
Solving the Families to Persons Case using EVL+Strace

Leila Samimi-Dehkordi
samimi@eng.ui.ac.ir

Bahman Zamani
zamani@eng.ui.ac.ir

Shekoufeh Kolahdouz-Rahimi
sh.rahimi@eng.ui.ac.ir

MDSE research group
Department of Software Engineering
Faculty of Computer Engineering

University of Isfahan, Iran

Abstract

Benchmarx is the subject of bidirectional transformation case study
for the Transformation Tool Contest 2017. The example is a well-
known model-to-model transformation from the ATL transformation
Zoo named "Families to Persons". This paper presents a solution to
provide the inter-model consistency using the Epsilon Validation Lan-
guage (EVL) and domain-specific traceability techniques. We call this
approach EVL+Strace.

1 Introduction
Bidirectional transformations (Bx) are used to restore the consistency when both source and target models are
allowed to be modified, but they must remain consistent [1]. A Bx is bidirectional in the sense that the source
can be transformed into the target (forward direction) and vice versa (backward direction); however, in most
approaches, both transformation directions cannot be executed simultaneously [2]. In other words, at each time,
only one of the models will be made consistent with the other. Besides that, in most cases, there is more
than one way to resolve the inconsistencies. The "Families to Persons" case study [3] is an example of these
cases. In this paper, a novel Bx approach called EVL+Strace solves the case study 1. It supports an interactive
bidirectional transformation that can execute both directions at the same time. It provides multiple ways to
restore consistency. EVL+Strace uses the Epsilon Validation Language (EVL) [4], which expresses constraints
between heterogeneous models and evaluates them to resolve the occurred violations. The approach should check
if any manual update (element deletion, relocation, and addition and attribute value modification) has occurred
in the source or target models. To recognize the type of updates, it is required to store the past information of
source and target models in a correspondence (trace) model. This trace model conforms to a metamodel, that
we believe it should be specific to the domains of source and target metamodels [5]. EVL+Strace applies EVL
on the case-specific trace metamodel to provide a solution for Bx. The rest of the paper is structured as follows.
Section 2 describes the EVL+Strace approach. Section 3 presents how the approach solves the case. Section 4
studies the evaluation of the proposed solution. Section 5 concludes the paper.

2 EVL+Strace
The EVL+Strace approach defines EVL modules. Modules consist of a set of invariants (constraints) grouping
in the context. An EVL constraint contains two main parts including check and fix blocks. In the check block,

Copyright c© by the paper’s authors. Copying permitted for private and academic purposes.

In: A. Garcia-Dominguez, G. Hinkel, and Filip Křikava (eds.): Proceedings of the 10th Transformation Tool Contest, Marburg,
Germany, 21-07-2017, published at http://ceur-ws.org

1The code of the case solution and the test files are accessible at http://lsamimi.ir/EVLStrace.htm

a condition is specified that must be true. If it is evaluated to be false, the fix block triggers some statements
to resolve the violation. The Epsilon Object Language (EOL) [6] specifies the checking expressions and fixing
statements. The defined constraints in EVL+Strace are applied on the elements of three metamodels including
source, case-specific trace, and target. The case-specific trace metamodel defines strongly typed links between
source and target meta-elements.

EVL+Strace can detect independent updates on the source and target models by checking the information
of trace model. Figure 1 illustrates an example of source, trace, and target models for the Families to Persons
case study. It presents examples of possible atomic updates on source and target models, including addition
(number 1), deletion (number 2), relocation (number 3), and attribute value modification (number 4). As it is
demonstrated, for each source or target object, there is an element in the trace that referenced to the object. Since
there are not any element referring to m4:MemberFamily, EVL+Strace will recognizes it as a new inserted element.
If the manual deletion (shown as number 2 in Figure 1) is performed by user, i.e., p3:́Male is removed from the
target model, the reference of pT3:́PersonTargetEnd will become empty; therefore, EVL+Strace recognizes a
deletion.

Figure 1: Example of consistent models

Label 3 in Figure 1 presents the element relocation. The reference from f2:Family to m2:MemberFamily
is deleted and a new reference from f1:Family to m2:MemberFamily is added. In other words, The member
Liz is moved from Simpson family to Flanders family. Since each reference in the source has a corresponding
reference in the target, EVL+Strace can identify this relocation. As it is shown, there is no reference between
fT1:FamilySourceEnd and mT2:MemberFamilySourceEnd and the reference between fT2:FamilySourceEnd and
mT2:MemberFamilySourceEnd has no correspondence in the source. Therefore, an element relocation will be de-
tected. An example of value modification is presented in Label 4 of Figure 1. In this case, the name of p1´ is
updated to ’Flanders, Jim’. This modification is detected by comparing the name of pT1:́PersonTargetEnd
with the name of p1:́Male. When the comparison demonstrates the inequality, the value modification is recog-
nized. Note that, since the birthday attribute is not participated in the transformation, the PersonTargetEnd
class does not contain this field.

3 Solution
In this section, we show how EVL+Strace works using the Families2Persons trace metamodel. Fig-
ure 2 shows the case-specific trace metamodel. The root of the metamodel is TraceModel. It has two
kinds of trace links that are Reg2RegTraceLink and FamilyMember2PersonsTraceLink. The former con-
nects FamilyRegisterSourceEnd to PersonRegisterTargetEnd. The latter links FamilySourceEnd and
FamilyMemberSourceEnd to PersonTargetEnd. The instance object of FamilySourceEnd keeps information

of the corresponding Family object in the source model such as the value of name and the references to the
MemberSourceEnd objects. To access the corresponding source/target object, the trace link end has a reference
type. For instance, FamilySourceEnd defines a familySourceEndType reference, which refers to the Family
object in the source model. Note that, the relation between trace links and trace link ends is a bidirectional
reference; therefore, accessing the link (end) is possible from the link end (link).

Figure 2: The case-specific trace metamodel for Families to Persons case study

To modularize the EVL+Strace code, some EOL operations are defined for checking or fixing various types
of updates. The EVL module consists of pre block, deletion, modification, relocation, and addition constraints.
The pre block sets the useXmiIds feature of three resources (models) to true. Through this setting, all created
objects in three models have their own xmi:ids. The Bx code deals with objects by means of these ids.

Deletion constraints are defined in the context of the SourceEnds or TargetEnds. They check if a source/target
element has been removed and fix the violation by deleting the corresponding TraceLinkEnd instance. In the
fix block, the owner link of that link end is notified from this deletion and another constraint in the context of
that TraceLink is called. The called constraint deletes all link end objects and their corresponding source/target
elements that are referenced by the TraceLink. Addition constraints are specified in the context of source/ target
meta-classes. A new element has no fingerprint in the trace model. In other words, if there is no trace link end
referring to that object, it is detected as a new element. While an addition in source (target) is recognized, the
fix block should first add corresponding object in the target (source). Then, it adds corresponding trace link
ends for new inserted elements in the trace. Finally, it links them by a typed trace link.

Modification constraints check and fix modifications of the attribute values. They are specified in the context
of the SourceEnds or TargetEnds like deletion constraints. When a modification is recognized by a checking
operation, the propagate operation should be called to fix the violation. For instance, modifying the name of
Family or Member objects results in changing the name of corresponding Person(s). The developer may want to
delete some objects and add new ones when a modification occurs (modifying the last name of a Person object
is an example of this situation). Relocation constraints are also defined in the context of the TraceLinkEnds.
Each reference in source/ target model has an equivalent reference in the trace model (if that reference is related
to the transformation scenario). For instance, the father, mother, sons, daughters references are defined in
the trace metamodel. If a reference of trace refers to a trace link end, and its equivalent reference in the source

(target) refers to the object that is not corresponding to the mentioned trace link end, an element relocation is
detected. Based on the relocation, a fixing strategy should be defined to restore the consistency.

An example of the EVL+Strace constraint is presented in Listing 1. This constraint checks if the name of
the FamilyMemberSourceEnd object is modified (self.nameIsModified()). The nameIsModified() operation
compare the names of self object and its correspondence (FamilyMember object in source). If the mentioned
values are not equal, then it returns true. When the check expression (negation of the nameIsModified()
operation) becomes false, EVL shows the message to the user in the validation view. By right clicking on the
appeared message in the Validation view, the title of the fix block is presented to the user. When the user clicks
on it, the statements of the fix block (here self.namePropagates()) are executed. (For more examples refer to
Appendix A)

1 context Families2Persons!FamilyMemberSourceEnd{
2 guard: not self.isRemoved() and not self.refFamilyMember2Persons.endTypeIsRemoved()
3 constraint nameIsModified{
4 check: not self.nameIsModified()
5 message: ’name of ’+self +’ is modified’
6 fix{
7 title:’Propagate the modification’
8 do{ self.namePropagates();}
9 }}}

Listing 1: nameIsModified constraint in the context of FamilyMemberSourceEnd

The approach code is verbose, and designing a trace metamodel for each transformation case study is time
consuming. Therefore, to automatically produce the trace metamodel and generate main parts of code, we imple-
ment a tool called MoDEBiTE 2 (please see Appendix A.3). EVL+Strace provides an interactive transformation
system. In special cases, when there is no conflict between the manual changes on the source and target models,
it is possible to specify the constraint in order to be executed automatically. To provide auto-fix constraints, the
shape of code should be changed, in which fix blocks are removed and their statements are shifted to the check
block. When the number of violations in interactive case is enormous, the user must spend extra effort to select
from the alternatives. However, being interactive can be beneficial in check-only mode. In this case, the user may
only want to know which constraints are broken, but it is not needed to enforce the consistency. EVL+Strace
does not need to specify the execution mode. The order of selecting the violated messages, which must be fixed,
is important in some cases. Therefore, the approach handles execution order by defining some lazy constraints,
which is required to be called from other constraints.

4 Evaluation
To test the solution, we use EUnit and Workflow tools [7] of the Epsilon framework. It is required to change
the code of EVL+Strace to have automatic behavior. In this case, multiple deletions get the approach into
trouble, while the interactive approach can pass this case. To have an automatic transformation, a Configuration
metamodel is introduced to preserve the preferExistingToNewFamily and preferParentToChild values. From
the Bx tool architecture variability point of view [8], the proposed approach is an incremental corr-based Bx
tool. We use some update examples defined in FamilyHelper.eol and PersonHelper.eol files to provide test
cases. Table 1 presents the results of testing EVL+Strace.

From all 34 test cases, automatic EVL+Strace approach has 32 expected pass and two failures. The date
value in set birthday operations (defined in PersonHelper.eol) is specified by the cal.getTime() statement
that returns the date, time (with millisecond), and time zone. The millisecond and time zone are specified based
on the current case of the system. Since the expected target models in our test cases are not actively created,
the generated and expected target models are only different in two values (millisecond and time zone). In other
words, the birthday values of the generated and expected target models are the same in the first parts. Therefore,
some results in Table 1 are determined by star(∗) which show this case.

5 Conclusion
This paper presents a bidirectional model-to-model transformation solution to the TTC 2017 Families to Persons
case study. The proposed solution is based on a novel approach named EVL+Strace, which uses the EVL language
(one of the Epsilon family languages) and a case-specific trace metamodel. The trace metamodel (correspondence

2The tool can be downloaded from the MoDEBiTE link in http://mdse.bahmanzamani.com/tools/

Table 1: The result of test case correctness

direction Policy Change Type Test Case Name Result
1 fwd fixed - testInitialiseSynchronisation expected pass
2 fwd fixed attribute testFamilyNameChangeOfEmpty expected pass
3 fwd fixed add testCreateFamily expected pass
4 fwd fixed add testCreateFamilyMember expected pass
5 fwd fixed add testNewFamilyWithMultiMembers expected pass
6 fwd fixed add testNewDuplicateFamilyNames expected pass
7 fwd fixed add testDuplicateFamilyMemberNames expected pass
8 bwd runtime add (e ∧ p) testCreateMalePersonAsSon expected pass
9 bwd runtime add (e ∧ p) testCreateMembersInExistingFamilyAsParents expected pass
10 bwd runtime add (e ∧ ¬p) testCreateMalePersonAsSon expected pass
11 bwd runtime add (e ∧ ¬p) testCreateMembersInExistingFamilyAsParents expected pass
12 bwd runtime add (e ∧ p) testCreateDuplicateMembersInExistingFamilyAsChildren expected pass
13 bwd runtime add (¬e ∧ p) testCreateMalePersonAsParent expected pass
14 bwd runtime add (¬e ∧ p) testCreateMembersInNewFamilyAsParents expected pass
15 bwd runtime add (¬e ∧ p) testCreateDuplicateMembersInNewFamilyAsParents expected pass
16 bwd runtime add (¬e ∧ ¬p) testCreateMalePersonAsSon expected pass
17 bwd runtime add (¬e ∧ ¬p) testCreateFamilyMembersInNewFamilyAsChildren expected pass
18 bwd runtime add (¬e ∧ ¬p) testCreateDuplicateFamilyMembersInNewFamilyAsChildren expected pass
19 fwd fixed add testIncrementalInserts expected pass∗

20 fwd runtime del testIncrementalDeletions expected pass∗

21 fwd fixed attribute testIncrementalRename expected pass∗

22 fwd fixed move testIncrementalMove expected pass∗

23 fwd fixed add+del testIncrementalMixed expected pass∗

24 fwd fixed move testIncrementalMoveRoleChange expected pass∗

25 fwd fixed - testStability expected pass
26 fwd fixed - testHippocraticness expected pass
27 bwd fixed add testIncrementalInsertsFixedConfig expected pass
28 bwd runtime add testIncrementalInsertsDynamicConfig expected pass
29 bwd runtime del testIncrementalDeletions failure
30 bwd runtime attribute testIncrementalRenamingDynamic expected pass
31 bwd runtime del+add testIncrementalMixedDynamic failure
32 bwd runtime add testIncrementalOperational expected pass
33 bwd runtime - testStability expected pass
34 bwd runtime - testHippocraticness expected pass

metamodel) is specific to the domains of the Families and Persons case studies. The approach defines constraints
to check user updates with the use of EVL. This language enables us to fix the violations if an inconsistency is
recognized. It is possible to program more than one fixing ways, and interactively ask the user to restore the
consistency. To test the solution, we change the constraints to fix the violations automatically. The evaluation
presents that from all 34 test cases, EVL+Strace can pass 32 cases.

References

[1] K. Czarnecki, J. Foster, Z. Hu, R. Lämmel, A. Schürr, and J. Terwilliger, “Bidirectional Transformations: A
Cross-Discipline Perspective,” in Theory and Practice of Model Transformations, vol. 5563 of Lecture Notes
in Computer Science, pp. 260–283, 2009.

[2] S. Hidaka, M. Tisi, J. Cabot, and Z. Hu, “Feature-based classification of bidirectional transformation ap-
proaches,” Software & Systems Modeling, vol. 15, no. 3, pp. 907–928, 2016.

[3] A. Anjorin, T. Buchmann, and B. Westfechtel, “The Families to Persons Case,” in Proceedings of the 10th
Transformation Tool Contest, a part of the Software Technologies: Applications and Foundations (STAF
2017) federation of conferences (A. Garcia-Dominguez, G. Hinkel, and F. Krikava, eds.), CEUR Workshop
Proceedings, CEUR-WS.org, July 2017.

[4] D. Kolovos, R. Paige, and F. Polack, “On the Evolution of OCL for Capturing Structural Constraints in
Modelling Languages,” in Rigorous Methods for Software Construction and Analysis, vol. 5115 of Lecture
Notes in Computer Science, pp. 204–218, 2009.

[5] D. S. Kolovos, R. F. Paige, and F. A. Polac, “On-demand merging of traceability links with models,” in 2nd
EC-MDA Workshop on Traceability (July 2006), 2006.

[6] D. S. Kolovos, R. F. Paige, and F. A. Polac, “The Epsilon Object Language (EOL),” in Model Driven
Architecture – Foundations and Applications: Second European Conference, ECMDA-FA 2006., pp. 128–142,
2006.

[7] D. S. Kolovos, L. M. Rose, R. F. Paige, and A. Garcia-Dominguez, The Epsilon Book. Eclipse, 2010.

[8] A. Anjorin, Z. Diskin, F. Jouault, H.-S. Ko, E. Leblebici, and B. Westfechtel, “Benchmarx reloaded: A
practical benchmark framework for bidirectional transformations,” in Proceedings of the 6th International
Workshop on Bidirectional Transformations, CEUR-WS, pp. 15–30, 2017.

A Appendix: Details of our solution
A.1 EOL operations

We divide the EOL operations into four groups including Auxiliary, Delete, Modify, and Add operations. The
last three groups have two types, i.e., Check and Fix. Auxiliary operations are used by other EOL operations.
They compute values and get or find objects. A Delete operation checks if an object is removed, or in some
cases, it deletes an object from models. Following that, Modify operations identifies whether an attribute value
is modified, or an element is relocated and then propagates the update. Finally, Add operations investigate if a
source/target object is manually added, or in some cases, they insert new elements in models, fix the references,
and transform the references from one model into another. For this case study, the MoDEBiTE tool generates 13
auxiliary operations. Three of them compute the values of the name attributes for Family, FamilyMember, and
Person objects. Five operations are for getting the source/target objects from the trace link ends and five ones
are defined to get the corresponding trace link end for an object in the source/target model. Listing 2 presents
examples of auxiliary operations for the case study.

1 operation computeFamilyName(x:String):String
2 { return x.split(’, ’).first; }
3 operation computeMemberName(x:String):String
4 { return x.split(’, ’).second; }
5 operation computePersonName(x:String,y:String):String
6 { return x+’, ’+y; }
7 @cached
8 operation Source!FamilyRegister getTraceLinkEnd()
9 {

10 var seq = Families2Persons!FamilyRegisterSourceEnd.all.
11 select(s|not s.familyRegisterSourceEndType.isTypeOf(Families2Persons!EObject));
12 for (s in seq)
13 if (self.id = s.familyRegisterSourceEndType.id)
14 return s;
15 return null;
16 }

Listing 2: Example of automatically generated Auxiliary operations

Additionally, we define eight auxiliary operations (Listing 3) to make programming easier such as isMale()
operation to check if a member is a male person or getFamily() to find the Family object from a member
object.

1 operation Source!FamilyMember isFather():Boolean{ return self.fatherInverse.isDefined();}
2 operation Source!FamilyMember isMother():Boolean{ return self.motherInverse.isDefined();}
3 operation Source!FamilyMember isSon():Boolean{ return self.sonsInverse.isDefined();}
4 operation Source!FamilyMember isDaughter():Boolean{ return self.daughtersInverse.isDefined();}
5 operation Source!FamilyMember isMale():Boolean{ return self.isFather() or self.isSon();}
6 operation Source!FamilyMember isFemale():Boolean{ return self.isMother() or self.isDaughter();}

Listing 3: Example of user defined Auxiliary operations

The tool generates five operations from the Add-Check category, named isNew, to check if a source/target
object is new inserted or not. The isNew operation for FamilyMember object is shown in Listing 4.

1 @cached
2 operation Source!FamilyMember isNew(): Boolean
3 {
4 var seq = Families2Persons!FamilyMemberSourceEnd.all.
5 select(s|not s.familyMemberSourceEndType.isTypeOf(Families2Persons!EObject));
6 for (s in seq)
7 if (self.id = s.familyMemberSourceEndType.id)
8 return false;
9 return true;

10 }

Listing 4: isNew operation for FamilyMember objects

There are 63 operations in the Add-Fix category:
1. Five operations for adding trace link ends (because there are five different types of trace link ends). An
example is shown in Listing 5.

1 operation addFamilyMemberSourceEnd(object: Source!FamilyMember){
2 var end = new Families2Persons!FamilyMemberSourceEnd;
3 end.familyMemberSourceEndType = object;
4 end.name = object.name;
5 Families2Persons!FamilyMemberSourceEnd.all.add(end);
6 Families2Persons!TraceModel.all.first.linkends.add(end);
7 return end;
8 }

Listing 5: addFamilyMemberSourceEnd operation for adding MemberSourceEnd in the trace model

2. Two operations for adding trace links (two types of trace links).
1 operation addReg2RegTraceLink (srcFamilyRegisterSourceEnd: Families2Persons!FamilyRegisterSourceEnd,
2 tarPersonRegisterTargetEnd: Families2Persons!PersonRegisterTargetEnd){
3 var link = new Families2Persons!Reg2RegTraceLink;
4 link.srcRefFamilyRegister = srcFamilyRegisterSourceEnd;
5 link.trgRefPersonRegister = tarPersonRegisterTargetEnd;
6 Families2Persons!Reg2RegTraceLink.all.add(link);
7 Families2Persons!TraceModel.all.first.links.add(link);
8 return link;
9 }

Listing 6: Operations for adding trace links

3. Six operations for inserting new objects in the source and target models. Listing 7 presents the
insertFamilyMember operation, which takes a Person object and create a FamilyMember object in the source.

1 operation insertFamilyMember (personObject : Target!Person): Source!FamilyMember{
2 var source = new Source!FamilyMember;
3 source.name = computeMemberName(personObject.name);
4 return source;
5 }

Listing 7: insertFamilyMember operation for inserting a member in the source

4. 12 operations for setting source/target references and 12 operations for setting trace references.
5. 24 operations for transforming from source/target references to trace references, and vice versa (Listing 8).

1 operation Families2Persons!FamilySourceEnd copyFamilySourceEndfather ()
2 { var modelObject = self.getEndType();
3 if(self.father.isDefined())
4 modelObject.setFather(self.father.getEndType());
5 }//copy from FamilySourceEnd.father to Source!Family.father

Listing 8: copyFamilySourceEndfather operation transforms elements from trace to source

6. Two operations for transforming from the families reference of FamilyRegisterSourceEnd to the persons
reference of PersonRegisterTargetEnd, and vice versa (Listing 9).

1 operation copyFamilyRegisterSourceEndfamilies2PersonRegisterTargetEndpersons(){
2 for(familyRegister in Families2Persons!FamilyRegisterSourceEnd.all)
3 for(family in familyRegister.families)
4 for(familylink in family.refFamilyMember2Persons)

5 familyRegister.refReg2Reg.trgRefPersonRegister.setPersons(familylink.trgRefPerson);
6 }
7 operation copyPersonRegisterTargetEndpersons2FamilyRegisterSourceEndfamilies(){
8 for(personRegister in Families2Persons!PersonRegisterTargetEnd.all){
9 for(person in personRegister.persons)

10 personRegister.refReg2Reg.srcRefFamilyRegister.setFamilies(person.refFamilyMember2Persons.srcRefFamily);
11 }
12 }

Listing 9: Operations for transforming the relations between SourceEnds and TargetEnds

There are four Modify-Check operations for checking if the name attribute is modified or not. One example is
presented in Listing 10.

1 operation Families2Persons!FamilySourceEnd nameIsModified(): Boolean
2 {
3 if(self.name<> self.familySourceEndType.name) return true;
4 else return false;
5 }

Listing 10: nameIsModified operation for FamilySourceEnd

For the Modify-Fix category, three operations are defined. Listing 11 shows one of these operations.
1 operation Families2Persons!FamilySourceEnd namePropagates(){
2 self.name = self.getEndType().name;
3 for (tr in self.refFamilyMember2Persons){
4 if(not tr.endTypeIsRemoved()){
5 tr.trgRefPerson.name = computePersonName(self.name,tr.trgRefPerson.name.split(’, ’).second);
6 var targetObject = Target!Person.all.selectOne(o|o.id = tr.trgRefPerson.personTargetEndType.id);
7 targetObject.name = computePersonName(self.name,targetObject.name.split(’, ’).second);
8 }}
9 return self.name;}

Listing 11: namePropagates() operation for FamilySourceEnd

The MoDEBiTE tool generates 12 operations for the Delete-Check category including five operations for checking
removed source/target objects from the context of trace link ends, five operations for checking trace link ends
from the context of trace links and two ones for checking removed trace links. It also produces five operations
for deleting the source/target objects and corresponding trace link ends.

A.2 EVL constraints

The pre block sets the xmiId property of resources (Listing 12).
1 import ’atomicOperations.eol’;
2 pre{
3 Families2Persons.resource.useXmiIds= true;
4 Source.resource.useXmiIds= true;
5 Target.resource.useXmiIds= true;}

Listing 12: pre block of the EVL+Strace code

Deletion constraints check if a source/target object is removed and fix the violation. MoDEBiTE generates 10
constraints for checking and fixing deletions. In Listing 13, the isRemoved constraint is defined in the context
of FamilyMemberSourceEnd, and check if a FamilyMember object is removed.

1 context Families2Persons!FamilyMemberSourceEnd{
2 constraint isRemoved{
3 check: not self.isRemoved()
4 message: ’The ’+self +’ has a removed type’
5 fix{
6 title:’delete the ’+self
7 do{
8 var tracelink = self.refFamilyMember2Persons;
9 delete self;

10 tracelink.satisfies("srcRefFamilyMemberIsRemoved");
11 }}}
12 }

Listing 13: isRemoved constraint for FamilyMemberSourceEnd

Modification and relocation constraints check if any attribute value is modified or any element is moved. There
are six constraints in this category. Listing 14 demonstrates the code of familyMemberRoleIsRelocated constraint.

1 context Families2Persons!FamilyMemberSourceEnd{
2 guard: not self.isRemoved() and not self.refFamilyMember2Persons.endTypeIsRemoved()
3 constraint familyMemberRoleIsRelocated{
4 guard: not self.getEndType().getFamily().isNew() and
5 self.getEndType().getFamily().getTraceLinkEnd()= self.getFamily()
6 check: not ((self.fatherInverse.isDefined() and not self.getEndType().fatherInverse.isDefined())
7 or (self.motherInverse.isDefined() and not self.getEndType().motherInverse.isDefined())
8 or (self.sonsInverse.isDefined() and not self.getEndType().sonsInverse.isDefined())
9 or (self.daughtersInverse.isDefined() and not self.getEndType().daughtersInverse.isDefined())

10 or (self.getEndType().getFamily().getTraceLinkEnd()<> self.getFamily()))
11 message: self+’ role is changed or\n’+self+’ family =’+self.getFamily()+
12 ’ is changed to ’+self.getEndType().getFamily()
13 fix{
14 title: ’Propagate the relocation for ’+self
15 do{
16 var family= self.getEndType().getFamily();
17 var person;
18 if((self.fatherInverse.isDefined() or self.sonsInverse.isDefined()) and self.getEndType().isFemale()){
19 person =insertFemale(family,self.getEndType());
20 person.birthday = self.refFamilyMember2Persons.trgRefPerson.getEndType().birthday;
21 var personTargetEnd = addPersonTargetEnd(person);
22 delete self.refFamilyMember2Persons.trgRefPerson.getEndType();
23 delete self.refFamilyMember2Persons.trgRefPerson;
24 self.refFamilyMember2Persons.trgRefPerson = personTargetEnd;}
25 else
26 if((self.motherInverse.isDefined() or self.daughtersInverse.isDefined()) and self.getEndType().isMale()){
27 person = insertMale(family,self.getEndType());
28 person.birthday = self.refFamilyMember2Persons.trgRefPerson.getEndType().birthday;
29 var personTargetEnd = addPersonTargetEnd(person);
30 delete self.refFamilyMember2Persons.trgRefPerson.getEndType();
31 delete self.refFamilyMember2Persons.trgRefPerson;
32 self.refFamilyMember2Persons.trgRefPerson = personTargetEnd;}
33 self.refFamilyMember2Persons.srcRefFamily = family.getTraceLinkEnd();
34 copySrc2Trg();}
35 }}}

Listing 14: familyMemberRoleIsRelocated constraint for detecting element relocation

We define 8 constraints for Addition category. Listing 15 represents the code of the familyObjectIsNew
constraint. it checks if the family of one member in the source is moved to a new Family object.

1 context Source!FamilyMember{
2 constraint familyObjectIsNew{// the generated code of this constraint should be checked
3 guard: not self.isNew()
4 check: not ((self.fatherInverse.isDefined() and self.fatherInverse.isNew()) or
5 (self.motherInverse.isDefined() and self.motherInverse.isNew()) or
6 (self.sonsInverse.isDefined() and self.sonsInverse.isNew()) or
7 (self.daughtersInverse.isDefined() and self.daughtersInverse.isNew()))
8 message: self+’ is related to the new family’
9 fix{

10 title: ’Insert the correspondence’
11 do{
12 var familyMemberSourceEnd = self.getTraceLinkEnd();
13 var family;
14 var familyMember2Personslink = self.getTraceLinkEnd().refFamilyMember2Persons;
15 var oldFamilySourceEnd = familyMember2Personslink.srcRefFamily;
16 var oldPerson = familyMember2Personslink.trgRefPerson.getEndType();
17 var person;
18 family = self.getFamily();
19 family.satisfies("isNew");
20 var familySourceEnd = family.getTraceLinkEnd();
21 familyMember2Personslink.srcRefFamily = familySourceEnd;
22 if((oldPerson.isTypeOf(Target!Female) and self.isMale()) or
23 oldPerson.isTypeOf(Target!Male) and self.isFemale())
24 {if(self.isMale()) person = insertMale(family,self);
25 else person = insertFemale(family,self);
26 person.birthday = oldPerson.birthday;

27 delete oldPerson.getTraceLinkEnd();
28 delete oldPerson;
29 var personTargetEnd = addPersonTargetEnd(person);
30 familyMember2Personslink.trgRefPerson = personTargetEnd;}
31 else{
32 oldPerson.name = computePersonName(family.name,self.name);
33 oldPerson.getTraceLinkEnd().name = oldPerson.name;}
34 copySrc2Trg();}
35 }}}

Listing 15: familyObjectIsNew constraint

In automatic EVL+Strace the shape of code is changed, in which fix blocks are removed and their statements
are shifted to the check block. Listing 16 shows the excerpt code of this transfiguration. To make the code more
readable and modular, we define some new operation and put the statements of fix block in them.

1 context Target!Female{
2 constraint isNew{
3 check{ var result = not self.isNew();
4 if(not result){
5 if(preferExistingToNewFamily and Source!Family.all.exists(f|f.name = computeFamilyName(self.name))){
6 if(preferParentToChild){self.fixIsNewExistingFamilyParent();}
7 else{self.fixIsNewExistingFamilyDaughter();}}
8 else{
9 if(preferParentToChild){self.fixIsNewNewFamilyParent();}

10 else{self.fixIsNewNewFamilyDaughter();}}}
11 return true;
12 }}}

Listing 16: isNew constraint in the context of Female

A.3 The MoDEBiTE toolkit

The MoDEBiTE toolkit is developed to produce the artifacts of EVL+Strace transformation, including the
specific trace metamodel and the Epsilon code (EOL operations and EVL constraints). To generate the mentioned
artifacts, the toolkit asks the developer to design a weaving model conforming to the MoDEBiTE weaving
metamodel. For the Families to Persons case study, MoDEBiTE can automatically generate the specific trace
metamodel (presented in Figure 2) from the weaving model. As mentioned in Appendix A.1 and A.2, MoDEBiTE
can produce main parts of the transformation code. Table 2 presents that how much of code can be generated
by MoDEBiTE.

Table 2: The result of code generation

category of operations generated (#) refined (#) user-defined (#) total(#)
Auxiliary 13 0 8 21

Delete (Check and Fix) 17 0 0 17
Modify (Check and Fix) 6 3 1 7
Add (Check and Fix) 67 1 1 68
category of constraints generated (#) refined (#) user-defined (#) total(#)

Deletion 10 0 0 10
Modification and Relocation 4 2 2 6

Addition 6 3 2 8

Table 2 shows the categories of operations/constraints in the first column. It presents the number of generated
operations/constraints by MoDEBiTE in the second column. The third column demonstrates how much of the
generated code is required to be refined. The fourth column identifies the number of operations/constraints that
should be defined by the user. In the last column, the total number of operations/constraints is presented.

	Introduction
	EVL+Strace
	Solution
	Evaluation
	Conclusion
	Appendix: Details of our solution
	EOL operations
	EVL constraints
	The MoDEBiTE toolkit

