
 <oma>
 <oms name = ‘union’ cd = ‘db’/>
 <omv name = ‘Cars’/>
 <oma>
 <oms name = ‘join’ cd = ‘db’/>
 <omv name = ‘Autos’/>
 <omv name = ‘Colors’/>
 </oma>
 </oma>
 </oma>
 </wrapper>
 </med>
</cd>

It is essential that, we use a computationally com-
plete language to model the mediator work.

Data warehouse. As we noted above the considered
approach to support data warehousing is based on the
grid file concept and is interpreted by means of element
whse. This element is defined as kernel application
concept and is based on the elements wsch, extractor,
grid and has an attribute name. The value of this attrib-

210

ute is the name of the data warehouse. The element
wsch is interpreted in the same way as the element msch
for the mediator. The element extractor is defined as
kernel application concept and is used to extract data
from source databases. The element grid is defined as
kernel application concept and is based on the elements
dim and chunk by which the grid file concept is mod-
elled. To model the concept of stripe of a grid file we
introduced an empty element stripe which is described
by means of five attributes: ref_to_chunk, min_val,
max_val, rec_cnt and chunk_cnt. The values of attrib-
utes ref_to_chunk are pointers to chunks crossed by
each stripe. By means of min_val (lower boundary) and
max_val (upper boundary) attributes we define "widths"
of the stripes. The values of attributes rec_cnt and
chunk_cnt are the total number of records in a stripe and
the number of chunks that are crossed by it correspond-
ingly. To model the concept chunk we introduced an
element chunk which is based on the empty element avg
and is described by means of four attributes: id of type
ID, qty, ref_to_db and ref_to_chunk. Values of attrib-
utes ref_to_db and ref_to_chunk are pointers to data
blocks and other chunks, correspondingly. Value of
attribute qty is the number of different points of the
considered chunk for fixed dimension. Element avg is
described by means of two attributes: value and dim.
Values of value attributes are used during reorganiza-
tion of the grid file and contain the average coordinates
of points, corresponding to records of the considered
chunk, for each dimension. Value of attribute dim is the
name of the corresponding dimension. To model the
concept of dimension of a grid file we introduced an
element dim which is based on the empty element stripe
and has a single attribute name: i. e. the dimension
name.

Data cube. Materialized integration of data assumes
the creation of data warehouses. Our approach to create
data warehouses is mainly oriented to support data cu-
bes. Using data warehousing technologies in OLAP
applications is very important [5]. Firstly, the data
warehouse is a necessary tool to organize and centralize
corporate information in order to support OLAP queries
(source data are often distributed in heterogeneous
sources). Secondly, significant is the fact that OLAP
queries, which are very complex in nature and involve
large amounts of data, require too much time to perform
in a traditional transaction processing environment. To
model the data cube concept we introduced an element
cube which is interpreted by means of the following
elements: felement, delement, fcube, rollup, mview and
granularity. In typical OLAP applications, some collec-
tion of data called fact_table which represent events or
objects of interest are used [5]. Usually, fact_table con-
tains several attributes representing dimensions, and one
or more dependent attributes that represent properties
for the point as a whole. To model the fact_table con-
cept we introduced an element felement which is based
on the kernel attribution concept. To model the concept
of dimension we introduced an element delement. This
element is based on the empty element element which is

described by means of attribute name. Value of attribute
name is the dimension name. The creation of the data
cube requires generation of the power set (set of all sub-
set) of the aggregation attributes. To implement the
formal data cube concept in literature the CUBE opera-
tor is considered [7]. In addition to the CUBE operator
in [7] the operator ROLLUP is produced as a special
variety of the CUBE operator which produces the addi-
tional aggregated information only if they aggregate
over a tail of the sequence of grouping attributes. To
support these operators we introduced cube and rollup
symbols correspondingly. In this context, it is assumed
that all independent attributes are grouping attributes.
For some dimensions there are many degrees of granu-
larity that could be chosen for a grouping on that di-
mension. When the number of choices for grouping
along each dimension grows, it becomes non-effective
to store the results of aggregating based on all the sub-
sets of groupings. Thus, it becomes reasonable to intro-
duce materialized views.

Figure 7 Examples of lattices partitions for time inter-
vals and automobile dealers

Materialized views. A materialized view is the result
of some query which is stored in the database, and
which does not contain all aggregated values. To model
the materialized view concept we introduce an element
mview which is interpreted by means of an element
view, and the last is based on the kernel attribution con-
cept. When implementing the query over hierarchical
dimension, a problem to choose an effective material-
ized view arises. In other words, if we have aggregated
values regarding to granularity Months and Quarters
then for aggregation regarding to granularity on Years it
will be effective to apply query over materialized view
with granularity Quarters. As in [5], we also consider
the lattice (a partially ordered set) as a relevant con-
struction to formalize the hierarchical dimension. The
lattice nodes correspond to the units of the partitions of
a dimension. In general, the set of partitions of a dimen-
sion is a partially ordered set. We say that partition P1 is
precedes partition P2, written P1 ≤ P2 if and only if there
is a path from node P1 to node P2. Based on the lattices
for each dimension we can define a lattice for all the
possible materialized views of a data cube which are
created by means of grouping according to some parti-
tion in each dimension. Let V1 and V2 be views, then V1
≤ V2 if and only if for each dimension of V1 with parti-

DealerDays

Weeks

All

Months

Quarters

Years

All

City

State

211

tion P1 and analogous dimension of V2 with partition P2
holds P1 ≤ P2. Finally, let V be a view and Q be a query.
We can implement this query over the considered view
if and only if V ≤ Q. To model the concept of hierar-
chical dimension we introduced an element granularity
which is based on an empty element partition, and the
latter is described by means of attribute name. The val-
ue of attribute name is the name of the granularity. Be-
low, an example of data cube for an automobile compa-
ny database is adduced [5] which is an instance of con-
tent dictionary of data integration concept. We consider
Sales = {SerialNo, Dealer, Date, Price} as a data cube
schema. The considered data cube is implemented on
the base of materialized views and is based on three
dimensions: Auto, Dealer and Date and has one de-
pendent attribute: Value Set of partitions of dimension
Date form a partially ordered set. We are using two
granularity elements to represent this set.

<cd name = ‘dic’>
 ...
 <cube name = ‘example’>
 <felement>
 <omattr>
 schema definition of Sales
 </omattr>
 </felement>
 <delement>
 <element name = ‘Auto’/>
 <element name = ‘Dealer’/>
 <element name = ‘Date’/>
 </delement>
 <mview>
 <view name = ‘View1’>
 <omattr>
 definition of materialized view Sales1
 </omattr>
 </view>
 <view name = ‘View2’>
 <omattr>
 definition of materialized view Sales2
 </omattr>
 </view>
 </mview>
 <granularity name = ‘Date’>
 <partition name = ‘days’/>
 <partition name = ’months’/>
 <partition name = ‘quarters’/>
 <partition name = ‘years’/>
 </granularity>
 <granularity name = ‘Date’>
 <partition name = ‘days’/>
 <partition name = ’weeks’/>
 </granularity>
 </cube>
</cd>

The detailed discussion of the issues connected with
applying the query language to integrated data is be-
yond the topic of this paper. Below the XML-
formalization of data integration concept is presented.

<!-- include dtd for extended OPENManth objects -->

<!ELEMENT cd (dbsch|med|whse|cube)*>
<!ATTLIST cd name CDATA #REQUIRED>
<!ELEMENT dbsch (omattr)+>
<!ATTLIST dbsch name CDATA #REQUIRED>
<!ELEMENT med (msch,wrapper,constraint*)>
<!ELEMENT msch (omattr)>

<!ELEMENT wrapper (oma)>
<!ELEMENT constraint (oma)>
<!ATTLIST med name CDATA #REQUIRED>
<!ELEMENT whse (wsch,extractor,grid)>
<!ELEMENT wsch (omattr)>
<!ELEMENT extractor (oma)>
<!ATTLIST whse name CDATA #REQUIRED>
<!ELEMENT grid (dim+,chunk+)>
<!ELEMENT dim (stripe)+>
<!ELEMENT stripe EMPTY>
<!ELEMENT chunk (avg)+>
<!ELEMENT avg EMPTY>
<!ATTLIST dim name CDATA #REQUIRED>
<!ATTLIST avg value CDATA #IMPLIED
 dim CDATA #REQUIRED>
<!ATTLIST chunk id ID #REQUIRED
 qty CDATA #REQUIRED

ref_to_db CDATA #REQUIRED
ref_to_chunk IDREFS #IMPLIED>

<!ATTLIST stripe ref_to_chunk IDREFS #IMPLIED
 min_val_CDATA #REQUIRED
 rec_cnt CDATA #REQUIRED
 max_val_CDATA #REQUIRED
 chunk_cnt CDATA #REQUIRED>
<!ELEMENT cube (felement,delement,mview?,
 granularity*)>
<!ELEMENT felement (omattr)>
<!ELEMENT delement (element)+>
<!ELEMENT element EMPTY>
<!ATTLIST element name CDATA #REQUIRED>
<!ELEMENT mview (view)+>
<!ELEMENT view (omattr)>
<!ELEMENT granularity (partition)+>
<!ELEMENT partition EMPTY>
<!ATTLIST view name CDATA #REQUIRED>
<!ATTLIST granularity name CDATA #REQUIRED>
<!ATTLIST partition name CDATA #REQUIRED>

Figure 8 DTD for formalization of the data integration
concept

4 Conclusion
The data integration concept formalization prob-

lems were investigated. The outcome of this investiga-
tion is a definition language of integrable data, which is
based on the formalization of the data integration con-
cept using a mechanism of the content dictionaries of
the OPENMath. Supporting the concept of data integra-
tion is achieved by the creation of content dictionaries,
each of which contains formal definitions of concepts
of a specific area of databases.

The data integration concept is represented as a set
of XML DTDs which are based on the OPENMath for-
malism. By means of such DTDs were formalized the
basic concepts of database theory, metadata about these
concepts and the data integration concept. Within our
approach to data integration, an integrated schema is
represented as an XML document which is an instance
of an XML DTD of the data integration concept. Thus,
modelling of the integrated data based on the OPEN-
Math formalism leads to the creation of the correspond-
ing XML DTDs.

By means of the developed content dictionary of
the data integration concept we are modelling the medi-
ator and the data warehouse concepts. The considered
approach provides virtual and materialized integration
of data as well as the possibility to support data cubes
with hierarchical dimensions. Within our concept of

212

data cube, the operators CUBE and ROLLUP are im-
plemented. If necessary, in data integrated schemas new
super-aggregate operators can be define. We use a com-
putationally complete language to create schemas of
integrated data. Applying the query language to the
integrated data is generated a reduction problem. Sup-
porting the query language over such data requires addi-
tional investigations.

Finally, modern trends of the development of data-
base systems lead to the application of different divi-
sions of mathematics to data analysis and management.
In the frame of our approach to data integration, this
leads to the use of corresponding content dictionaries of
the OPENMath.

References
[1] Abrial, J.-R.: The B-Book: Assigning programs to

meaning. Cambridge University Press (1996)
[2] Briukhov, D. O., Vovchenko, A. E., Zakha-

rov, V. N., Zhelenkova, O. P., Kalinichen-
ko, L. A., Martynov, D. O., Skvortsov, N. A.,
Stupnikov, S. A.: The Middleware Architecture of
the Subject Mediators for Problem Solving over a
Set of Integrated Heterogeneous Distributed In-
formation Resources in the Hybrid Grid-
Infrastructure of Virtual Observatories. Informat-
ics and Applications, 2 (1), pp. 2-34, (2008)

[3] Date, C. J.: An Introduction to Database Systems.
Addison Wesley, USA (2004)

[4] Drawar, M.: OpenMath: An overview. ACM SIG-
SAM Bulletin, 34 (2), (2000)

[5] Garcia-Molina, H., Ullman, J., Widom, J.: Data-
base Systems: The Complete Book. Prentice Hall,
USA (2009)

[6] Gevorgyan, G. R., Manukyan, M. G.: Effective
Algorithms to Support Grid Files. RAU Bulletin,
(2), pp. 22-38 (2015)

[7] Gray, J., Bosworth, A., Layman, A., Pirahesh, H.:
Data Cube: A Relational Aggregation Operator
Generalizing Group-By, Cross-Tab, and Sub-Tab.
In ICDE, pp. 152-159 (1996)

[8] Hindley, J. R., Seldin, J. P.: Introduction to Com-
binators and λ-Calculus. Cambridge University
Press (1986)

[9] Kalinichenko, L. A.: Methods and Tools for
Equivalent Data Model Mapping Construction. In
EDBT, pp. 92-119, Springer (1990)

[10] Kalinichenko, L. A.: Integration of Heterogeneous
Semistructured Data Models in the Canonical One.
In RCDL, pp. 3-15 (1990)

[11] Kalinichenko, L. A., Stupnikov, S. A.: Construct-
ing of Mappings of Heterogeneous Information
Models into the Canonical Models of Integrated
Information Systems. In Proc. of the 12th East-
European Conference, pp. 106-122 (2008)

[12] Kalinichenko, L., Stupnikov, S.: Synthesis of the
Canonical Models for Database Integration Pre-
serving Semantics of the Value Inventive Data

Models. In Proc. of the 16th East European Con-
ference. LNCS 7503, pp. 223-239 (2012)

[13] Luo, C., Hou, W. C., Wang, C. F., Want H., Yu,
X.: Grid File for Efficient Data Cube Storage.
Computers and their Applications, pp. 424-429
(2006)

[14] Manukyan, M. G.: Extensible Data Model. In
ADBIS’08, pp. 42-57 (2008)

[15] Manukyan, M. G., Gevorgyan, G. R.: An Ap-
proach to Information Integration Based on the
AMN Formalism. In First Workshop on Pro-
gramming the Semantic Web. Available:
https://web.archive.org/web/20121226215425/http
://www.inf.puc-rio.br/~psw12/program.html,
pp. 1-13 (2012)

[16] Manukyan, M. G.: Canonical Data Model: Con-
struction Principles. In iiWAS’14, pp. 320-329,
ACM (2014)

[17] Manukyan, M. G., Gevorgyan, G. R.: Canonical
Data Model for Data Warehouse. In New Trends
in Databases and Information Systems,
Communications in Computer and Information
Science, 637, pp. 72-79 (2016)

[18] Nievergelt, J., Hinterberger, H.: The Grid File: An
Adaptable, Symmetric, Multikey File Structure.
ACM Transaction on Database Systems, 9 (1),
pp. 38-71 (1984)

[19] Papadopoulos, A. N., Manolopoulos, Y., The-
odoridis, Y., Tsoras, V.: Grid File (and family). In
Encyclopedia of Database Systems, pp. 1279-1282
(2009)

[20] Regnier, M.: Analysis of Grid File Algorithms,
BIT, 25 (2), pp. 335-358 (1985)

[21] Sharma, S., Tim, U. S., Wong, J., Gadia, S., Shar-
ma, S.: A Brief Review on Leading Big Data
Models. Data Science Journal, (13), pp. 138-157,
(2014). Doi: http/doi.org/10.2481/dsj.14-041

[22] Stupnikov, S. A.: A Varifiable Mapping of a Mul-
tidimensional Array Data Model into an Object
Data Model, Informatics and Applications, 7 (3),
pp. 22-34 (2013)

[23] Stupnikov, S. A, Vovchenko, A.: Combined Vir-
tual and Materialized Environment for Integration
of Large Heterogeneous Data Collections. In Proc.
of the RCDL 2014. CEUR Workshop Proceedings,
1297, pp. 339-348 (2014)

[24] Stupnikov, S. A, Miloslavskaya, N. G., Budz-
ko, V.: Unification of Graph Data Models for Het-
erogeneous Security Information Resources' Inte-
gration. In Proc. of the Int. Conf. on Open and Big
Data OBD 2015 (joint with 3rd Int. Conf. on Fu-
ture Internet of Things and Cloud, FiCloud 2015).
IEEE 2015, pp. 457-464 (2015)

[25] Zakharov, V. N., Kalinichenko, L. A., Sokolov, I. A.,
Stupnikov, S. A.: Development of Canonical Infor-
mation Models for Integrated Information Systems.
Informatics and Applications, 1 (2), pp. 15-38 (2007)

[26] MongoDB. https://www.mongodb.org

213

