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Abstract. In Astrophysics, the identification of candidate Globular Clusters through deep, wide-field, 

single band HST images, is a typical data analytics problem, where methods based on Machine Learning have 

revealed a high efficiency and reliability, demonstrating the capability to improve the traditional approaches. 
Here we experimented some variants of the known Neural Gas model, exploring both supervised and 

unsupervised paradigms of Machine Learning, on the classification of Globular Clusters, extracted from the 

NGC1399 HST data. Main focus of this work was to use a well-tested playground to scientifically validate 

such kind of models for further extended experiments in astrophysics and using other standard Machine 

Learning methods (for instance Random Forest and Multi Layer Perceptron neural network) for a comparison 

of performances in terms of purity and completeness. 
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1 Introduction 

The current and incoming astronomical synoptic 

surveys require efficient and automatic data analytics 

solutions to cope with the explosion of scientific data 

amounts to be processed and analyzed. This scenario, 

quite similar to other scientific and social contexts, 

pushed all communities involved in data-driven 

disciplines to explore data mining techniques and 

methodologies, most of which connected to the Machine 

Learning (hereafter ML) paradigms, i. e. 

supervised/unsupervised self-adaptive learning and 

parameter space optimization[3],[6],[7] . 

Following this premise, this paper is focused on the 

investigation about the use of a particular kind of ML 

methods, known as Neural Gas (NG) models[21], to 

solve classification problems within the astrophysical 
context, characterized by a complex multi-dimensional 

parameter space. In order to scientifically validate such 

models, we decided to approach a typical astrophysical 

playground, already solved with ML methods [8], [11] 

and to use in parallel other two ML techniques, chosen 

among the most standard, respectively, Random Forest 

[5] and Multi Layer Perceptron Neural Network[23], as

comparison baseline.

The astrophysical case is related to the identification 

of Globular Clusters (GCs) in the galaxy NGC1399 using 

single band photometric data obtained through 

observations with the Hubble Space Telescope (HST) 

[8], [25],[27].  

The physical identification and characterization of a 

Globular Cluster (GC) in external galaxies is considered 

important for a variety of astrophysical problems, from 

the dynamical evolution of binary systems, to the 

analysis of star clusters, galaxies and cosmological 

phenomena [27]. 

Here, the capability of ML methods to learn and 

recognize peculiar classes of objects, in a complex and 

noising parameter space and by learning the hidden 

correlation among object’s parameters, has been 
demonstrated particularly suitable in the problem of GC 

classification[8]. In fact, multi-band wide-field 

photometric data (colours and luminosities) are usually 

required to recognize GCs within external galaxies, due 

to the high risk of contamination of background galaxies, 

which appear indistinguishable from galaxies located 

few Mpc away, when observed by ground-based 

instruments. Furthermore, in order to minimize the 

contamination, high-resolution space-borne data are also 

required, since they are able to provide particular 

physical and structural features (such as concentration, 

core radius, etc.), thus improving the GC classification 

performance [25].  
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In[8] we demonstrated the capability of ML methods 

to classify GCs using only single band images from 

Hubble Space Telescope with a classification accuracy 

of 98.3%, a completeness of 97.8% and only 1.6% of 

residual contamination. Thus confirming that ML 

methods may yield low contamination by minimizing the 

observing requirements and extending the investigation 

to the outskirts of nearby galaxies. 

These results gave us an optimal playground where 

to train NG models and to validate their potential to solve 

classification problems characterized by complex data 

with a noising parameter space. 

The paper is structured as follows: in Sect. 2 we 

describe the data used to test of the various methods. In 

Sect. 3 we provide a short methodological and technical 

description of the models. In Sect. 4 we describe the 

experiments and results about the parameter space 

analysis and classification experiments, while in Sect. 5 

we discuss the results and draw our conclusions. 

2 The Astrophysical Playground 

As introduced, the HST single band data use dare very 

suitable to investigate the classification of GCs. They, in 

fact, are deep and complete in terms of wide-field 

coverage, i. e. able to sample the GC population, to 

ensure a high S/N ratio required to measure structural 

parameters [10]. Furthermore, they provide the 
possibility to study the overall properties of the GC 

populations, which usually may differ from those of the 

central region of a galaxy. 

With such data we intend to verify that Neural Gas 

based models could be able to identify GCs with low 

contamination even with single band photometric 
information. Throughout the confirmation of such 

behavior, we are confident that these models could solve 

other astrophysical problems as well as in other data-

driven problem contexts.  

2.1 The data 

The data used in the described experiment consist of 

wide field single band HST observations of the giant 

elliptical NGC1399 galaxy, located in the core of the 

Fornax cluster[27]. Due to its distance (D=20.130 Mpc, 

see[13]), it is considered an optimal case where to cover 

a large fraction of its GC system with a restricted number 
of observations. This dataset was used by[25] to study 

the GC-LMXB connection and the structural properties 

of the GC population. The optical data were taken with 

the HST Advanced Camera for Surveys, in the broad V 

band filter, with 2108 seconds of integration time for 

each field. The observations were arranged in a 3x3 ACS 

mosaic with a scale of 0.03 arcsec/pix, and combined into 

a single image using the MultiDrizzle routine[19]. The 

field of view of the ACS mosaic covers ~100 square 

arcmin (Figure 1), extending out to a projected galacto-

centric distance of ~55 kpc. 

The source catalog was generated using Sextractor 

[4],[2], by imposing a minimum area of 20 pixels: it 

contains 12915 sources and reaches 7σ detection at 

m_V=27.5, i.e. 4 mag below the GC luminosity function, 

thus allowing to sample the entire GC population (see[8] 

for details).  

Figure 1 The FoV covered by the HST/ACS mosaic in 

the broad V band 

The source subsample used to build our Knowledge 

Base (KB) to train the ML models, is composed by 2100 

sources with 11features (7 photometric and 4 

morphological parameters).  

Such parameter space includes three aperture 

magnitudes within 2, 6 and 20 pixels (mag_aper1, 

mag_aper2, mag_aper3), is ophotal magnitude 

(mag_iso), kron radius (kron_rad), central surface 

brightness (mu0), FWHM (fwhm_im),and the four 
structural parameters, respectively, ellipticity, King's 

tidal, effective and core radii (calr_t, calr_h, calr_c). The 

target values of the KB required as ground truth for 

training and validation, i.e. the binary column indicating 

the source as GC or not GC, is provided through the 

typical selection based on multi-band magnitude and 

colour cuts. The original 2100 sources having a target 

assigned have been randomly shuffled and split into a 

training (70%) and a blind test set (30%). 

3 The Machine Learning Models 

In our work we tested three different variants of the 

Neural Gas model, using two additional machine 

learning methods, respectively feed-forward neural 

network and Random Forest, as comparison benchmarks. 

In the following all main features of these models are 

described. 

3.1 Growing Neural Gas 

Growing Neural Gas (GNG) is presented by[14] as a 
variant of the Neural Gas algorithm (introduced by[21]), 

which combines the Competitive Hebbian Learning 

(CHL, [22]) with a vector quantization technique to 

achieve a learning that retains the topology of the dataset. 

Vector quantization techniques[22] encode a data 

manifold, e.g. , using a finite set of reference 

vectors , . Every data 

vector  is described by the best matching reference 

vector  for which the distortion error  is 

minimal. This procedure divides the manifold  into a 
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number of subregions:

, called Voronoi 

polyhedra[24], within which each data vector  is 

described by the corresponding reference vector . 

The Neural Gas network is a vector quantization 

model characterized by N neural units, each one 

associated to a reference vector, connected to each other. 
When an input is extracted, it induces a synaptic 

excitation detected by all the neurons in the graph and 

causes its adaptation. As shown in[21], the adaptation 

rule can be described as a “winner-takes-most” instead 

of “winner-takes-all” rule: 

.       (1) 

The step size describes the overall extent of the 

adaptation. While  is a function in 

which  is the “neighborhood-ranking” of the reference 

vectors. Simultaneously, the first and second Best 

Matching Units (BMUs) develop connections between 

each other[21].  

Each connection has an “age”; when the age of a 

connection exceeds a pre-specified lifetime T, it is 

removed[21]. Martinez's reasoning is interesting[22]: 

they demonstrate how the dynamics of neural units can 

be compared to a gaseous system. Let’s define the 

density of vector reference at location through

, where is the volume of 

Voronoi polyhedra. Hence,  is a step function on 

each Voronoi polyhedra, but we can still imagine that 

their volumes change slowly from one polyhedra to the 

next, with  continuous. In this way, it is possible to 

derive an expression for the average change: 

 (2) 

where  is the data point distribution. 

The equation suggests the name Neural Gas: the average 

change of the reference vectors corresponds to a motion 

of particles in a potential . Superimposed on 

the gradient of this potential there is a force proportional 

to , which points toward the direction of the 

space where the particle density is low. 

Main idea behind the GNG network is to 
successively add new units to an initially small network, 

by evaluating local statistical measures collected during 

previous adaptation steps[14]. Therefore, each neural 

unit in the graph has associated a local reconstruction 

error, updated for the BMU at each iteration (i. e. each 

time an input is extracted): .  

Unlike the Neural Gas network, in the GNG the 

synaptic excitation is limited to the receptive fields 

related to the Best Matching Unit and its topological 

neighbors: 

It is no longer necessary to calculate the ranking for all 

neural units, but it is sufficient to determine the first and 

the second BMU. 

The increment of the number of units is performed 

periodically: during the adaptation steps the error 

accumulation allows to identify the regions in the input 

space where the signal mapping causes major errors. 

Therefore, to reduce this error, new units are inserted in 

such regions[14].  

An elimination mechanism is also provided: once 

the connections, whose age is greater than a certain 

threshold, have been removed, if their connected units 

remain isolated (i.e. without emanating edges), those 

units are removed[14]. 

3.2 GNG with Radial Basis Function 

Fritzke describes an incremental Radial Basis Function 

(RBF) network suitable for classification and regression 

problems [14]. 

The network can be figured out as a standard RBF 

network [9], with a GNG algorithm as embedded 

clustering method, used to handle the hidden layer. 

Each unit of this hybrid model (hereafter GNGRBF) 

is a single perceptron with an associated reference vector 

and a standard deviation. For a given input-output pair 

, the activation of the i-th unit is 

described by 

. 

Each of the single perceptron computes a weighted 

sum of the activations: 

The adaptation rule applies to both reference vectors 

forming the hidden layer and the RBF weights. For the 

first, the adaptation rule is the same of the updating rule 

for the GNG network, while for the weights:  

 (3) 

Similarly to the GNG network, new units are inserted 

where the prediction error is high, updating only the Best 

Matching Unit at each iteration: 

. 

3.3 Supervised Growing Neural Gas 

The Supervised Growing Neural Gas (SGNG) algorithm 

is a modification of the GNG algorithm that uses class 

labels of data to guide the partitioning of data into 

optimal clusters[15],[20]. Each of the initial neurons is 

labelled with a unique class label. To reduce the class 

impurity inside the cluster, the original learning rule (1) 
is reformulated by considering the case where the BMU 

belongs or not to the same class of the neuron whose 

reference vector is the closest to the current input. 

Depending on such situation the SGNG learning rule is 

expressed alternatively as: 

     (4) 

Where  is the nearest class neuron and 

is a function specifically introduced to 
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maintain neurons sufficiently distant one each other. For 

the neuron which is topologically close to the neuron , 

the rule intends to increase the clustering accuracy[20]. 

The insertion mechanism has to reduce not only the intra-
distances between data in a cluster, but also the impurity 

of the cluster. Each unit has associated two kinds of error: 

an aggregated and a class error. A new neuron is inserted 

close to the neuron having a highest class error 

accumulated, while the label is the same as the neuron 

label with the greater aggregated error. 

3.4 Multi Layer Perceptron 

The Multi Layer Perceptron (MLP) architecture is 

one of the most typical feed-forward neural 

networks[23]. The term feed-forward is used to identify 

basic behavior of such neural models, in which the 

impulse is propagated always in the same direction, e.g. 
from neuron input layer towards output layer, through 

one or more hidden layers (the network brain), by 

combining the sum of weights associated to all neurons. 

As easy to understand, the neurons are organized in 

layers, with proper own role. The input signal, simply 

propagated throughout the neurons of the input layer, is 
used to stimulate next hidden and output neuron layers. 

The output of each neuron is obtained by means of an 

activation function, applied to the weighted sum of its 

inputs. 

The weights adaptation is obtained by the Logistic 
Regression rule[17], by estimating the gradient of the 

cost function, the latter being equal to the logarithm of 

the likelihood function between the target and the 

prediction of the model. In this work, our implementation 

of the MLP is based on the public library Theano[1]. 

3.5 Random Forest 

Random Forest (RF) is one of the most widely known 

machine learning ensemble methods [5], since it uses a 

random subset of candidate data features to build an 

ensemble of decision trees. Our implementation makes 

use of the public library scikit-learn[26]. This method has 

been chosen mainly because it provides for each input 
feature as core of importance (rank) measured in terms 

of its informative contribution percentage to the 

classification results. From the architectural point of 

view, a RF is a collection (forest) of tree-structured 

classifiers , where the  are independent, 

identically distributed random vectors and each tree casts 

a unit vote for the most popular class at input. Moreover, 

a fundamental property of the RF is the intrinsic absence 

of training over fitting[5]. 

4 The experiments 

The five models previously introduced have been 

applied to the dataset described in Sec. 2.1 and their 

performances have been compared to verify the 

capability of NG models to solve particularly complex 

classification problems, like the astrophysical 

identification of GCs from single-band observed data. 

4.1 The Classification Statistical Estimators 

In order to evaluate the performances of the selected 

classifiers, we decided to use three among the classical 

and widely used statistical estimators, respectively, 

average efficiency, purity, completeness and F1-score, 

which can be directly derived from the confusion 

matrix[28], showed in Figure 2. The average 

efficiency(also known as accuracy, hereafter AE), is the 
ratio between the sum of correctly classified objects on 

both classes (true positives for both classes, hereafter tp) 

and the total amount of objects in the test set. The purity 

(als known as precision, hereafter pur) of a class 

measures the ratio between the correctly classified 

objects and the sum of all objects assigned to that class 

(i.e. tp/ [tp+fp], where fp indicates the false 

positives).While the completeness (also known as recall, 

hereafter comp) of a class is the ratio tp/ [tp+fn], where 

fn is the number of false negatives of that class. The 

quantity tp+fn corresponds to the total amount of objects 

belonging to that class. The F1-score is a statistical test 
that considers both the purity and completeness of the 

test to compute the score (i. e. 2 [pur*comp]/ 

[pur+comp]). 

By definition, the dual quantity of the purity is the 

contamination, another important measure which 
indicates the amount of misclassified objects for each 

class. 

Figure 2 The confusion matrix used to estimate the 

classification statistics. Columns indicate the class 

objects as predicted by the classifier, while rows are 

referred to the true objects of the classes. Main diagonal 

terms contain the number of correctly classified for the 

two classes, while fp counts the false positives and fn the 

false negatives of the GC class 

In statistical terms, it is well known the classical 

tradeoff between purity and completeness in any 

classification problem, particularly accentuated in 

astrophysical problems[12]. In the specific case of the 

GC identification, from the astrophysical point of view, 

we were mostly interested to the purity, i. e. to ensure the 

highest level of true GCs correctly identified by the 

classifiers[8]. However, within the comparison 

experiments described in this work, our main goal was to 

evaluate the performances of the classifiers mostly 

related to the best tradeoff between purity and 
completeness. 

4.2 Analysis of the Data Parameter Space 

Before to perform the classification experiments, we 

preliminarily investigated the parameter space, defined 

by the 11 features defined in Sec. 2.1, identifying each 

object within the KB dataset of 2100 objects. Main goal 

of this phase was to measure the importance of any 

feature, i.e. its relevance in terms of informative 
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contribution to the solution of the problem. In the ML 

context, this analysis is usually called feature 

selection[16]. Its main role is to identify the most 

relevant features of the parameter space, trying to 

minimize the impact of the well known problem of the 

curse of dimensionality, i.e. the fact that ML models 

exhibit a decrease of performance accuracy when the 

number of features is significantly higher than 
optimal[18]. This problem is mainly addressed to cases 

with a huge amount of data and dimensions. However, 

its effects may also impact contexts with a limited 

amount of data and parameter space dimension. 

The Random Forest model resulted particularly 

suitable for such analysis, since it is intrinsically able to 
provide a feature importance ranking during the training 

phase. The feature importance of the parameter space, 

representing the dataset used in this work, is shown in 

Figure 3. 

From the astrophysical point of view, this ranking is 

in accordance with the physics of the problem. In fact, as 
expected, among the five most important features there 

are the four magnitudes, i. e. the photometric log-scale 

measures of the observed object’s photonic flux through 

different apertures of the detector. Furthermore, almost 

all photometric features resulted as the most relevant. 

Finally, by looking at the Figure 3, there is an interesting 

gap between the first six and the last five features, whose 

cumulative contribution is just ~11% of the total. Finally, 

a very weak joined contribution (~3%) is carried by the 

two worst features (kron_rad and calr_c), which can be 

considered as the most noising/redundant features for the 
problem domain. 

Figure 3 The feature importance ranking obtained by the 

Random Forest on the 11-feature domain of the input 

dataset during training (see Sec. 2.1 for details). The blue 

vertical lines report the importance estimation error bars 

Based on such considerations, the analysis of the 

parameter space provides a list of most interesting 

classification experiments to be performed with the 
selected five ML models. This list is reported in Table 1. 

The experiment E1 is useful to verify the efficiency 

by considering the four magnitudes.  

The experiment E2 is based on the direct evaluation 

of the best group of features as derived from the 

importance results.  

The classification efficiency of the full photometric 

subset of features is evaluated through the experiment 

E3.  

Finally, the experiment E4 is performed to verify the 

results by removing only the two worst features. 

Table 1 List of selected experiments, based on the 

analysis of the parameter space. The third column 

reports the identifiers of the included features, 

according to the importance ranking (see legend in 

Figure 3) 

EXP ID # features 
included 
features 

E1 4 1,2,3,5 

E2 6 1,2,3,4,5,6 

E3 7 1,2,3,4,5,6,10 

E4 9 1,2,3,4,5,6,7,8,9 

4.3 The Classification Experiments 

Following the results of the parameter space analysis, 

the original domain of features has been reduced, by 

varying the number and types of included features. 

Therefore, the classification experiments have been 

performed on the dataset, described in Sec. 2.1, 

composed by 2100 objects and represented by a 

parameter space with up to a maximum of 9 features 

(Table 1). 

Table 2 Statistical analysis of the classification 

performances obtained by the five ML models on the 

blind test set for the four selected experiments. All 

quantities are expressed in percentage and related to 

average efficiency (AE), purity for each class (purGC, 

purNotGC), completeness for each class (compGC, 

compNotGC) and the F1-score for GC class. The 

contamination is the dual value of the purity 

ID Estimator 
RF 

% 

MLP 

% 

SGNG 

% 

GNGRBF 

% 

GNG 

% 

E1 

AE 88.9 84.4 88.1 88.1 88.4 

purGC 85.9 80.1 89.7 85.4 83.7 

compGC 87.3 82.6 80.3 85.7 89.2 

F1-scoreGC 86.6 81.3 84.7 85.5 86.4 

purNotGC 91.0 87.6 87.2 90.0 92.1 

compNotGC 89.7 85.6 93.0 89.6 88.1 

E2 

AE 89.0 85.1 87.3 88.3 83.2 

purGC 84.9 77.0 81.0 82.9 74.0 

compGC 89.2 90.7 90.3 90.0 91.1 

F1-scoreGC 87.0 83.3 85.4 86.3 81.7 

purNotGC 92.2 92.6 92.7 92.6 92.6 

compNotGC 89.0 85.6 85.7 87.4 80.0 

E3 

AE 89.0 83.2 85.1 89.2 86.8 

purGC 85.2 77.2 80.0 86.0 84.1 

compGC 88.8 83.8 84.9 88.0 83.8 

F1-scoreGC 87.0 80.4 82.4 87.0 83.9 

purNotGC 91.9 88.0 89.0 91.5 88.7 

compNotGC 89.9 83.2 85.1 89.8 88.4 

E4 
AE 89.5 86.0 88.1 88.7 83.8 

purGC 85.3 82.5 84.1 83.8 78.3 
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compGC 90.0 83.8 87.6 90.0 83.8 

F1-scoreGC 87.6 83.1 85.8 86.8 81.0 

purNotGC 92.7 88.6 91.1 92.6 88.1 

compNotGC 89.1 87.5 88.1 88.2 84.1 

The dataset has been randomly shuffled and split into 

a training set of 1470 objects (70% of the whole KB) and 

a blind test set of 630 objects (the residual 30% of the 

KB). 

These datasets have been used to train and test the 

selected five ML classifiers. The analysis of results, 

reported in Table 2, has been performed on the blind test 

set, in terms of the statistical estimators defined in 

Sec. 4.2.  

5 Discussion and Conclusions 

As already underlined, main goal of this work is the 

validation of NG models as efficient classifiers in noising 

and multi-dimensional problems, with performances at 

least comparable to other ML methods, considered 

“traditional” in terms of their use in such kind of 

problems.  

By looking at Table 2 and focusing on the statistics 

for the three NG models, it is evident that their result is 

able to identify GCs from other background objects, 

reaching a satisfying tradeoff between purity and 

completeness in all experiments and for both classes. The 

occurrence of statistical fluctuations is mostly due to the 

different parameter space used in the four experiments. 

Nevertheless, none of the three NG models overcome the 

others in terms of the measured statistics. 

If we compare the NG models with the two additional 

ML methods (Random Forest and MLP neural network), 

their performances appears almost the same. This implies 

that NG methods show classification capabilities fully 

comparable to other ML methods.  

Another interesting aspect is the analysis of the 

degree of coherence among the NG models in terms of 

commonalities within classified objects. Table 3 reports 

the percentages of common predictions for the objects 

correctly classified by considering, respectively both and 

single classes. On average, the three NG models are in 

agreement among them for about 80% of the objects 

correctly classified. 

Table 3 Statistics for the three NG models related to the 

common predictions of the correctly classified objects. 

Second column is referred to both classes, while the 

third and fourth columns report, respectively, the 

statistics for single classes 

EXP ID 
GC+notGC 

% 

GC 

% 

notGC 

% 

E1 86.0 85.4 86.9 

E2 79.8 79.8 79.8 

E3 81.1 82.5 79.2 

E4 77.8 77.4 78.4 

This is also confirmed by looking at the Figure 4, 

where the tabular results of Table 3 are showed through 

the Venn diagrams, reporting also more details about 

their classification commonalities. 

Figure 4 The Venn diagram related to the prediction of all (both GCs and not GCs) correctly classified objects 

performed by the three Neural Gas based models (GNG, GNGRBF and SGNG) for the experiments, respectively, E1 

(a), E2 (b), E3 (c) and E4 (d). The intersection areas (dark grey in the middle) show the objects classified in the same 

way by different models. Internal numbers indicate the amount of objects correctly classified for each sub-region 

Finally, from the computational efficiency point of 

view, the NG models have theoretically a higher 
complexity than Random Forest and neural networks. 

But, since they are based on a dynamic evolution of the 

internal structure, their complexity strongly depends on 

the nature of the problem and its parameter space. 

Nevertheless, all the presented ML models have a 

variable architectural attitude to be compliant with the 
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parallel computing paradigms. Besides the 

embarrassingly parallel architecture of the Random 

Forest, the use of optimized libraries, like Theano[1], 

make also models like MLP highly efficient. From this 

point of view NG models have a high potentiality to be 

parallelized. By optimizing GNG, the GNGRBF would 

automatically benefit, since both share the same search 

space, except for the RBF training additional cost. In 
practice, the hidden layer of the supervised network 

behaves just like a GNG network whose neurons act as 

inputs for the RBF network. Consequently, with the same 

number of iterations, the GNGRBF network performs a 

major number of operations. 

On the other hand, the SGNG network is similar to 
the GNG network, although characterized by a neural 

insertion mechanism over a long period, thus avoiding 

too rapid changes in the number of neurons and excessive 

oscillations of reference vectors. Therefore, on average, 

the SGNG network computational costs are higher than 

the models based on the standard Neural Gas mechanism. 

In conclusion, although a more intensive test 

campaign on these models is still ongoing, we can assert 

that Neural Gas based models are very promising as 

problem-solving methods, also in presence of complex 

and multi-dimensional classification and clustering 

problems, especially if preceded by an accurate analysis 

and optimization of the parameter space within the 

problem domain. 
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