
Adaptation of TAAABLE to the CCC’2017
Mixology and Salad Challenges,
adaptation of the cocktail names

Emmanuelle Gaillard, Jean Lieber, and Emmanuel Nauer

UL, CNRS, Inria, Loria, F-54000 Nancy, firstname.lastname@loria.fr

Abstract. This paper presents the submission of the TAAABLE team to the 2017
Computer Cooking Contest. All challenges except the sandwich challenge are
addressed. Online systems have been developed for the salad and mixology chal-
lenges by adapting previous successful CCC TAAABLE systems to the require-
ments of the 2017 challenges. However, this paper presents two main contribu-
tions. The first contribution is a new approach based on adaptation rules for man-
aging the ingredients available for adapting salad recipes, and the second con-
tribution is a work on cocktail name adaptation which is submitted to the open
challenge. The cocktail name adaptation takes into account the name of the recipe
which has to be adapted, knowledge about the name of the recipe and about the
substituted and substituting ingredients. The naming process uses the problem-
solution dependency to the context of the target problem, exploiting knowledge
encoded in RDFS, a semantic Web representation language. This approach in the
framework of the representation language RDFS is a general approach and can
be applied in other problem solving contexts.
Keywords: case-based reasoning, adaptation, cooking, RDFS.

1 Introduction

This paper presents the participation of the TAAABLE team to the 2017 Computer Cook-
ing Contest. TAAABLE addresses all the challenges except the sandwich challenge.
Online systems have been developed for the salad and mixology challenges, respec-
tively available on http://tuuurbine.loria.fr/taaableCCC2017/salad.php

and http://tuuurbine.loria.fr/taaableCCC2017/cocktail.php. For these
two challenges, previous successful CCC TAAABLE systems have been adapted to ful-
fill the requirements of the 2017 challenges. The management of a limited set of in-
gredients (called the fridge in the following) uses, for the mixology challenge, the pro-
cess that has been presented at the CCC 2015 contest. Once the basic retrieval process
of TAAABLE returns a recipe to adapt, this process based on formal concept analysis
searches the more accurate available food which has to be used to substitute for a non
available one. A first contribution of this paper concerns the salad challenge, for which
we propose a new approach to manage the fridge, using adaptation rules. The second
main contribution of this year concerns the open challenge for which we present a work
about cocktail name adaptation. The cocktail name adaptation takes into account the

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
Copyright	©	2017	for	this	paper	by	its	authors.	Copying	permitted	for	private	and	
academic	purpose.	In	Proceedings	of	the	ICCBR	2017	Workshops.	Trondheim,	Norway		

253

R cocktailDish

?x

?y

Vodka

MintLiquor

4.

2.

dishType

ing

type

vol

ing

type

vol

The “Green Russian” recipe is identified by
the resource R. Its ingredients are 4 cl of
vodka and 2 cl of mint liquor. The prepara-
tion is not represented. ing relates a recipe
to one of its ingredients. type (abbreviation
of rdf:type) is an RDF property relating a
class to its instance (for example, the triple
〈?x type vodka〉 means that ?x is an in-
stance of vodka. The variables are existen-
tially quantified (there exist ?x and ?y such
that. . .). The property vol relates an ingre-
dient to its volume in centilitres.

Fig. 1. An RDF graph representing the “Green Russian” cocktail recipe.

name of the recipe which has been adapted, knowledge about the name of the recipe
and about the substituted and substituting ingredients. The naming process uses the
problem-solution dependency to the context of the target problem, exploiting knowl-
edge encoded in RDFS, a semantic Web representation language. This approach in the
framework of the representation language RDFS is a general approach and can be ap-
plied in other problem solving contexts.

The paper is organized as follows: Section 2 introduces the core of the
TAAABLE system. Sections 3, 4 and 5 present the TAAABLE systems which adress re-
spectively the mixology, the salad and the open challenges.

2 The TAAABLE system

The challenges, proposed by the CCC since its first edition consists in proposing, ac-
cording to a set of initial recipes, one or more recipes matching a user query com-
posed of a set of wanted ingredients and a set of unwanted ingredients. Since 2015, the
TAAABLE systems are built using TUUURBINE [1] (http://tuuurbine.loria.fr),
a generic case-based reasoning (CBR) system over RDFS which allows reasoning with
knowledge stored in a RDF store, as the one provided by the contest. TUUURBINE im-
plements a generic CBR mechanism in which adaptation consists in retrieving similar
cases and in replacing some features of these cases in order to adapt them as a solution
to a query.

2.1 RDFS

RDF (Resource Description Framework) represents data as triples of resources
〈subject predicate object〉, where the resource predicate is a property. A resource is
either a constant or a variable (generally called identified resource and blank node, re-
spectively). By naming convention, variables start with the symbol ? whereas constants
do not. Fig. 1 illustrates a recipe represented using RDF triples.

254

RDFS gives some semantics—and thus, inference possibilities—to RDF by the mean
of inference rules associated to some resources. Only a few rules are used in this paper:

〈a type C〉 〈C subc D〉
〈a type D〉

r1
〈a p b〉 〈p subp q〉

〈a q b〉
r2

〈A subc B〉 〈B subc C〉
〈A subc C〉

r3
〈p subc q〉 〈q subc r〉

〈p subc r〉
r4

type, subc and subp are abbreviations for rdf:type, rdfs:subClassOf and
rdfs:subPropertyOf. type is the membership relation between an instance and a
class. subc (resp., subp) is the relation between a class and a superclass (resp., a prop-
erty and a superproperty). r1 means that if a is an instance of a class it is also an instance
of its superclasses. r2 means that if a and b are related by a property, they are also re-
lated by any of its superproperties. r3 and r4 state that subc and subp are transitive.
For example, the following inference can be drawn:{

〈?x type Vodka〉,
〈vodka subc Alcohol〉

}
` 〈?x type Alcohol〉

RDFS does not include negation, thus only positive facts can be entailed. However,
an inference with closed world assumption (CWA) can be drawn, stating that if B 6` t
then t is considered to be false (given the RDFS base B), denoted by B `cwa ¬t.

SPARQL (SPARQL Protocol and RDF Query Language) enables to write queries to
RDF or RDFS bases. If a SPARQL engine uses RDFS entailment, this means that the
query is done on the RDF base completed by RDFS entailment. For example, the fol-
lowing SPARQL query addressed to a base describing recipes such as the one of figure 1
returns the set of recipes ?r containing some alcohol, taking into account the domain
knowledge, in particular the subclass relations of the food hierarchy presented in Fig. 2.
The CWA is assumed: if it cannot be entailed that a recipe contains some alcohol, then
it is concluded that it does not.

Qalcohol = SELECT ?r WHERE {?r ing ?a . ?a type Alcohol} (1)

Given a SPARQL query Q and an RDFS base B, the result of the execution of Q on B is
denoted by exec`(Q,B).

2.2 TUUURBINE founding principles

TUUURBINE is a generic CBR system over RDFS .
The domain knowledge is represented by an RDFS base DK consisting of a set of

triples of the form 〈C subc D〉 where C and D are classes which belong to a same
hierarchy (e.g, the food hierachy). Fig. 2 represents the domain knowledge for the run-
ning examples by a hierarchy whose edges C x−→ D represent the triples 〈C subc D〉
with x, the retrieval knowledge encoded by a cost function cost(〈C subc D〉) = x.
This cost can be understood intuitively as the measure of “the generalization effort”
from C to D. How this cost is computed is detailed in [2].

255

Liquid

FruitJuice

OrangeJuice AppleJuice

Alcohol

Liquor Vodka Tequila

Curacao MintLiquor

Syrup

StrawberrySyrup Grenadine

0.13 0.10

0.17 0.19

0.15 0.01 0.010.10 0.14

0.60 0.62 0.68

Fig. 2. The hierarchy forming the domain knowledge used in the running example with the gen-
eralization costs used as retrieval knowledge.

A TUUURBINE case case is described by a set of triples of the form
〈URIcase prop val〉, where URIcase is the URI of case, val is either a resource
representing a class of the ontology or a value and prop is an RDF property linking
case to a hierarchy class or to the value.

For simplification, in this paper, we represent a case by a conjunction of expressions
only of the form prop : val. For example, the “Green Russian” recipe is represented
by the following index R, which means that “Green Russian” is a cocktail recipe made
from vodka and mint liquor (ing stands for ingredient).

R = dishType : CocktailDish ∧ ing : Vodka ∧ ing : MintLiquor (2)

For instance, the first conjunct of this expression means that the triple
〈URIR dishType CocktailDish〉 belongs to the knowledge base.

2.3 TUUURBINE query

A TUUURBINE query is a conjunction of expressions of the form sign prop : val
where sign ∈ {ε,+, !,−}, val is a resource representing a class of the ontology and
prop is an RDF property belonging to the set of properties used to represent cases. For
example,

Q = +dishType : CocktailDish ∧ ing : Vodka ∧ !ing : Grenadine (3)

is a query to search “a cocktail with vodka but without grenadine”.
The signs ε (empty sign) and + are “positive signs”: they prefix features that

the requested case must have. + indicates that this feature must also occur in the
source case whereas ε indicates that the source case may not have this feature, thus
the adaptation step has to make it appear in the final case. For example, the term
+dishTypeCocktailDish means that TUUURBINE will only retrieve cases which
are cocktail recipes.

The signs ! and − are “negative signs”: they prefix features that the requested case
must not have. − indicates that this feature must not occur in the source case whereas !
indicates that the source case may have this feature, and, if so, that the adaptation step
has to remove it.

256

2.4 TUUURBINE retrieval process
The retrieval process consists in searching for cases that best match the query. If an
exact match exists, the corresponding cases are returned. For the query Q given in (3),
the “Green Russian” recipe is retrieved without adaptation. Otherwise, the query is
relaxed using a generalization function composed of one-step generalizations, which
transforms Q (with a minimal cost) until at least one recipe of the case base matches
Γ (Q). A one step-generalization is denoted by γ = prop : A prop : B, where A and
B are classes belonging to the same hierarchy with A v B, and prop is a property used
in the case definition. This one step-generalization can be applied only if A is prefixed
by ε or ! in Q. If A is prefixed by !, thus B is necessarily the top class of the hierarchy.
For example, the generalization of !ing : Grenadine is εing : Food, meaning that if
grenadine is not wanted, it has to be replaced by some other food or to be removed.
Classes of the query prefixed by + and − cannot be generalized.

Each one-step generalization is associated with a cost denoted by cost(A B).
The generalization Γ of Q is a composition of one-step generalizations γ1, . . .γn: Γ =
γn ◦ . . . ◦ γ1, with cost(Γ) =

∑n
i=1 cost(γi). For example, for:

Q = +dishType : CocktailDish

∧ ing : Vodka ∧ ing : Curacao ∧ !ing : Grenadine
(4)

Curacao is relaxed to Liquor according to the domain knowledge of Fig. 2. At
this first step of generalization, Γ (Q) = dishType : CocktailDish ∧ ing : Vodka ∧
ing : Liquor ∧ !ing : Grenadine, which matches the recipe described in (1), indexed
by MintLiquor, which is a Liquor.

2.5 TUUURBINE adaptation process
When the initial query does not match existing cases, the cases retrieved after general-
ization have to be adapted. The adaptation consists of a specialization of the generalized
query produced by the retrieval step. According to Γ (Q), to R, and to DK, the ingredient
MintLiquor is replaced by the ingredient Curacao in R because Liquor of Γ (Q) sub-
sumes both MintLiquor and Curacao. So, the adaptation consists in replacing curacao
by mint liquor.

TUUURBINE implements also an adaptation based on rules where a rule states that
in a given context C, some ingredients F can be replaced by other ingredients B. C,
F and B are the contexts, the “from part” (premise) and the “by part” (conclusion)
of the adaptation rule [3]. For example, the piece of knowledge stating that, in cock-
tail recipes, orange juice and strawberry syrup can be replaced with pineapple juice
and grenadine, can be represented by an adaptation rule with C = CocktailDish,
F = OrangeJuice ∧ StrawberrySyrup and B = PineappleJuice ∧ Grenadine.
Such an adaptation rule can be encoded by a substitution σ = C ∧ F C ∧ B. In the
example: CocktailDish ∧ OrangeJuice ∧ StrawberrySyrup CocktailDish ∧
PineappleJuice ∧ Grenadine. This rule-based adaptation is directly integrated in
the retrieval process by searching cases indexed by the substituted ingredients for
a query about the replacing ingredients, for example by searching recipes contain-
ing OrangeJuice and StrawberrySyrup for a query about PineappleJuice and
Grenadine.

257

2.6 TAAABLE as a TUUURBINE instantiation

The TAAABLE knowledge base is WIKITAAABLE (http://wikitaaable.loria.
fr/); WIKITAAABLE is composed of the four classical knowledge containers: (1) the
domain knowledge contains an ontology of the cooking domain which includes several
hierarchies (about food, dish types, etc.), (2) the case base contains recipes described by
their titles, the dish type they produce, the ingredients that are required, the preparation
steps, etc., (3) the adaptation knowledge takes the form of adaptation rules as introduced
previously, and (4) the retrieval knowledge, which is stored as cost values on subclass-of
relations and adaptation rules.

In WIKITAAABLE , all the knowledge (cases, domain knowledge, costs, adapta-
tion rules) is stored into a triple store. So, plugging TUUURBINE over the WIKI-
TAAABLE requires only configuring TUUURBINE by giving the case base root URI,
the ontology root URI and the set of properties on which reasoning may be applied.

3 Mixology challenge

The mixology challenge consists in retrieving a cocktail that matches a user query ac-
cording to a set of available foods given by the CCC organizers. For this challenge, the
successful TAAABLE system which won the jury and public prizes in 2015 has been
adapted to take into account the new list of available foods (vodka, gin, rum, tequila,
sake, champagne, tomato juice, apple juice, sparkling water, grenadine syrup, lemon
juice, lime, mint, ice cube, brown sugar, salt, pepper). The principles remain the same
as the ones used in the 2015 system. TUUURBINE is used to perform the retrieval step
which takes into account the available foods (section 3.1). A specific adaptation step
based on formal concepts is used when some ingredients of the source recipe are not
available, to search the best way to replace them, or in some cases, to remove them (see
Section 3.2).

3.1 Managing a fridge with TUUURBINE

TUUURBINE is able to manage a fridge directly through a query modification us-
ing the ε and ! prefixes. Indeed, if answers must only contain the available foods,
the initial user query can be modified by adding the minimal set of classes of the
food hierarchy that subsume the set of foods which are not available, each class
being negatively prefixed by !. For example, let us assume that OrangeJuice and
AppleJuice are the available fruit juices, that Vodka and Tequila are the only avail-
able alcohols, that Grenadine is the only available syrup, and that the user wants
a cocktail recipe with Vodka but without Grenadine. The initial user query will be
Q = +dishType : CocktailDish ∧ εing : Vodka ∧ !ing : Grenadine. According to
Fig. 2, Liquor and StrawberrySyrup will be added to this initial query with a ! for
expressing that the result cannot contain one of these non available classes of food. The
extended query EQ submitted to TUUURBINE will be:

EQ = Q ∧ !ing : Liquor ∧ !ing : StrawberrySyrup

258

Fig. 3. Part of the concept lattice built from recipes using Vodka.

For this example, TUUURBINE retrieves the “Green Russian” recipe with the adap-
tation “replace MintLiquor with Food”. In order to replace MintLiquor by some-
thing more specific than Food, a FCA approach which exploits ingredient combination
in cocktail recipes is used.

3.2 Using FCA to search the best ingredient combination

FCA is a classification method allowing object grouping according to the properties
they share [4] and so, is able to find regularities in a set of objects. When the objects
are cocktail recipes and the properties are the ingredients the cocktail recipes use, FCA
computes ingredient combination. FCA produces formal concepts as output. A formal
concept is a pair (I, E) where I is a set of properties, E is a set of objects, respectively
called the intent and the extent of the formal concept, such that (1) I is the set of all
properties shared by the objects ofE and (2)E is the set of all objects sharing properties
in I . The formal concepts can be ordered by extent inclusion, also called specialisation
between concepts, into what is called a concept lattice. Fig. 3 illustrates a part of the
lattice resulting from recipes with Vodka (the only required ingredient in Q). On this
figure, the extents E are given through a reduced form (noted Er): the objects appear in
the most specific concepts, the complete extent can be computed by the union of objects
belonging to the subconcepts. For example, the concept #3 is related to cocktail recipes
using vodka and orange juice. These recipes are R1 and R3 which do not contain other
ingredient, and the recipes of the extents of concept #3 more specific concepts (e.g.
concept #8) which contain additional ingredients. This lattice can be used to adapt the
“Green Russian” recipe R, returned for query Q, with the substitution of MintLiquor
with another food because MintLiquor is not in the set of available foods.

To search a replacing ingredient in a given recipe or in a recipe according to pieces
of food that will be kept, the idea is to exploit the lattice which captures concept sim-
ilarities and organization. Adapting a cocktail is based on the closeness between con-
cepts. For example, when a replacing ingredient is searched for MintLiquor in R (con-
cept #6), some similar concepts (i.e. sharing a same super-concept) can be used. In the
lattice given in example, concept #6 can be generalized into concept number #2, which
extent contains cocktails with vodka and liquor. The cocktail in the extent of concept #7

259

is similar to the one of concept #2, because they share the Vodka and the Liquor prop-
erties. When removing MintLiquor from the “Green Russian” recipe, a possible in-
gredient for substitution, given by the lattice, could be Curacao. However, as Curacao
is not an available food, concept #7 cannot be used to complete the substitution.

Let CR be the formal concept such that Er(CR) = {R}. A formal concept C close
to CR is searched according to the following procedure. C is such that its intent I(C)
does not contain the removed ingredient (MintLiquor in the example) and maximizes
|Er(C)|. First, C is searched in the ascendants of CR, then in the descendants of the
ascendants satisfying the available food constraints. The ingredient to be substituted is
replaced by I(C) \ I(CR).

Applying this procedure, the most similar ingredient combinations which includes
Vodka that can be used to replace MintLiquor are given by concepts #3, #4 and #5 and
their descendants. However, concept #4 and its descendants cannot be used to produce
a substitution because its intent contains PineappleJuice which is not an available
food. Concept #5 intent contains AppleJuice, an available food, but concept #3 is
closer to concept #6 than concept #5 is, according to the selection procedure based on
the maximal number of objects of Er. The cocktail system will suggest replacing the
mint liquor with orange juice.

To implement our approach, data about ingredient combinations in cocktail recipes
has been collected. For this, we queried Yummly (http://www.yummly.com/) with
query composed of one ingredient (one available food from the CCC 2017 new food
list). More details about the FCA based approach can be found in [5].

4 Salad challenge: a new approach for managing the fridge and
for adapting quantities

The adaptation challenge requires managing a limited set of available food (like in the
cocktail challenge) and adapting the ingredient quantities.

4.1 Salad ingredient adaptation with a fridge

The approach for managing a limited set of ingredients is rather different in the salad
challenge context than in the cocktail one. Indeed, there are many important differences
between the knowledge involved to solve a recipe adaptation for the mixology challenge
and the knowledge involved to solve a recipe adaptation for the salad challenge. First,
there are less salad recipes than cocktails recipes: 70 against 108. Second, the salad
recipes use 266 different ingredients of whom 245 are not available in the fridge. For
the cocktail recipes, only 139 ingredients (among the 156 different ingredients) are
not in the fridge. Third, the minimal, maximal and average of ingredients per recipe is
4, 18 and 10 for the salad recipes and only 2, 10 and 5 for the cocktail recipes. The
second and third points directly impact the number of ingredient substitutions required
to adapt a recipe to fit the fridge constraint. Adapting a salad recipe requires at least
3 substitutions and in average 8 substitutions (the maximal number of substitutions is
17). For the cocktail recipes, to take into account the fridge, the maximal number of
substitutions is only 7, 10 recipes require only 1 ingredient substitution and, in average,

260

the number of substitutions is 3. Fifth, the ingredients involved in the salad recipes
are more distributed over the food hierarchy: 13 top categories of the food hierarchy
are concerned (Vegetable, Fruit, Meat, Seafood, Legume, Diary, Liquid, Oil,
. . .), whereas only 3 top categories are concerned for cocktail recipes (Liquid, Fruit,
and Flavoring). All these facts drastically increase the adaptation effort for the salad
challenge comparing to the cocktail challenge: more ingredients to substitute in order
to adapt a recipe, more unavailable foods implied and a larger distribution of this foods
in the food hierarchy. So, it is not appropriate to generalize an unavailable food to Food

because too many food classes will be generalized into Food: 8 in average. With the
approach presented for adapting cocktail recipes, it requires searching for each of these
8 ingredients which ingredients of the fridge can be used as substituting ingredients.
That is why we propose a new approach using adaptation rules, in order to better control
the adaptation. The idea is to define, for each available food f , which ingredients can be
replaced by f . About 50 adaptation rules have been added to manage the foods available
to cook a salad. For example, the four following adaptation rules:

σ1 = (SaladDish ∧ Diary SaladDish ∧ Yogurt)
σ2 = (SaladDish ∧ CitrusFruit SaladDish ∧ Orange)

σ3 = (SaladDish ∧ Egg SaladDish ∧ Salmon)
σ4 = (SaladDish ∧ StoneFruit SaladDish ∧ Strawberry)

state that, in salad recipes, dairy may be replaced by yogurt, citrus fruit may be re-
placed by orange, egg may be replaced by salmon, and stone fruit may be replaced by
strawberry.

Let F be the set of available foods. The adaptation rules we defined are all of the
form σ = (SaladDish∧ A SaladDish∧ B), with B ∈ F. However, we can consider
3 types of rules relying on the relation between A and B:

– If B v A and A 6v B and @C ∈ F such that B 6= C and C v A, the adaptation
rule allows to substitute all the foods more specific than A with B. For example,
σ = (SaladDish ∧ Diary SaladDish ∧ Yogurt) will allow to replace a
dairy (e.g. Creme) appearing in a case base recipe by some yogurt. The constraint
“@C ∈ F such as B 6= C and C v A” guarantees that there is no food in the
fridge more specific than A other than B. For example, suppose that some Cheese
(e.g. Cheddar) is available in the fridge, σ1 will be split in more specific adap-
tatation rules, e.g. if Cheese and Creme are the only direct subclasses of Diary:
(SaladDish ∧ Creme SaladDish ∧ Yogurt), and (SaladDish ∧ Cheese
SaladDish ∧ Cheddar).

– If B 6v A and A 6v B, the adaptation rule implies two foods which do not belong to
a same category in the food hierarchy. This type of rule allows to take into account
that two foods A and B play the same role in a salad dish and so, that they are
substitutable. For example, σ3 has been created because Egg and Salmon play the
same role: they are proteins. This type of rule allows also to fix a food B as the
closest available food of A. For example, σ4 has been created because there is no
stone fruit in the fridge and in this case, when StoneFruit appears in a source case
recipe, the best way to substitute it with an available food is with Strawberry,
StoneFruit and Strawberry being fruits.

261

– If B = Food, the rules state that there is no way to substitute A (e.g. Tea) appearing
in a recipe of the case base with something available in the fridge. In this case, A is
generalized into Food and an adaptation procedure is triggered to remove all the A
which have been generalized into Food.

The impact of such rules in TUUURBINE is that new recipes are virtually created,
because a recipe containing for example some grapefruit (which is a citrus fruit) will be
retrieved as if this recipe contains some orange. So, the TUUURBINE retrieval process
will be able to return recipes whose adaptation effort will be less costly because more
controlled (the adaptation process remaining the same).

Let Q = +dishType : SaladDish∧ing : Salmon∧ing : Cucumber∧ !Lemon : , be
an example query meaning that the user wants a salad recipe with salmon and cucumber
but without lemon. Consider the recipe named “Cucumber salad with hard-boiled egg
and fromage blanc” which index is idx(R) = Egg ∧ FromageBlanc ∧ Cabbage ∧
Lemon ∧ Salt ∧ Pepper.

According to the fridge and to the food hierarchy, the unavailable foods are added
to this initial query Q with a !. For example, FromageBlanc and Egg are unavailable
classes of food. The extended query EQ submitted to TUUURBINE will be :

EQ = Q ∧ !ing : FromageBlanc ∧ !ing : Egg ∧ ...

For simplification, we present only the two classes of EQ which represent unavailable
foods that will be taken into account by the adaptation rules. The first generaliza-
tion which returns results is Γ = Cucumber Vegetable producing the general-
ized query: Γ (EQ) = dishType : SaladDish ∧ ing : Salmon ∧ ing : Vegetable ∧
!ing : Lemon∧ !ing : FromageBlanc∧ !ing : Egg. With the use of the three adaptation
rules σ1, σ2 and σ3, R matches Γ (EQ) because σ1 transforms the FromageBlanc, a
Diary of R, into Yogurt, σ2 transforms the Lemon, a CitrusFruit of R, into Orange,
σ3 transforms the Egg of R into Salmon, and Cabbage is a Vegetable according to
the food hierarchy. The answer returned by TUUURBINE for adapting R to Q consists
in replacing Cabbage by Cucumber, Egg by Salmon, FromageBlanc by Yogurt and
Lemon by Orange. The first subsitution comes from the basic retrieval/adaptation pro-
cesses of TUUURBINE , while the three last ones come from the adaptation rules.

4.2 Adaptation of quantities for the salad challenge

The ontology-based substitution procedure extended by adaptation rules of
TAAABLE favors the substitution of ingredients of the same type (a sauce by a sauce, a
vegetable by a vegetable, etc.). So, ingredient quantities can, in most cases, be reused
without adaptation. For example, 3 cups of Pasta can be replaced by 3 cups of
Couscous, 1 tsp of Oregano by 1 tsp of Cumin, etc. However, there are some kinds
of adaptations (coming from the adaptation rules) which require some quantity adjuste-
ments. An approach for the adaptation of ingredient quantities based on mixed linear
optimization was proposed in [6] and has been used to compute sugar, alcohol and
mass compensation when replacing some ingredients by others in the context of cock-
tail adaptations [5]. This complexity is not required to adapt salads, especially because

262

the substitution procedure is guided by adaptation rules. So, we only define a simple
heuristic to provide realistic quantities to the user. This heuristic is the following. Each
food available in the fridge is associated with a preferred unit and to a set of possible
units coming from the recipes of the case base. For example, the set of possible units
for Carrot is {unit, g, oz} and the preferred unit is unit. For the quantity adaptation,
if the replaced ingredient unit is a mass (e.g. g) or a volume (e.g. cl, tsp, tblsp) in
the source case, and if this unit is a possible unit for the replacing ingredient, neither
quantity adaptation nor unit adaptation is done. If not, conversion knowledge coming
from WIKITAAABLE is used. First, the quantity of the replaced ingredient is converted
into its mass, in grams. For example, if the source recipe uses 2 lettuces, the conversion
knowledge stating that the mass of 1 lettuce is 360 g is used to computed the total mass
of lettuce: 2 × 360 g = 720 g). Secondly, conversion knowledge associates to each
possible replacing ingredient (a food of the fridge) its preferred unit and the correspon-
dance from this unit to a mass in grams. For example, the preferred unit of Carrot is
unit and the mass of 1 unit of carrot is 70 g. This allows computing the adapted quan-
tity in the preferred unit of the replacing ingredient, by divided the mass (in grams) of
the replaced ingredient by the mass (in grams) corresponding to the preferred unit of
the replacing ingredient. In the running example, if Lettuce is replaced by Carrot,
and the original quantity of Lettuce is 2 units then 720/70 ≈ 10 units of Carrot
have to be used (the result is rounded).

5 Open Challenge: cocktail name adaptation

This section presents the TAAABLE team submission to the open challenge. The issue
is, when TAAABLE returns an adapted recipe, how to name it according to its original
name and to the substitution. For example, what name could be assigned to the recipe
obtained from the “Green Russian” recipe after having substituted the mint liquor with
curacao.

This issue of adapting recipe names has been suggested by the jury of the 2014
edition of the CCC and the CookingCAKE system [7] has addressed this challenge
for the CCC-2015, using a few rules. For instance, the adjective "cheesy" is added
to the recipe name if the adapted recipe of a sandwich contains some cheese. The
TAAABLE team has addressed this issue more formally in [8], using an approach based
on RDFS. In this application, a problem pb is a representation of a cocktail recipe by an
RDFS graph. For the first version of this application, only ingredient types are consid-
ered, neither the quantities, nor the preparation steps. Therefore, a problem is an RDFS
base pb =

⋃n
k=1{〈id ing ?vk〉, 〈?vk type fk〉} where id is a constant (a resource

identifying the recipe), ?v1, . . . , ?vn are n variables, and f1, . . . , fn are food classes.
A solution sol(pb) of pb is a literal of type string that gives a name to pb. It is as-

sumed to be in lower case for the sake of simplicity, e.g., sol(pb) = "green russian"

solves the problem pb represented in figure 1. The following operations on strings are
used: concatenation (denoted by +, e.g., "ab"+ "cd" = "abcd"), substring checking
(denoted by subStringOf, e.g., subStringOf("bc", "abcd") = true), and string
replacement (e.g., replace("ab", "cd", "bababa") = "bcdcda").

263

A dependency βpb between pb and sol(pb) is an RDFS base. Usually, at least one
food class fk of pb and the literal sol(pb) occurs in βpb: when it is not the case, βpb
does not relate pb to sol(pb) (which is possible, e.g., when βpb = ∅, i.e., there is no
known dependency between pb and sol(pb)). For each case (srce, sol(srce)), βsrce
is assumed to be given.

A matching αpb from srce to tgt is either simple or complex. A simple matching
has the form f g where f is a food class of srce and g is a food class of tgt; it
represents the substitution of f by g. The removal of a food class f will be denoted by
f ∅. A complex matching is a composition αpb = αqpb ◦ α

q−1
pb ◦ . . . ◦ α1

pb of simple
matchings. αpb is built during the adaptation of ingredients process of TAAABLE .

The matching αβ from βsrce to βtgt is built during the cocktail name adaptation.
It consists of a set of ordered pairs (d, d′) where d is a descriptor of βsrce and d′ is
a descriptor of βtgt, a descriptor being either a resource (that can be a property) or a
literal.

We present in the next sections five adaptation strategies: the two first strategies
(§5.1 and §5.2) are application-dependent, whereas the last ones should be adaptable
to other applications. Strategies presented in sections 5.3 and 5.4 are designed for sim-
ple matchings whereas the strategy of section 5.5 combines strategies for dealing with
complex matchings.

5.1 Strategy “Alcohol abuse is dangerous for health”

Consider a cocktail recipe containing some alcohol, for which the adaptation consists
in removing the ingredients which are alcohol or in substituting them by ingredients
which are not alcohol. In this case, the new cocktail name may be computed by adding
“virgin” to the original recipe name. For example, let sol(srce) = "mojito" be the
name of the “Mojito” recipe, let αpb = rhum ∅ be the adaptation consisting in
removing the unique alcohol of srce, then sol(tgt) = "virgin mojito" will be the
adapted cocktail name. Note that the test about alcohol can be performed by executing
the SPARQL query Qalcohol (cf. equation (1)) twice:

– “srce contains some alcohol” is encoded by exec`(Qalcohol, DK ∪ srce) 6= ∅ and
– “tgt contains no alcohol” is encoded by exec`(Qalcohol, DK ∪ tgt) = ∅.

5.2 Default strategy

The default strategy is applied when all other strategies fail, this time by adding “the
new ” to the original recipe name (e.g. “the new bloody mary”).

5.3 Strategy “Turn constants into variables”

This section models the adaptation example presented in Section 2, where the “Green
Russian” recipe is adapted by replacing mint liquor by curacao.

264

srce

?i

MintLiquor

green

"green�

"green russian"

ing

type

color

inEnglish

substringOf

βsrce

tgt

?i

Curacao

?x

?y

?sol_tgt

ing

type

color

inEnglish

substringOf

βgen

MintLiquor Curacao

Fig. 4. Example of an RDFS based cocktail name adaptation using the “Turn constants into vari-
ables” strategy.

A partial explanation of the name sol(srce) = "green russian" is that the color
of mint liquor is green, which can be modeled by:

βsrce = {〈MintLiquor color green〉, 〈green inEnglish "green"〉,
〈"green" subStringOf "green russian"〉}

These triples are represented on the left-hand part of the graph of Fig. 4.
Since αpb = MintLiquor Curaçao, in order to build βtgt, the idea is to apply

αpb on βsrce and then to make some modifications on the resources and literals to make
it consistent with DK. This consistency test must be considered wrt CWA because there
is no way to have 〈MintLiquor color blue〉 inconsistent with DK in the classical
semantics. It is assumed that DK `cwa ¬〈MintLiquor color blue〉, thus the mere
substitution αpb on βsrce gives an inconsistent result wrt DK under CWA. So, the idea
is to relax this triple. One way to do it is to replace green with a variable ?x. More
generally, the strategy consists in replacing the descriptors of βsrce by variables, with
the exception of the predicates (that are higher order resources) and of the descriptors
occurring in tgt. The variable that replaces sol(srce) is ?solTgt: solving tgt con-
sists in giving a value sol(tgt) to this variable. This gives the following dependency
(obtained by applying αpb and turning some constants into variables):

βgen = {〈Curacao color ?x〉, 〈?x inEnglish ?y〉,
〈?y subStringOf ?solTgt〉}

βgen is so-called, since it generalizes αpb(βsrce) (in the sense αpb(βsrce) ` βgen), where
αpb(βsrce) is the result of applying the substitution αpb on βsrce.

Now, in order to get βtgt, the idea is to unify the variables ?x and ?y with some
constants, using the domain knowledge. Therefore DK is interrogated with the following
SPARQL query: SELECT ?x ?y WHERE {Curacao color ?x . ?x inEnglish ?y}.

265

Assuming the only result is the pair {?x← blue, ?y← "blue"}, it comes:

βtgt = {〈Curacao color blue〉, 〈blue inEnglish "blue"〉,
〈"blue" subStringOf ?solTgt〉}

and αβ = {(MintLiquor, Curacao), (green, blue), ("green", "blue")}

Therefore, βtgt involves that sol(tgt) has to respect the following constraint:

sol(tgt) ∈ {s : string | "blue" is a substring of s} (5)

Now, sol(srce) must be modified using αβ into sol(tgt) that respects (5). Here, a
domain-dependent choice is made: it concerns the way the solution space is structured,
i.e., how can modifications be applied on solutions. It is assumed that in this application,
the only modification operation is based on the replace operation on the set of strings
(which is the solution space). Hence, since ("green", "blue") ∈ αβ , the following
cocktail name that is consistent with (5) is proposed:

sol(tgt) = replace("green", "blue", sol(srce)) = "blue russian"

5.4 Strategy “Generalization-specialization of dependencies”

Now, consider the example of the adaptation of sol(srce) = "green russian"

when αβ = MintLiquor IndianTonic with the same βsrce as in section 5.3
and assuming that DK gives no color to Indian tonic (i.e., there is no triple of the form
t = 〈IndianTonic color c〉 such that DK ` t), the adaptation strategy of section 5.3
fails. However, it is assumed that

DK `

 〈IndianTonic taste bitter〉, 〈IndianTonic texture sparkling〉,
〈bitter inEnglish "bitter"〉, 〈sparkling inEnglish "sparkling"〉,

〈color subp hOP〉, 〈taste subp hOP〉, 〈texture subp hOP〉


meaning that Indian tonic is bitter and sparkling, and that color, taste and texture
are organoleptic properties (hOP is an abbreviation for hasOrganolepticProperty).
Therefore, the adaptation strategy described in section 5.3 can be applied with a slight
modification: it is sufficient to replace in βgen the triple 〈IndianTonic color ?x〉 by
〈IndianTonic hOP ?x〉, which is more general according to DK.

One way to address this problem is to search in the domain knowledge for triples for
building βgen that are similar to αβ(βsrce). This can be likened to the retrieval issue in
CBR, which can be implemented by a least generalization of the query (see, e.g., [9]).
A similar idea is proposed here. It consists in making a best-first search in a space of
dependencies β such that:

– The initial state β0 corresponds to the βgen as it is computed in the strategy of
section 5.3.

– The successors of a state consists in making a generalization of one of its triples.
The following generalization operators can be considered: replace a class (resp.,
a property) by a direct superclass (resp., direct superproperty) in DK, replace a re-
source or a literal by a variable, etc. A cost function must be associated to general-
ization operators, in order to choose the least costly generalization.

266

– A final state β is such that the SPARQL query associated with it gives a nonempty
set of results.

Once a final state β is found, the rest of the approach of Section 5.3 can be applied with
βgen = β.

Back to the example, it comes:

β0 = {〈IndianTonic color ?x〉, 〈?x inEnglish ?y〉,
〈?y subStringOf ?solTgt〉}

In the first triple, color can be generalized into hOP (since DK ` 〈color subp hOP〉),
giving

β = {〈IndianTonic hOP ?x〉, 〈?x inEnglish ?y〉,
〈?y subStringOf ?solTgt〉}

β is a final state since exec`(Q, DK) 6= ∅ for

Q = SELECT ?x ?y WHERE {IndianTonic hOP ?x . ?x inEnglish ?y}

Indeed, exec`(Q, DK) = {A1, A2} where A1 = {?x ← bitter, ?y ← "bitter"}
and A2 = {?x ← sparkling, ?y ← "sparkling"}, leading to the two expected
solutions: "bitter russian" and "sparkling russian".

Therefore this strategy consists in finding the minimal generalization β of the initial
dependency β0 and then in specializing β into βtgt’s thanks to SPARQL querying on
DK, hence the name of the strategy.

5.5 Composing strategies when the matching is complex

When the matching αpb is complex, it can be written αpb = αqpb ◦ α
q−1
pb ◦ . . . ◦ α1

pb,
with q ≥ 2. The idea is then to apply in sequence the strategies associated with simple
matchings. For example, for sol(srce) = "green russian", α1

pb = mintLiquor
curacao, α2

pb = vodka tequila, the strategy of Section 5.3 can be applied twice
to give the name sol(tgt) = "blue mexican". This adaptation is an application of
the adaptation based on reformulations and similarity paths (see e.g. [10]).

6 Conclusion

This paper has presented the systems developed by the TAAABLE team for its participa-
tion to the 2017 CCC. The two systems presented for the salad and mixology challenges
are based on the successful 2015 version of TAAABLE , extended for salad challenge
with a new approach to manage the fridge. A new approach has also been presented
for adapting the cocktail names from the ingredient adaptation. Several name adapta-
tion strategies have been presented and, if some proposed strategies are application-
dependent, it is claimed that other ones can be applied—or adapted—to a larger frame-
work. Indeed, they match the principles described in some related work about analogical

267

transfer (e.g., [11] and [12]) while proposing an approach benefitting from the standard
RDFS and associated tools (RDFS SPARQL engines, RDF stores). A first prototype
implementing the three first strategies has already been developed, but the adaptation
strategy based on generalization-specialization of dependencies is under development.
However, there is an important workload for acquiring dependencies βsrce, which is
currently done manually and for acquiring triples in the domain knowledge. A possi-
bility to address these issues is to query the Linked Open Data (LOD), a huge cloud of
RDF and RDFS bases freely accessible on the Web. This knowledge acquisition task is
the main future work.

References

1. E. Gaillard, L. Infante-Blanco, J. Lieber, and E. Nauer. Tuuurbine: A Generic CBR Engine
over RDFS. In Case-Based Reasoning Research and Development, volume 8765, pages 140
– 154, Cork, Ireland, September 2014.

2. A. Cordier, V. Dufour-Lussier, J. Lieber, E. Nauer, F. Badra, J. Cojan, E. Gaillard, L. Infante-
Blanco, P. Molli, A. Napoli, and H. Skaf-Molli. Taaable: a Case-Based System for per-
sonalized Cooking. In S. Montani and L. C. Jain, editors, Successful Case-based Reason-
ing Applications-2, volume 494 of Studies in Computational Intelligence, pages 121–162.
Springer, 2014.

3. E. Gaillard, J. Lieber, and E. Nauer. Adaptation knowledge discovery for cooking using
closed itemset extraction. In The Eighth International Conference on Concept Lattices and
their Applications - CLA 2011, pages 87–99, 2011.

4. B. Ganter and R. Wille. Formal Concept Analysis: Mathematical Foundations. Springer,
Berlin, 1999.

5. E. Gaillard, J. Lieber, and E. Nauer. Improving Ingredient Substitution using Formal Con-
cept Analysis and Adaptation of Ingredient Quantities with Mixed Linear Optimization. In
Computer Cooking Contest Workshop, Frankfort, Germany, September 2015.

6. J. Cojan and J. Lieber. Applying Belief Revision to Case-Based Reasoning. In Compu-
tational Approaches to Analogical Reasoning: Current Trends, volume 548 of Studies in
Computational Intelligence, pages 133 – 161. Springer, 2014.

7. G. Müller and R. Bergmann. CookingCAKE: A Framework for the adaptation of cooking
recipes represented as workflows. 2015.

8. N. Kiani, J. Lieber, E. Nauer, and J. Schneider. . In A. K. Goel et al., editor, Case-Based
Reasoning Research and Development, Proceedings of the 24th International Conference on
Case-Based Reasoning (ICCBR-2016), Lecture Notes in Computer Science, Atlanta, Geor-
gia, 2016. Springer International Publishing.

9. E. Gaillard, L. Infante-Blanco, J. Lieber, and E. Nauer. Tuuurbine: A Generic CBR Engine
over RDFS. In Case-Based Reasoning Research and Development, volume 8765, pages 140
– 154, Cork, Ireland, September 2014.

10. E. Melis, J. Lieber, and A. Napoli. Reformulation in Case-Based Reasoning. In B. Smyth and
P. Cunningham, editors, Fourth European Workshop on Case-Based Reasoning, EWCBR-98,
LNCS 1488, pages 172–183. Springer, 1998.

11. D. Gentner. Structure-Mapping: A Theoretical Framework for Analogy. Cognitive science,
7(2):155–170, 1983.

12. P. H. Winston. Learning and reasoning by analogy. Communications of the ACM,
23(12):689–703, 1980.

268

