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Abstract. Data mining is currently a well-established technique and supported by many algorithms. It 

is dependent on the data on hand, on properties of the algorithms, on the technology developed so far, and 
on the expectations and limits to be applied. It must be thus matured, predictable, optimisable, evolving, 
adaptable and well-founded similar to mathematics and SPICE/CMM-based software engineering. Data 
mining must therefore be systematic if the results have to be fit to its purpose. One basis of this systematic 
approach is model management and model reasoning. We claim that systematic data mining is nothing else 
than systematic modelling. The main notion is the notion of the model in a variety of forms, abstraction and 
associations among models. 
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1 Introduction 
Data mining and analysis is nowadays well-

understood from the algorithms side. There are 
thousands of algorithms that have been proposed. The 
number of success stories is overwhelming and has 
caused the big data hype. At the same time, brute-force 
application of algorithms is still the standard. Nowadays 
data analysis and data mining algorithms are still taken 
for granted. They transform data sets and hypotheses 
into conclusions. For instance, cluster algorithms check 
on given data sets and for a clustering requirements 
portfolio whether this portfolio can be supported and 
provide as a set of clusters in the positive case as an 
output. The Hopkins index is one of the criteria that 
allow to judge whether clusters exist within a data set. 
A systematic approach to data mining has already been 
proposed in [3, 17]. It is based on mathematics and 
mathematical statistics and thus able to handle errors, 
biases and configuration of data mining as well. Our 
experience in large data mining projects in archaeology, 
ecology, climate research, medical research etc. has 
however shown that ad-hoc and brute-force mining is 
still the main approach. The results are taken for 
granted and believed despite the modelling, 
understanding, flow of work and data handling pitfalls. 
So, the results often become dubious.  

Data are the main source for information in data 
mining and analysis. Their quality properties have been 
neglected for a long time. At the same time, modern 
data management allows to handle these problems. In 
[16] we compare the critical findings or pitfalls of [21] 
with resolution techniques that can be applied to 
overcome the crucial pitfalls of data mining in 
environmental sciences reported there. The algorithms 
themselves are another source of pitfalls that are 

typically used for the solution of data mining and 
analysis tasks. It is neglected that an algorithm also has 
an application area, application restrictions, data 
requirements, results at certain granularity and 
precision. These problems must be systematically 
tackled if we want to rely on the results of mining and 
analysis. Otherwise analysis may become misleading, 
biased, or not possible. Therefore, we explicitly treat 
properties of mining and analysis. A similar observation 
can be made for data handling. 

Data mining is often considered to be a separate 
sub-discipline of computer engineering and science. 
The statistics basis of data mining is well accepted. We 
typically start with a general (or better generic) model 
and use for refinement or improvement of the model the 
data that are on hand and that seem to be appropriate. 
This technique is known in sciences under several 
names such as inverse modelling, generic modelling, 
pattern-based reasoning, (inductive) learning, universal 
application, and systematic modelling. 

Data mining is typically not only based on one 
model but rather on a model ensemble or model suite 
The association among models in a model suite is 
explicitly specified. These associations provide an 
explicit form via model suites. Reasoning techniques 
combine methods from logics (deductive, inductive, 
abductive, counter-inductive, etc.), from artificial 
intelligence (hypothetic, qualitative, concept-based, 
adductive, etc.), computational methods (algorithmics 
[6], topology, geometry, reduction, etc.), and cognition 
(problem representation and solving, causal reasoning, 
etc.). 

These choices and handling approaches need a 
systematic underpinning. Techniques from artificial 
intelligence, statistics, and engineering are bundled 
within the CRISP framework (e.g. [3]). They can be 
enhanced by techniques that have originally been 
developed for modelling, for design science, business 
informatics, learning theory, action theory etc. 

We combine and generalize the CRISP, heuristics, 
modelling theory, design science, business informatics, 
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statistics, and learning approaches in this paper. First, 
we introduce our notion of the model. Next we show 
how data mining can be designed. We apply this 
investigation to systematic modelling and later to 
systematic data mining. It is our goal to develop a 
holistic and systematic framework for data mining and 
analysis. Many issues are left out of the scope of this 
paper such as a literature review, a formal introduction 
of the approach, and a detailed discussion of data 
mining application cases. 

2 Models and Modelling 
Models are principle instruments in mathematics, data 
analysis, modern computer engineering (CE), teaching 
any kind of computer technology, and also modern 
computer science (CS). They are built, applied, revised 
and manufactured in many CE&CS sub-disciplines in a 
large variety of application cases with different 
purposes and context for different communities of 
practice. It is now well understood that models are 
something different from theories. They are often 
intuitive, visualizable, and ideally capture the essence of 
an understanding within some community of practice 
and some context. At the same time, they are limited in 
scope, context and the applicability.  

2.1 The Notion of the Model 

There is however a general notion of a model and of a 
conception of the model:  
A model is a well-formed, adequate, and dependable 
instrument that represents origins [9, 29, 30]. 

Its criteria of well-formedness, adequacy, and 
dependability must be commonly accepted by its 
community of practice within some context and 
correspond to the functions that a model fulfills in 
utilization scenarios. 
A well-formed instrument is adequate for a collection 
of origins if it is analogous to the origins to be 
represented according to some analogy criterion, it is 
more focused (e.g. simpler, truncated, more abstract or 
reduced) than the origins being modelled, and it 
sufficiently satisfies its purpose. 

Well-formedness enables an instrument to be 
justified by an empirical corroboration according to its 
objectives, by rational coherence and conformity 
explicitly stated through conformity formulas or 
statements, by falsifiability or validation, and by 
stability and plasticity within a collection of origins. 

The instrument is sufficient by its quality 
characterization for internal quality, external quality and 
quality in use or through quality characteristics [28] 
such as correctness, generality, usefulness, 
comprehensibility, parsimony, robustness, novelty etc. 
Sufficiency is typically combined with some assurance 
evaluation (tolerance, modality, confidence, and 
restrictions). 

2.2 Generic and Specific Models 

The general notion of a model covers all aspects of 

adequateness, dependability, well-formedness, scenario, 
functions and purposes, backgrounds (grounding and 
basis), and outer directives (context and community of 
practice). It covers all known so far notions in 
agriculture, archaeology, arts, biology, chemistry, 
computer science, economics, electro-technics, 
environmental sciences, farming, geosciences, historical 
sciences, languages, mathematics, medicine, ocean 
sciences, pedagogical science, philosophy, physics, 
political sciences, sociology, and sports. The models 
used in these disciplines are instruments used in certain 
scenarios. 

Sciences distinguish between general, particular 
and specific things. Particular things are specific for 
general things and general for specific things. The same 
abstraction may be used for modelling. We may start 
with a general model. So far, nobody knows how to 
define general models for most utilization scenarios. 
Models function as instruments or tools. Typically, 
instruments come in a variety of forms and fulfill many 
different functions. Instruments are partially 
independent or autonomous of the thing they operate 
on. Models are however special instruments. They are 
used with a specific intention within a utilization 
scenario. The quality of a model becomes apparent in 
the context of this scenario. 

It might thus be better to start with generic models. 
A generic model [4, 26, 31, 32] is a model which 
broadly satisfies the purpose and broadly functions in 
the given utilization scenario. It is later tailored to suit 
the particular purpose and function. It generally 
represents origins of interest, provides means to 
establish adequacy and dependability of the model, and 
establishes focus and scope of the model. Generic 
models should satisfy at least five properties: (i) they 
must be accurate; (ii) the quality of generic models 
allows that they are used consciously; (iii) they should 
be descriptive, not evaluative; (iv) they should be 
flexible so that they can be modified from time to time; 
(v) they can be used as a first “best guess”. 

2.3 Model Suites 

Most disciplines integrate a variety of models or a 
society of models, e.g. [7, 14] Models used in CE&CS 
are mainly at the same level of abstraction. It is already 
well-known for threescore years that they form a model 
ensemble (e.g. [10, 23]) or horizontal model suite (e.g. 
[8, 27]). Developed models vary in their scopes, 
aspects, and facets they represent and their abstraction. 

A model suite consists of a set of models {M1,..., 
Mn}, of an association or collaboration schema among 
the models, of controllers that maintain consistency or 
coherence of the model suite, of application schemata 
for explicit maintenance and evolution of the model 
suite, and of tracers for the establishment of the 
coherence. 

Multi-modelling [11, 19, 24] became a culture in 
CE&CS. Maintenance of coherence, co-evolution, and 
consistency among models has become a bottleneck in 
development. Moreover, different languages with 
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different capabilities have become an obstacle similar to 
multi-language retrieval [20] and impedance 
mismatches. Models are often loosely coupled. Their 
dependence and relationship is often not explicitly 
expressed. This problem becomes more complex if 
models are used for different purposes such as 
construction of systems, verification, optimization, 
explanation, and documentation. 

2.4 Stepwise Refinement of Models 

Refinement of a model to a particular or special model 
provides mechanisms for model transformation along 
the adequacy, the justification and the sufficiency of a 
model. Refinement is based on specialization for better 
suitability of a model, on removal of unessential 
elements, on combination of models to provide a more 
holistic view, on integration that is based on binding of 
model components to other components and on 
enhancement that typically improves a model to become 
more adequate or dependable. 

Control of correctness of refinement [33] for 
information systems takes into account (A) a focus on 
the refined structure and refined vocabulary, (B) a focus 
to information systems structures of interest, (C) 
abstract information systems computation segments, 
(D) a description of database segments of interest, and 
(E) an equivalence relation among those data of interest.  

2.5 Deep Models and the Modelling Matrix 

Model development is typically based on an explicit 
and rather quick description of the ‘surface’ or normal 
model and on the mostly unconditional acceptance of a 
deep model. The latter one directs the modelling process 
and the surface or normal model. Modelling itself is 
often understood as development and design of the 
normal model. The deep model is taken for granted and 
accepted for a number of normal models. 

The deep model can be understood as the common 
basis for a number of models. It consists of the 
grounding for modelling (paradigms, postulates, 
restrictions, theories, culture, foundations, conventions, 
authorities), the outer directives (context and 
community of practice), and basis (assumptions, general 
concept space, practices, language as carrier, thought 
community and thought style, methodology, pattern, 
routines, commonsense) of modelling. It uses a 
collection of undisputable elements of the background 
as grounding and additionally a disputable and 
adjustable basis which is commonly accepted in the 
given context by the community of practice. Education 
on modelling starts, for instance, directly with the deep 
model. In this case, the deep model has to be accepted 
and is thus hidden and latent. 

A (modelling) matrix is something within or from 
which something else originates, develops, or takes 
from. The matrix is assumed to be correct for normal 
models. It consists of the deep model and the modelling 
scenarios. The modelling agenda is derived from the 
modelling scenario and the utilization scenarios. The 
modelling scenario and the deep model serve as a part 

of the definitional frame within a model development 
process. They define also the capacity and potential of a 
model whenever it is utilized. 

Deep models and the modelling matrix also define 
some frame for adequacy and dependability. This frame 
is enhanced for specific normal models. It is then used 
for a statement in which cases a normal model 
represents the origins under consideration.  

2.6 Deep Models and Matrices in Archaeology  

Let us consider an application case. The CRC 12661 
“Scales of Transformation – Human 
Environmental Interaction in Prehistoric and 
Archaic Societies” 

investigates processes of transformation from 15,000 
BCE to 1 BCE, including crisis and collapse, on 
different scales and dimensions, and as involving 
different types of groups, societies, and social 
formations. It is based on the matrix and a deep model 
as sketched in Figure 1. This matrix determines which 
normal models can still be considered and which not. 
The initial model for any normal model accepts this 
matrix. 

 
Figure 1 Modeling in archaeology with a matrix 

We base our consideration on the matrix and the 
deep model on [19] and the discussions in the CRC. 
Whether the deep model or the model matrix is 
appropriate has already been discussed. The final 
version presented in this paper illustrates our 
understanding.  

1 https://www.sfb1266.uni-kiel.de/en 
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2.7 Stereotyping of a Data Mining Process 

Typical modeling (and data mining) processes follow 
some kind of ritual or typical guideline, i.e. they are 
stereotyped. The stereotype of a modelling process is 
based on a general modelling situation. Most modelling 
methodologies are bound to one stereotype and one 
kind of model within one model utilization scenario. 
Stereotypes are governing, conditioning, steering and 
guiding the model development. They determine the 
model kind, the background and way of modelling 
activities. They persuade the activities of modelling. 
They provide a means for considering the economics of 
modelling. Often, stereotypes use a definitional frame 
that primes and orients the processes and that considers 
the community of practice or actors within the model 
development and utilization processes, the deep model 
or the matrix with its specific language and model basis, 
and the agenda for model development. It might be 
enhanced by initial models which are derived from 
generic models in accordance to the matrix.  

The model utilization scenario determines the 
function that a model might have and therefore also the 
goals and purposes of a model. 

2.8 The Agenda 

The agenda is something like a guideline for modeling 
activities and for model associations within a model 
suite. It improves the quality of model outcomes by 
spending some effort to decide what and how much 
reasoning to do as opposed to what activities to do. It 
balances resources between the data-level actions and 
the reasoning actions. E.g. [17] uses an agent approach 
with preparation agents, exploration agents, descriptive 
agents, and predictive agents. The agenda for a model 
suite uses thus decisions points that require agenda 
control according to performance and resource 
considerations. This understanding supports 
introspective monitoring about performance for the data 
mining process, coordinated control of the entire mining 
process, and coordinated refinement of the models. 
Such kind of control is already necessary due to the 
problem space, the limitations of resources, and the 
amount of uncertainty in knowledge, concepts, data, 
and the environment.  

3 Data Mining Design 

3.1 Conceptualization of Data Mining and Analysis  

The data mining and analysis task must be enhanced by 
an explicit treatment of the languages used for concepts 
and hypotheses, and by an explicit description of 
knowledge that can be used. The algorithmic solution of 
the task is based on knowledge on algorithms that are 
used and on data that are available and that are required 
for the application of the algorithms. Typically, analysis 
algorithms are iterative and can run forever. We are 
interested only in convergent ones and thus need 
termination criteria. Therefore, conceptualization of the 
data mining and analysis task consists of a detailed 

description of six main parameters (e.g. for inductive 
learning [34]): 
(a) The data analysis algorithm: Algorithm 
development is the main activity in data mining 
research. Each of these algorithms transfers data and 
some specific parameters of the algorithm to a result. 
(b) The concept space: the concept space defines the 
concepts under consideration for analysis based on 
certain language and common understanding. 
(c) The data space: The data space typically consists of 
a multi-layered data set of different granularity. Data 
sets may be enhanced by metadata that characterize the 
data sets and associate the data sets to other data sets. 
(d) The hypotheses space: An algorithm is supposed to 
map evidence on the concepts to be supported or 
rejected into hypotheses about it.  
(e) The prior knowledge space: Specifying the 
hypothesis space already provides some prior 
knowledge. In particular, the analysis task starts with 
the assumption that the target concept is representable 
in a certain way.  
(f) The acceptability and success criteria: Criteria for 
successful analysis allow to derive termination criteria 
for the data analysis. 
Each instantiation and refinement of the six parameters 
leads to specific data mining tasks. 
The result of data mining and data analysis is described 
within the knowledge space. The data mining and 
analysis task may thus be considered to be a 
transformation of data sets, concept sets and hypothesis 
sets into chunks of knowledge through the application 
of algorithms. 

Problem solving and modelling considers, 
however, typically six aspects [16]: 
(1) Application, problems, and users: The domain 
consists of a model of the application, a specification of 
problems under consideration, of tasks that are issued, 
and of profiles of users.  
(2) Context: The context of a problem is anything what 
could support the problem solution, e.g. the sciences’ 
background, theories, knowledge, foundations, and 
concepts to be used for problem specification, problem 
background, and solutions. 
(3) Technology: Technology is the enabler and defines 
the methodology. It provides [23] means for the flow of 
problem solving steps, the flow of activities, the 
distribution, the collaboration, and the exchange. 
(4) Techniques and methods: Techniques and methods 
can be given as algorithms. Specific algorithms are data 
improvers and cleaners, data aggregators, data 
integrators, controllers, checkers, acceptance 
determiners, and termination algorithms. 
(5) Data: Data have their own structuring, their quality 
and their life span. They are typically enhanced by 
metadata. Data management is a central element of 
most problem solving processes.  
(6) Solutions: The solutions to problem solving can be 
formally given, illustrated by visual means, and 
presented by models. Models are typically only normal 
models. The deep model and the matrix is already 
provided by the context and accepted by the community 
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of practice in dependence of the needs of this 
community for the given application scenario. 
Therefore, models may be the final result of a data 
mining and analysis process beside other means. 

Comparing these six spaces with the six 
parameters we discover that only four spaces are 
considered so far in data mining. We miss the user and 
application space as well as the representation space. 
Figure 2 shows the difference. 

Figure 2 Parameters of Data Mining and the Problem 
Solving Aspects 

3.2 Meta-models of Data Mining 

An abstraction layer approach separates the application 
domain, the model domain and the data domain [17]. 
This separation is illustrated in Figure 3. 

Figure 3 The V meta-model of Data Mining Design 

The data mining design framework uses the inverse 
modeling approach. It starts with the consideration of 
the application domain and develops models as 
mediators between the data and the application domain 
worlds. In the sequel we are going to combine the three 
approaches of this section. The meta-model corresponds 
to other meta-models such as inductive modelling or 
hypothetical reasoning (hypotheses development, 
experimenting and testing, analysis of results, interim 
conclusions, reappraisal against real world). 

4 Data Mining: A Systematic Model-Based 
Approach 

Our approach presented so far allows to revise and to 
reformulate the model-oriented data mining process on 
the basis of well-defined engineering [15, 25] or 
alternatively on systematic mathematical problem 
solving [22]. Figure 4 displays this revision. We realize 
that the first two phases are typically implicitly assumed 
and not considered. We concentrate on the non-iterative 
form. Iterative processes can be handled in a similar 
form. 

4.1 Setting the Deep Model and the Matrix 

The problem to be tackled must be clearly stated in 
dependence on the utilization scenario, the tasks to be 
solved, the community of practice involved, and the 
given context. The result of this step is the deep model 
and its matrix. The first one is based on the background, 
the specific context parameter such as infrastructure and 
environment, and candidates for deep models.  

Figure 4 The Phases in Data Mining Design (Non-
iterative form) 

The data mining tasks can be now formulated based 
on the matrix and the deep model. We set up the 
context, the environment, the general goal of the 
problem and also criteria for adequateness and 
dependability of the solution, e.g. invariance properties 
for problem description and for the task setting and its 
mathematical formulation and solution faithfulness 
properties for later application of the solution in the 
given environment. What is exactly the problem, the 
expected benefit? What should a solution look like? 
What is known about the application? 

Deep models already use a background consisting of 
an undisputable grounding and a selectable basis. The 
explicit statement of the background provides an 
understanding of the postulates, paradigms, 
assumptions, conceptions, practices, etc. Without the 
background, the results of the analysis cannot be 
properly understood. Models have their profile, i.e. 
goals, purposes and functions. These must be explicitly 
given. The parameters of a generic model can be either 
order or slave parameters [12], either primary or 
secondary or tertiary (also called genotypes or 
phenotypes or observables) [1, 5], and either ruling (or 
order) or driven parameters [12]. Data mining can be 
enhanced by knowledge management techniques. 

 Additionally, the concept space into which the data 
mining task is embedded must be specified. This 
concept space is enhanced during data analysis. 
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4.2 Stereotyping the Process 

The general flow of data mining activities is typically 
implicitly assumed on the basis of stereotypes which 
form a set of tasks, e.g. tasks of prove in whatever 
system, transformation tasks, description tasks, and 
investigation tasks. Proofs can follow the classical 
deductive or inductive setting. Also, abductive,  
adductive, hypothetical and other reasoning techniques 
are applicable. Stereotypes typically use model suites as 
a collection of associated models, are already biased by 
priming and orientation, follow policies, data mining 
design constraints, and framing.  

Data mining and analysis is rather stereotyped. For 
instance, mathematical culture has already developed a 
good number of stereotypes for problem formulation. It 
is based on a mathematical language for the formulation 
of analysis tasks, on selection and instantiation of the 
best fitting variable space and the space of opportunities 
provided by mathematics. 

Data mining uses generic models which are the 
basis of normal models. Models are based on a 
separation of concern according the problem setting: 
dependence-indicating, dependence-describing, sepa-
ration or partition spaces, pattern kinds, reasoning 
kinds, etc. This separation of concern governs the 
classical data mining algorithmic classes: association 
analysis, cluster analysis, data grouping with or without 
classification, classifiers and rules, dependences among 
parameters and data subsets, predictor analysis, syner-
getics, blind or informed or heuristic investigation of 
the search space, and pattern learning. 
 

4.3 Initialization of the Normal Data Models 

Data mining algorithms have their capacity and 
potential [2]. Potential and capacity can be based on 
SWOT (strengths, weaknesses, opportunities, and 
threats), SCOPE (situation, core competencies, 
obstacles, prospects, expectation), and SMART (how 
simple, meaningful, adequate, realistic, and trackable) 
analysis of methods and algorithms. Each of the 
algorithm classes has its strengths and weaknesses, its 
satisfaction of the tasks and the purpose, and its limits 
of applicability. Algorithm selection also includes an 
explicit specification of the order of application of these 
algorithms and of mapping parameters that are derived 
by means of one algorithm to those that are an input for 
the others, i.e. an explicit association within the model 
suite. Additionally, evaluation algorithms for the 
success criteria are selected. Algorithms have their own 
obstinacy, their hypotheses and assumptions that must 
be taken into consideration. Whether an algorithm can 
be considered depends on acceptance criteria derived in 
the previous two steps.  
So, we ask: What kind of model suite architecture suits 
the problem best? What are applicable development 
approaches for modelling? What is the best modelling 
technique to get the right model suite? What kind of 
reasoning is supported? What not? What are the 
limitations? Which pitfalls should be avoided?  

The result of the entire data mining process heavily 
depends on the appropriateness of the data sets, their 
properties and quality, and more generally the data 
schemata with essentially three components: application 
data schema with detailed description of data types, 
metadata schema [18], and generated and auxiliary data 
schemata. The first component is well-investigated in 
data mining and data management monographs. The 
second and third components inherit research results 
from database management, from data mart or 
warehouses, and layering of data. An essential element 
is the explicit specification of the quality of data. It 
allows to derive algorithms for data improvement and to 
derive limitations for applicability of algorithms. 
Auxiliary data support performance of the algorithms. 

Therefore typical data-oriented questions are: What 
data do we have available? Is the data relevant to the 
problem? Is it valid? Does it reflect our expectations? 
Is the data quality, quantity, recency sufficient? Which 
data we should concentrate on? How is the data 
transformed for modelling? How may we increase the 
quality of data? 

4.4 The Data Mining Process Itself 

The data mining process can be understood as a 
coherent and stepwise refinement of the given model 
suite. The model refinement may use an explicit 
transformation or an extract-transform-load process 
among models within the model suite. Evaluation and 
termination algorithms are an essential element of any 
data mining algorithm. They can be based on quality 
criteria for the finalized models in the model suite, e.g. 
generality, error-proneness, stability, selection-
proneness, validation, understandability, repeatability, 
usability, usefulness, and novelty.  

Typical questions to answer within this process 
are: How good is the model suite in terms of the task 
setting? What have we really learned about the 
application domain? What is the real adequacy and 
dependability of the models in the model suite? How 
these models can be deployed best? How do we know 
that the models in the model suite are still valid? Which 
data are supporting which model in the model suite? 
Which kind of errors of data is inherited by which part 
of which model?  

The final result of the data mining process is then a 
combination of the deep model and the normal model 
whereas the first one is a latent or hidden component in 
most cases. If we want, however, to reason on the 
results then the deep model must be understood as well. 
Otherwise, the results may become surprising and may 
not be convincing. 

4.5 Controllers and Selectors 

Algorithmics [6] treats algorithms as general solution 
pattern that have parameters for their instantiation, 
handling mechanisms for their specialization to a given 
environment, and enhancers for context injection. So, 
an algorithm can be derived based on explicit selectors 
and control rules [4] if we neglect context injection. We 
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can use this approach for data mining design (DMD). 
For instance, an algorithm pattern such as regression 
uses a generic model of parameter dependence, is based 
on blind search, has parameters for similarity and model 
quality, and has selection support for specific treatment 
of the given data set. In this case, the controller is based 
on enablers that specify applicability of the approach, 
on error rules, on data evaluation rules that detect 
dependencies among control parameters and derive data 
quality measures, and on quality rules for confidence 
statements. 

4.6 Data Mining and Design Science 

Let us finally associate our approach with design 
science research [13]. Design science considers 
systematic modelling as an embodiment of three closely 
related cycles of activities. The relevance cycle initiates 
design science research with an application context that 
not only provides the requirements for the research as 
inputs but also defines acceptance criteria for the 
ultimate evaluation of the research results. The central 
design cycle iterates between the core activities of 
building and evaluating the design artifacts and 
processes of the research. The orthogonal rigor cycle 
provides past knowledge to the research project to 
ensure its innovation. It is contingent on the 
researchers’ thoroughly research and references the 
knowledge base in order to guarantee that the designs 
produced are research contributions and not routine 
designs based upon the application of well-known 
processes. 

The relevance cycle is concerned with the problem 
specification and setting and the matrix and agenda 
derivation. The design cycle is related to all other 
phases of our framework. The rigor cycle is enhanced 
by our framework and provides thus a systematic 
modelling approach.  

5 Conclusion 
The literature on data mining is fairly rich. Mining tools 
have already gained the maturity for supporting any 
kind of data analysis if the data mining problem is well 
understood, the intentions for models are properly 
understood, and if the problem is professionally set up. 
Data mining aims at development of model suites that 
allows to derive and to draw dependable and thus 
justifiable conclusions on the given data set. Data 
mining is a process that can be based on a framework 
for systematic modelling that is driven by a deep model 
and a matrix. Textbooks on data mining typically 
explore in detail algorithms as blind search. Data 
mining is a specific form of modeling. Therefore, we 
can combine modeling with data mining in a more 
sophisticated form. Models have however an inner 
structure with parts which are given by the application, 
by the context, by the commonsense and by a 
community of practice. These fixed parts are then 
enhanced by normal models. A typical normal model is 
the result of a data mining process. 

The current state of the art in data mining is mainly 

technology and algorithm driven. The problem selection 
is made on intuition and experience. So, the matrix and 
the deep model are latent and hidden. The problem 
specification is not explicit. Therefore, this paper aims 
at the entire data mining process and highlights a way to 
leave the ad-hoc, blind and somehow chaotic data 
analysis. The approach we are developing integrates the 
theory of models, the theory of problem solving, design 
science, and knowledge and content management. We 
realized that data mining can be systematized. The 
framework for data mining design exemplarily 
presented is an example in Figure 4. 
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