
Using metagraph approach for complex domains description

© Valeriy M. Chernenkiy, © Yuriy E. Gapanyuk, © Georgiy I. Revunkov,

© Yuriy T. Kaganov, © Yuriy S. Fedorenko, © Svetlana V. Minakova

Bauman Moscow State Technical University,

Moscow, Russia

chernen@bmstu.ru, gapyu@bmstu.ru, revunkov@bmstu.ru,

kaganov.y.t@bmstu.ru, fedyura11235@mail.ru, morgana_93@mail.ru

Abstract. This paper proposes an approach for complex domains description using complex network

models with emergence. The advantages of metagraph approach are discussed. The formal definitions of the

metagraph data model and metagraph agent model is given. The examples of data metagraph and metagraph

rule agent are discussed. The metagraph and hypergraph models comparison is given. It is shown that the

hypergraph model does not fully implement the emergence principle. The metagraph and hypernetwork

models comparison is given. It is shown that the metagraph model is more flexible than hypernetwork model.

Two examples of complex domains description using metagraph approach are discussed: neural network

representation and modeling the polypeptide chain synthesis. The textual representation of metagraph model

using predicate approach is given.
Keywords: metagraph, metavertex, metaedge, hypergraph, hypernetwork, neural network, polypeptide

chain, lambda architecture.

1 Introduction

Currently, models based on complex networks are

increasingly used in various fields of science from

mathematics and computer science to biology and
sociology. This is not surprising because the domains are

becoming more and more complex.

Therefore, now it is important to offer not only a

model that is capable of storing and processing Big Data

but also a model that is capable of handling the

complexity of data. That is why the development of a

universal model for complex domains description is an

actual task.

One of the varieties of such models is “complex

networks with emergence”. The emergent element means

a whole that cannot be separated into its component parts.

As far as the authors know, currently there are two
“complex networks with emergence” models:

hypernetworks and metagraphs. The hypernetwork

model is mature and it helps to understand many aspects

of complex networks with an emergence.

But from the author's point of view, the metagraph

model is more flexible and convenient for use in

information systems.

This paper discusses the metagraph model and

compares it with other complex graph models.

2 Complex networks models comparison

In this section, the metagraph model will be formally

described and it will be compared with hypergraph and

hypernetwork models.

2.1 Metagraph model formalization

A metagraph is a kind of complex network model,

proposed by A. Basu and R. Blanning [1] and then

adapted for information systems description by the

authors [2]. According to [2]: 𝑀𝐺 = 〈𝑉,𝑀𝑉,𝐸,𝑀𝐸〉,
where 𝑀𝐺 – metagraph; V – set of metagraph vertices;

MV – set of metagraph metavertices; E – set of metagraph

edges, ME – set of metagraph metaedges.

A metagraph vertex is described by the set of

attributes: 𝑣𝑖 = {𝑎𝑡𝑟𝑘}, 𝑣𝑖 ∈ 𝑉, where 𝑣𝑖 – metagraph

vertex; 𝑎𝑡𝑟𝑘 – attribute.

A metagraph edge is described by the set of attributes,

the source and destination vertices and edge direction

flag: 𝑒𝑖 = 〈𝑣𝑆 , 𝑣𝐸 , 𝑒𝑜, {𝑎𝑡𝑟𝑘}〉, 𝑒𝑖 ∈ 𝐸, 𝑒𝑜 = 𝑡𝑟𝑢𝑒|𝑓𝑎𝑙𝑠𝑒,

where 𝑒𝑖 – metagraph edge; 𝑣𝑆 – source vertex

(metavertex) of the edge; 𝑣𝐸 – destination vertex

(metavertex) of the edge; eo – edge direction flag

(eo=true – directed edge, eo=false – undirected edge);

atrk – attribute.

The metagraph fragment: 𝑀𝐺𝑖 = {𝑒𝑣𝑗}, 𝑒𝑣𝑗 ∈ (𝑉 ∪

𝑀𝑉 ∪ 𝐸 ∪𝑀𝐸), where 𝑀𝐺𝑖 – metagraph fragment; 𝑒𝑣𝑗
– an element that belongs to union of vertices,
metavertices, edges and metaedges.

The metagraph metavertex: 𝑚𝑣𝑖 =
〈{𝑎𝑡𝑟𝑘},𝑀𝐺𝑗〉,𝑚𝑣𝑖 ∈ 𝑀𝑉, where 𝑚𝑣𝑖 – metagraph

metavertex belongs to set of metagraph metavertices MV;

𝑎𝑡𝑟𝑘 – attribute, 𝑀𝐺𝑗 – metagraph fragment.

Thus, a metavertex in addition to the attributes

includes a fragment of the metagraph. The presence of
private attributes and connections for a metavertex is

distinguishing feature of a metagraph. It makes the

definition of metagraph to be holonic – a metavertex may

include a number of lower-level elements and in turn,

may be included in a number of higher level elements.

From the general system theory point of view, a

metavertex is a special case of the manifestation of the

emergence principle, which means that the metavertex

with its private attributes and connections becomes a

whole that cannot be separated into its component parts.

The example of metagraph is shown in figure 1.

342

v3v3

v1v1

v2v2

v5v5

v4v4

mv1 mv2e4

e5

e1

e2

e3

e6

e7

e8

mv3

Figure 1 Example of metagraph

This example contains three metavertices: mv1, mv2,

and mv3. Metavertex mv1 contains vertices v1, v2, v3 and

connecting them edges e1, e2, e3. Metavertex mv2

contains vertices v4, v5 and connecting them edge e6.

Edges e4, e5 are examples of edges connecting vertices

v2-v4 and v3-v5 respectively and they are contained in

different metavertices mv1 and mv2. Edge e7 is an

example of an edge connecting metavertices mv1 and

mv2. Edge e8 is an example of an edge connecting vertex

v2 and metavertex mv2. Metavertex mv3 contains

metavertex mv2, vertices v2, v3 and edge e2 from
metavertex mv1 and also edges e4, e5, e8 showing the

holonic nature of the metagraph structure. Figure 1

shows that metagraph model allows describing complex

data structures and it is the metavertex that allows

implementing emergence principle in data structures.

The vertices, edges, and metavertices are used for

data description and the metaedges are used for process

description.

The metagraph metaedge: 𝑚𝑒𝑖 =
〈𝑣𝑆 , 𝑣𝐸 , 𝑒𝑜, {𝑎𝑡𝑟𝑘},𝑀𝐺𝑗〉,𝑚𝑒𝑖 ∈ 𝑀𝐸, 𝑒𝑜 = 𝑡𝑟𝑢𝑒|𝑓𝑎𝑙𝑠𝑒,

where 𝑚𝑒𝑖 – metagraph metaedge belongs to set of

metagraph metaedges ME; 𝑣𝑆 – source vertex

(metavertex) of the metaedge; 𝑣𝐸 – destination vertex

(metavertex) of the metaedge; eo – metaedge direction

flag (eo=true – directed metaedge, eo=false – undirected

metaedge); 𝑎𝑡𝑟𝑘 – attribute, 𝑀𝐺𝑗 – metagraph fragment.

The example of directed metaedge is shown in figure 2.

v3v3

v1v1

v2v2

mv1

e1

e2

e3

VS

v3v3

v1v1

v2v2

v5v5

v4v4

mv1 mv2e4

e5

e1

e2

e3

e6

v3v3

v1v1

v2v2

v5v5

v4v4

mv1 mv2e4

e5

e1

e2

e3

e6

e7

e8

mv3

VEVi

... ...

Figure 2 Example of directed metaedge

The directed metaedge contains metavertices vS, …

vi, … vE and connecting them edges. The source vertex

contains a nested metagraph fragment. During the
transition to the destination vertex, the nested metagraph

fragment becomes more complex, as new vertices, edges,

and metavertices are added. Thus, metaedge allows

binding the stages of nested metagraph fragment

development to the steps of the process described with

metaedge.

2.2 Metagraph and hypergraph models comparison

In this section, the hypergraph model will be

examined and compared with metagraph model.

According to [3]: 𝐻𝐺 = 〈𝑉,𝐻𝐸〉, 𝑣𝑖 ∈ 𝑉, ℎ𝑒𝑗 ∈ 𝐻𝐸,

where 𝐻𝐺 – hypergraph; 𝑉 – set of hypergraph vertices;

𝐻𝐸 – set of non-empty subsets of 𝑉 called hyperedges;

𝑣𝑖 – hypergraph vertex; ℎ𝑒𝑗 – hypergraph hyperedge.

A hypergraph may be directed or undirected. A

hyperedge in an undirected hypergraph only includes

vertices whereas, in a directed hypergraph, a hyperedge

defines the order of traversal of vertices. The example of

an undirected hypergraph is shown in figure 3.

This example contains three hyperedges: he1, he2, and

he3. Hyperedge he1 contains vertices v1, v2, v4, v5.

Hyperedge he2 contains vertices v2 and v3. Hyperedge he3

contains vertices v4 and v5. Hyperedges he1 and he2 have

a common vertex v2. All vertices of hyperedge he3 are
also vertices of hyperedge he1.

Comparing metagraph and hypergraph models it

should be noted that the metagraph model is more

expressive then the hypergraph model. According to

figures 1 and 3 it is possible to note some similarities

between the metagraph metavertex and the hypergraph

hyperedge, but the metagraph offers more details and

clarity because the metavertex explicitly defines

metavertices, vertices and edges inclusion, whereas the

hyperedge does not. The inclusion of hyperedge he3 in

hyperedge he1 in fig. 3 is only graphical and informal,
because according to hypergraph definition a hyperedge

inclusion operation is not explicitly defined.

he1v1v1 v2v2 v4v4 v5v5 he3

v3v3

he2

Figure 3 Example of undirected hypergraph

Thus the metagraph is a holonic graph model whereas

the hypergraph is a near flat graph model that does not

fully implement the emergence principle. Therefore,

hypergraph model doesn’t fit well for complex data
structures description.

2.3 Metagraph and hypernetwork models

comparison

The amazing fact is that the hypernetwork model was

invented twice. The first time the hypernetwork model
was invented by Professor Vladimir Popkov with

colleagues in 1980s. Professor V. Popkov proposes

several kinds of hypernetwork models with complex

Proceedings of the XIX International Conference

“Data Analytics and Management in Data Intensive

Domains” (DAMDID/RCDL’2017), Moscow, Russia,

October 10–13, 2017

343

formalization and therefore only main ideas of

hypernetworks will be discussed in this section.

According to [4] given the hypergraphs 𝑃𝑆 ≡
𝑊𝑆0,𝑊𝑆1,𝑊𝑆2,⋯𝑊𝑆𝐾. The hypergraph 𝑃𝑆 ≡ 𝑊𝑆0 is

called primary network. The hypergraph 𝑊𝑆𝑖 is called a

secondary network of order i. Also given the sequence of

mappings between networks of different orders: 𝑊𝑆𝐾
Ф𝐾
→ 𝑊𝑆𝐾−1

Ф𝐾−1
→ ⋯𝑊𝑆1

Ф1
→ 𝑃𝑆. Then the hierarchical

abstract hypernetwork of order K may be defined as

𝐴𝑆𝐾 = 〈𝑃𝑆,𝑊𝑆1,⋯𝑊𝑆𝐾; Ф1,⋯Ф𝐾〉. The emergence in

this model occurs because of the mappings Ф𝑖 between

the layers of hypergraphs.

The second time the hypernetwork model was

proposed by Professor Jeffrey Johnson in his monograph

[5] in 2013. The main idea of Professor J. Johnson variant

of hypernetwork model is the idea of hypersimplex (the

term is adopted from polyhedral combinatorics).

According to [5], a hypersimplex is an ordered set of

vertices with an explicit n-ary relation and hypernetwork

is a set of hypersimplices. In the hierarchical system, the

hypersimplex combines k elements at the N level (base)
with one element at the N+1 level (apex). Thus,

hypersimplex establishes an emergence between two

adjoining levels.

The example of hypernetwork that combines the

ideas of two approaches is shown in figure 4.

v1v1v3v3v4v4 v2v2he1 he2

PS

v5v5 v6v6 he3 WS1

hyper-
simplex

Ф1

Figure 4 Example of hypernetwork

The primary network 𝑃𝑆 is formed by the vertices of

hyperedges ℎ𝑒1 and ℎ𝑒2. The first level 𝑊𝑆1 of
secondary network is formed by the vertices of

hyperedge ℎ𝑒3. Mapping Ф1 is shown with an arrow. The

hypersimplex is emphasized with the dash-dotted line.

The hypersimplex is formed by the base (vertices 𝑣3 and

𝑣4 of 𝑃𝑆) and apex (vertex 𝑣5 of 𝑊𝑆1).
The hypernetwork model became popular for

complex domains description. For example, Professor

Konstantin Anokhin [6] proposes a new fundamental

theory of the organization of higher brain functions.
According to this theory, biological neural networks

(connectomes) are organized into cognitive

hypernetworks (cognitomes). Vertices of cognitome

form COGs (Gognitive Groups). Each COG may be

represented as hypersimplex. The base of COG is a set of

the vertices of underlying neural networks, and its apex

is a vertex possessing a new quality at the macrolevel of

cognitive hypernetworks. Thus, apex combines the base

elements and emergence appears.

It should be noted that unlike the relatively simple

hypergraph model the hypernetwork model is a full

model with emergence. Consider the differences between

the hypernetwork and metagraph models.

According to the definition of a hypernetwork it is a

a layered description of graphs. It is assumed that the

hypergraphs may be divided into homogeneous layers

and then mapped with mappings or combined with

hypersimplices. Metagraph approach is more flexible. It
allows combining arbitrary elements that may be layered

or not using metavertices.

Comparing the hypernetwork and metagraph models

we can make the following notes:

• Hypernetwork model may be considered as

“horizontal” or layer-oriented. The emergence

appears between adjoining levels using

hypersimplices. The metagraph model may be

considered as “vertical” or aspect-oriented. The

emergence appears between any levels using

metavertices.

• In hypernetwork model, the elements are organized

using hypergraphs inside layers and using mappings

or hypersimplices between layers. In metagraph

model, metavertices are used for organizing elements

both inside layers and between layers. Hypersimplex

may be considered as a special case of metavertex.

• Metagraph model allows organizing the results of

previous organizations. The fragments of the flat

graph may be organized into metavertices,

metavertices may be organized in higher-level

metavertices and so on. The metavertex organization

is more flexible than hypersimplex organization
because hypersimplex assumes base and apex usage

and metavertex may include general form graph.

• Metavertex may represent a separate aspect of the

organization. The same fragments of the flat graph

may be included in different metavertices whether

these metavertices are used for modeling different

aspects.

Thus, we can draw a conclusion that metagraph

model is more flexible than hypernetwork model.

However, it must be emphasized that the

hypernetwork and metagraph models are only different

formal descriptions of the same processes that occur in

the networking with the emergence.

From the historical point of view, the hypernetwork

model was the first complex network with an emergence

model and it helps to understand many aspects of

complex networks with an emergence.

3 Metagraph model processing

The metagraph model is designed for complex data

and process description. But it is not intended for data

transformation. To solve this issue, the metagraph agent

(𝑎𝑔𝑀𝐺) designed for data transformation is proposed.

There are two kinds of metagraph agents: the metagraph

function agent (𝑎𝑔𝐹) and the metagraph rule agent (𝑎𝑔𝑅).

Thus 𝑎𝑔𝑀𝐺 = 𝑎𝑔𝐹|𝑎𝑔𝑅.

The metagraph function agent serves as a function

with input and output parameter in form of metagraph:

𝑎𝑔𝐹 = 〈𝑀𝐺𝐼𝑁 ,𝑀𝐺𝑂𝑈𝑇 , 𝐴𝑆𝑇〉, (1)

344

where 𝑎𝑔𝐹 – metagraph function agent; 𝑀𝐺𝐼𝑁 – input

parameter metagraph; 𝑀𝐺𝑂𝑈𝑇 – output parameter

metagraph; 𝐴𝑆𝑇 – abstract syntax tree of metagraph

function agent in form of metagraph.

The metagraph rule agent is rule-based: agR =
〈MG,R, AGST〉, R = {ri}, ri:MGj → OP

MG, where 𝑎𝑔𝑅 –

metagraph rule agent; 𝑀𝐺 – working metagraph, a

metagraph on the basis of which the rules of agent are

performed; 𝑅 – set of rules 𝑟𝑖; 𝐴𝐺
𝑆𝑇 – start condition

(metagraph fragment for start rule check or start rule);

𝑀𝐺𝑗 – a metagraph fragment on the basis of which the

rule is performed; 𝑂𝑃𝑀𝐺 – set of actions performed on

metagraph.

The antecedent of the rule is a condition over

metagraph fragment, the consequent of the rule is a set of

actions performed on metagraph. Rules can be divided

into open and closed.

The consequent of the open rule is not permitted to
change metagraph fragment occurring in rule antecedent.

In this case, the input and output metagraph fragments

may be separated. The open rule is similar to the template

that generates the output metagraph based on the input

metagraph.

The consequent of the closed rule is permitted to

change metagraph fragment occurring in rule antecedent.

The metagraph fragment changing in rule consequent

cause to trigger the antecedents of other rules bound to

the same metagraph fragment. But incorrectly designed

closed rules system can lead to an infinite loop of
metagraph rule agent.

If the agent contains only open rules it is called an

open agent. If the agent contains only closed rules it is

called a closed agent.

Thus, metagraph rule agent can generate the output

metagraph based on the input metagraph (using open

rules) or can modify the single metagraph (using closed

rules). The example of metagraph rule agent is shown in

figure 5.

The metagraph rule agent “metagraph rule agent 1” is

represented as a metagraph metavertex. According to the

definition it is bound to the working metagraph MG1 – a
metagraph on the basis of which the rules of the agent are

performed. This binding is shown with edge e4.

The metagraph rule agent description contains inner

metavertices corresponds to agent rules (rule 1 … rule

N). Each rule metavertex contains antecedent and

consequent inner vertices. In given example mv2

metavertex bound with antecedent which is shown with

edge e2 and mv3 metavertex bound with consequent

which is shown with edge e3. Antecedent conditions and

consequent actions are defined in form of attributes

bound to antecedent and consequent corresponding
vertices.

The start condition is given in form of attribute

“start=true”. If the start condition is defined as a start

metagraph fragment then the edge bound start metagraph

fragment to agent metavertex (edge e1 in given example)

is annotated with attribute “start=true”. If the start

condition is defined as a start rule than the rule

metavertex is annotated with attribute “start=true” (rule

1 in given example). Figure 5 shows both cases

corresponding to the start metagraph fragment and to the

start rule.

antecedent consequent

actions

rule 1

rule N

. . .
start=true

metagraph rule agent 1

v32v31

e31
v32v31

e31

v33

e32

v32v31

e31

v33

e32

v34

e33

mv1 mv2 mv3

MG1

MG=MG1

start=true

e1

e2
e3

e4

conditions

Figure 5 Example of metagraph rule agent

The distinguishing feature of metagraph agent is its
homoiconicity which means that it can be a data structure

for itself. This is due to the fact that according to

definition metagraph agent may be represented as a set

of metagraph fragments and this set can be combined in

a single metagraph. Thus, the metagraph agent can

change the structure of other metagraph agents.

4 The examples of complex domains

description using metagraph approach

In this section, we give two examples of complex

domains description using metagraph approach.

4.1 Using metagraph approach for neural network

representation

This subsection is based on our paper [7]. We begin

with simple perceptron representation using metagraph

model. According to the Rosenblatt perceptron model

[8], a conventional perceptron consists of three elements:

S, A and R.

The layer of sensors (S) is an array of input signals.

The associative layer (A) is a collection of intermediate
elements which are triggered if a particular set of input

signals is activated at the same time. The adder (R) is

started when a particular collection of A-elements is

activated concurrently.

According to the notation adopted in the M. Minsky

and S. Papert perceptron model [8], the value of a signal

on an A-element can be represented as a boolean

predicate φ(S), and the value of a signal in the adder layer

as a predicate ψ(A, W). According to [8], a function that

takes either 0 or 1 is regarded as a boolean predicate.

Depending on the particular type of perceptron, the

form of predicates φ(S) and ψ(A, W) can be different.
Usually, predicate φ(S) is used to check whether the total

input signal from sensors exceeds a certain threshold or

not. Also predicate ψ(A, W) (where W is a weight vector)

is used to see if the weighted sum from A-elements

exceeds a particular threshold.

345

In our case, the actual form of predicates is not

important. What is important is that the structure of φ(S)

and ψ(A, W) can be represented as an abstract syntactic

tree. Then we can represent the perceptron structure as a

combination of metagraph function agents. Each

predicate can be represented as a kind of the formula 1:

𝜑𝐹 = 〈S, A, 𝐴𝑆𝑇𝜑〉, 𝜓𝐹 = 〈〈{𝜑𝐹},𝑊〉, R, 𝐴𝑆𝑇𝜓〉. This

representation is shown in figure 6.

SS ASTΦASTΦ
AA

ΦΦ

{-1;0;1}

ASTΨASTΨ
RR

W

ΨΨ

Figure 6 The perceptron representation as a

combination of metagraph function agents

An A-element can be represented as a function agent

𝜑𝐹 . The input parameter is the value vector S, the output

parameter is the value vector A. The description of the

perceptron is similar to the description of the function

agent 𝜓𝐹. The input parameter is a the metagraph

representation of a tuple holding the description of A-

elements as agent-functions 𝜑𝐹 and vector W. The output

parameter is the amplitude of output signal R.

The description of functions can contain other

parameters, e.g., threshold values, but we assume that
these parameters are included in the description of the

abstract syntactic tree.

Thus, we can describe the perceptron structure as a

combination of metagraph function agents. Now we

describe neural network operation using metagraph rule

agents which are shown in figure 7.

The metagraph
representation

of a neural network

agMCagMC agMR

agMO agML

Figure 7 The structure of metagraph rule agents for

neural network operation representation

The metagraph representation of neural network may

be created similarly to the previously reviewed

perceptron approach. Such a representation is a separate
task that depends on neural network topology.

In order to provide a neural network operation the

following agents are used:

• 𝑎𝑔𝑀𝐶 – the agent responsible for the creation of the

network;

• 𝑎𝑔𝑀𝑂 – the agent responsible for the modification of

the network;

• 𝑎𝑔𝑀𝐿 – the agent responsible for the learning of the

network;

• 𝑎𝑔𝑀𝑅 – the agent responsible for the execution of the

network.

In figure 7 the agents are shown as metavertices by

dotted-line ovals.

The network-creating agent 𝑎𝑔𝑀𝐶 implements the

rules of creating an original neural network topology.

The agent holds both the rules of creating separate

neurons and rules of connecting neurons into a network.

In particular, the agent generates abstract syntactic trees

of metagraph function agents 𝜑𝐹 and 𝜓𝐹.

The network-modification agent 𝑎𝑔𝑀𝑂 holds the

rules of modification the network topology in process of

operation. It is especially important for neural networks

with variable topology such as HyperNEAT and SOINN.

The network-learning agent 𝑎𝑔𝑀𝐿 implements a

particular learning algorithm. As a result of learning the

changed weights are written in the metagraph

representation of the neural network. It is possible to

implement a few learning algorithms by using different

sets of rules for agent 𝑎𝑔𝑀𝐿.
The network-executing agent 𝑎𝑔𝑀𝑅 is responsible for

the start and operation of the trained neural network.

The agents can work separately or jointly which may
be especially important in the case of variable topologies.

For example when a HyperNEAT or SOINN network is

trained, agent 𝑎𝑔𝑀𝐿 can call the rules of agent 𝑎𝑔𝑀𝑂 to

change the network topology in the process of learning.

In fact, each agent uses its rules to implement a

specific program “machine”. The use of the metagraph
approach allows us to implement the “multi-machine”

principle: a few agents having different goals implement

different operations on the same data structure.

Thus, we can draw a conclusion that metagraph

approach helps to describe both the structure of separate

neurons and the structure of neural network operation.

4.2 Using metagraph approach for modeling the

polypeptide chain synthesis

Molecular biology is considered to be one of the most

difficult to study topics of biological science. It's hard to

believe that the complexity of functioning of the

biological cell invisible to the human eye exceeds the

complexity of functioning of a large ERP-system, which

can contain thousands of business processes. The

difficulty of studying biological processes is also due to

the fact that in studying it is impossible to abstract from

the physical and chemical features that accompany these
processes. Therefore, the development of learning

software that helps to better understand even one

complex process is a valid task.

We will review the process of synthesis of a

polypeptide chain which is also called “translation” in

molecular biology. Translation is an essential part of the

protein biosynthesis. This process is very valid from an

educational point of view because protein biosynthesis is

considered in almost all textbooks of molecular biology.

The translation process is very complicated and in

this section, we review it in a simplified way.
The first main actor of the translation process is

messenger RNA or mRNA, which may be represented as

346

a chain of codons. The second main actor of the

translation process is ribosome consisting of the large

subunit and the small subunit. The small subunit is

responsible for reading information from mRNA and

large subunit is responsible for generating fragments of

the polypeptide chain.

According to [9] the translation process consists of

three stages.
The first stage is initiation. At this stage, the ribosome

assembles around the target mRNA. The small subunit is

attached at the start codon.

The second stage is elongation. The small subunit

reads information from the current codon. Using this

information, the large subunit generates the fragment of

the polypeptide chain. After that ribosome moves

(translocates) to the next mRNA codon.

The third stage is termination. When the stop codon

is reached, the ribosome releases the synthesized

polypeptide chain. Under some conditions, the ribosome

may be disassembled.
In this section, we use metagraph approach for

translation process modeling. The representation is

shown in figure 8.

e1

СSTART CK

eK-1

meRNA
...

eK+1 ... CSTOP

eN

ag
M

PSTART

PK

PSTOP

MGP

...

...ag
M

PSTART

PK

MGP

...ag
M

PSTART

MGP

Figure 8 The representation of the polypeptide chain

synthesis (translation) process based on metagraph

approach

The mRNA is shown in figure 8 as metaedge

𝑚𝑒𝑅𝑁𝐴 = 〈𝐶𝑆𝑇𝐴𝑅𝑇 , 𝐶𝑆𝑇𝑂𝑃 , 𝑒𝑜 = 𝑡𝑟𝑢𝑒, {𝑎𝑡𝑟𝑘},𝑀𝐺𝑅𝑁𝐴〉,
where 𝐶𝑆𝑇𝐴𝑅𝑇 – source metavertex (start codon); 𝐶𝑆𝑇𝑂𝑃 –

destination metavertex (stop codon); eo=true – directed

metaedge; 𝑎𝑡𝑟𝑘 – attribute, 𝑀𝐺𝑅𝑁𝐴 – metagraph

fragment, containing inner codons of mRNA (𝐶𝐾) linked

with edges.

The codon (shown in figure 8 as an elementary

vertex) may also be represented as metavertex,

containing inner vertices and edges according to the
required level of detail.

Ribosome may be represented as metagraph rule

agent agRB = 〈meRNA, R, 𝐶𝑆𝑇𝐴𝑅𝑇〉, R = {ri}, ri: CK → PK,

where 𝑚𝑒𝑅𝑁𝐴 – mRNA metaedge representation used as

working metagraph; 𝑅 – set of rules 𝑟𝑖; 𝐶𝑆𝑇𝐴𝑅𝑇 – start

codon used as start agent condition; 𝐶𝐾 – codon on the

basis of which the rule is performed; 𝑃𝐾 – the added

fragment of polypeptide chain.

The antecedent of the rule approximately corresponds

to the small subunit of ribosome modeling. The
consequent of the rule approximately corresponds to the

large subunit of ribosome modeling.

Agent agRB is open agent generating output

metagraph MGP based on input metaedge 𝑚𝑒𝑅𝑁𝐴. The

input and output metagraph fragments don’t contain

common elements.

While processing codons of mRNA agent agRB

sequentially adds fragments of the polypeptide chain PK
to the output metagraph MGP. Vertices PK are connected

with undirected edges.

The process represented in figure 8 is very high-level.

But metagraph approach allows representing related
processes with different levels of abstraction.

For example, for each codon or peptide, we can link

metavertex with its inner representation. And we can

modify this representation during translation process

using metagraph agents.

Thus, the metagraph approach allows us to represent

a model of polypeptide chain synthesis which can be the

basis for the learning software.

5 The textual representation of metagraph

model

In previous sections, the formal definition and

graphical examples of metagraph model were defined.

But to successfully operate with metagraph model we

also need textual representation. As such a
representation, we use a logical predicate model that is

close to logical programming languages e.g. Prolog.

Logical predicates used in this section and boolean

predicates used in subsection 4.1 should not be confused.

The classical Prolog uses following form of

predicate: 𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒(𝑎𝑡𝑜𝑚1, 𝑎𝑡𝑜𝑚2,⋯ , 𝑎𝑡𝑜𝑚𝑁). We

used an extended form of predicate where along with

atoms predicate can also include key-value pairs and

nested predicates: 𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒(𝑎𝑡𝑜𝑚,⋯ , 𝑘𝑒𝑦 = 𝑣𝑎𝑙𝑢𝑒,
⋯ , 𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒(⋯),⋯). The mapping of metagraph

model fragments into predicate representation is shown

in Table 1.

Table 1 The textual representation of metagraph model

№ Metagraph representation Textual representation

1

mv1

v3v3v1v1 v2v2

Metavertex(Name=mv1, v1,

v2, v3)

2
v1v1 v2v2

e1

↔ v1v1 v2v2

e1

Edge(Name=e1, v1, v2)

3
v1v1 v2v2

e1

↔ v1v1 v2v2

e1 (eo=false)
Edge(Name=e1, v1, v2,

eo=false)

4 v1v1 v2v2

e1

↔ v1v1 v2v2

e1 (eo=true) 1. Edge(Name=e1, v1, v2,

eo=true)

2. Edge(Name=e1, vS=v1,

vE=v2, eo=true)

5

v3v3

v1v1

v2v2

mv2

e1

e2

e3

Metavertex(Name=mv2, v1,

v2, v3,

Edge (Name=e1, v1, v2),

Edge(Name=e2, v2, v3),

Edge(Name=e3, v1, v3))

347

6

v3v3

v1v1

v2v2

mv2

e1

e2

e3

Metavertex(Name=mv2, v1,

v2, v3, Edge(Name=e1,

vS=v1, vE=v2, eo=true),

Edge(Name=e2, vS=v2,

vE=v3, eo=true),

Edge(Name=e3, vS=v1,

vE=v3, eo=true))

7v2v2

me1
mv3

......
mv4

Metaedge(Name=me1,

vS=v2, vE=mv3,

Metavertex(Name=mv4, …

), eo=true)

8

......v2v2

me1
mv3

......
mv4

mg0

......
mv5

Metagraph(Name=mg0,

Vertex(Name=v2, …),

Metavertex(Name=mv3, …

),

Metavertex(Name=mv5, …

), Metaedge(Name=me1,

vS=v2, vE=mv3,

Metavertex(Name=mv4, …

), eo=true))

9 countcount 55
=

attribute

Attribute(count, 5)

10

reference reference
=

attribute

......
mv2

v1

countcount 55
=

attribute

Vertex(Name=v1,

Attribute(count, 5),

Attribute(reference, mv2))

11
antecedent antecedent consequent consequent

rule 1rule 1

rule Nrule N

.

start=truestart=true

metagraph agent 1metagraph agent 1

mg1mg1

v1

(k=1)

v1

(k=1)

v2

(k=2)

v2

(k=2)

e1(flag=main)

mv1

Sum
(k=3)

Sum
(k=3)

mv2

Agent(Name= metagraph

agent 1’,

WorkMetagraph=mg1,

Rules(

Rule(Name=rule 1’,

start=true,

Condition

(WorkMetagraph=mv1,

Vertex(Name=v1,

Attribute(k, $k1)),

Vertex(Name=v2,

Attribute(k, $k2)),

Edge(v1, v2, Attribute(flag,

main)))

Action

(WorkMetagraph=mv2,

Add(Vertex(Name=Sum,

Attribute(k,

Eval($k1+$k2)))))

), Rule(…) …))

Case 1 shows the example of metavertex mv1 which
contains three nested disjoint vertices v1, v2, and v3. The

predicate corresponds to metavertex, nested vertices are

isomorphic to atoms that are parameters of the predicate.

As the name of the predicate, “Metavertex” is used as the

corresponding element of metagraph model. Key-value

parameter “Name” is used to set the name of metavertex.

This case is the simplest, since nested vertices are

disjoint, and metavertex in this case is isomorphic to the

hypergraph hyperedge.

Case 2 shows metagraph edge which may be

represented as a special case of metavertex containing
source and destination vertices. This case is also

isomorphic to the hypergraph hyperedge. The metagraph

edge is represented as a predicate with the name “Edge”.

The source and destination vertices are represented as

predicate atom parameters.

Case 3 also shows metagraph edge which fully

complies with the formal definition of undirected edge

including direction flag parameter.

Case 4 shows an example of directed edge. Direction

flag parameter is also used. The source and destination

vertices may be represented as predicate atom parameters

(case 4.1) or as predicate key-value parameters (case

4.2).
Case 5 shows an example of metavertex mv1 which

contains three nested vertices v1, v2 and v3 joined with

undirected edges e1, e2, and e3. Edges are represented

with separate predicates that are nested to the metavertex

predicate. Case 6 is similar to case 5 unless edges e1, e2,

and e3 are directed.

Case 7 shows an example of directed metaedge me1

which joins vertex v2 and metavertex mv3 and contains

metavertex mv4. The metaedge is represented as a

predicate with the name “Metaedge”.

Case 8 shows an example of metagraph fragment mg0

which contains vertex v2, metavertices mv3 and mv5 and
metaedge me1 which joins vertex v2 and metavertex mv3

and contains metavertex mv4. The metagraph fragment

is represented as a predicate with the name “Metagraph”,

the vertex as a predicate with the name “Vertex”.

The attribute may be represented as a special case of

metavertex containing name and value. Case 9 shows

simple numeric attribute representation. Case 10 shows

an example of vertex v1 containing numeric attribute and

reference attribute that refers to the metavertex mv2. The

attribute is represented as a predicate with the name

“Attribute”.
Case 11 shows an example of metagraph rule agent

“metagraph agent 1” representation (the predicate with

the name “Agent” is used). As a work metagraph mg1 is

used (parameter “WorkMetagraph”). The “Rules”

predicate contains rules definition (nested predicate

“Rule” is used). As a start rule “rule 1” is used which is

defined by “start=true” parameter. Predicate “Condition”

corresponds to the rule condition. Parameter

“WorkMetagraph” contains a reference to the tested

metavertex mv1. The condition tests that metavertex mv1

contains vertices v1 and v2 with attribute k. Founded
values of k attribute of vertices v1 and v2 are assigned to

the $k1 and $k2 variables. Vertices v1 and v2 should be

joined with edge containing attribute “flag=main”. If

condition holds and metagraph fragment is found then

actions are performed (actions are defined by predicate

“Action”). Parameter “WorkMetagraph” contains a

reference to the result metavertex mv2. The example

action contains adding new elements (that is defined by

predicate “Add”). The vertex “Sum” is added containing

attribute “k=$k1+$k2”. Predicate “Eval” is used to

define the calculated expression.

Thus, we defined a predicate description of all the
main elements of metagraph data model.

The proposed predicate model is homoiconic. Since

predicate approach is used both for metagraph data

model definition and for metagraph agents definition

then high-level metagraph agents may change the

structure of low-level metagraph agents by modifying

their predicate definition.

348

The textual representation of metagraph model may

be used for storing metagraph model elements in

relational or NoSQL databases.

It should be noted that metagraph model is well

compatible with the Big Data approach. Nowadays the

lambda architecture described in [10] is considered to be

a classic approach.

The textual representation of metagraph model is the
base for processing metagraph data on all layers of the

lambda architecture. On the batch layer, the textual

representation is used for storing in master dataset. On

the serving layer, the textual representation helps to

construct the batch views. On the speed layer, the textual

representation helps to construct the real-time views.

Batch and real-time views may be constructed using

metagraph agents.

6 Conclusion

Nowadays complex network models have become

popular for complex domains description.

The metagraph model is a kind of complex network

model. The emergence in metagraph model is established

using metavertices and metaedges.

The hypergraph model does not fully implement the

emergence principle.

The hypernetwork model fully implements the

emergence principle using hypersimplices. The
metagraph model is more flexible than hypernetwork

model.

For metagraph model processing, the metagraph

function agents and the metagraph rule agents are used.

Two examples of complex domains description using

metagraph approach are discussed: neural network

representation and modeling the polypeptide chain

synthesis. Metagraph approach helps to describe

complex domains in a unified way.

The textual representation of metagraph model may

be used for storing metagraph model elements in

relational or NoSQL databases.
The metagraph model is well compatible with the Big

Data approach, in particular with the lambda

architecture.

References

[1] Basu A., Blanning R. Metagraphs and their

applications. Springer, New York (2007)

[2] E. Samohvalov, G. Revunkov, Yu. Gapanyuk,

“Metagraphs for describing semantics and
pragmatics of information systems,” in Herald of

Bauman Moscow State Technical University, vol.

1(100), pp.83-99, (2015)

[3] Vitaly I. Voloshin. Introduction to Graph and
Hypergraph Theory. Nova Science Publishers, Inc.,

(2009)

[4] Akhmediyarova, A.T., Kuandykova, J.R.,

Kubekov, B.S., Utepbergenov, I.T., Popkov, V.K.:
Objective of Modeling and Computation of City

Electric Transportation Networks Properties. In:

International Conference on Information Science

and Management Engineering (Icisme 2015), pp.

106–111, Destech Publications, Phuket (2015)

[5] Johnson, J.: Hypernetworks in the Science of

Complex Systems. Imperial College Press, London

(2013)

[6] Anokhin, K.V.: Cognitom: theory of realized

degrees of freedom in the brain. In: The Report

Given at Fifth International Conference on

Cognitive Science, Kaliningrad (2012)

[7] Fedorenko, Yu.S., Gapanyuk, Yu.E. Multilevel

neural net adaptive models using the metagraph

approach. Optical Memory and Neural Networks.

Volume 25, Issue 4, pp. 228–235 (2016)

[8] Minsky, M.L., Papert, S.A. Perceptrons. The MIT

Press (1988)

[9] Samish, I. Computational Protein Design. Springer

Science+Business Media, New York (2017)

[10] Marz, N., Warren, J. Big Data. Principles and best

practices of scalable realtime data systems.

Manning, New York (2015)

349

